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Abstract 
We propose a resolution-optimal planner that considers uncertainty while 

optimizing any monotonic objective function such as mobility cost, risk, energy 
expended, etc. The resulting path is a one that minimizes the expected cost value of 
the objective function, while ensuring that the uncertainty in the position of the robot 
does not compromise the safety of the robot or the reachability of the goal. 
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1  Introduction  
 Uncertainty is always present in the position estimation of mobile robots. For path planning, 
however, its effects are frequently ignored. For most problems, this is an appropriate approach if the 
uncertainty is smaller or comparable to the size of the robot. However, when the uncertainty is larger, 
its effects should not be ignored.   
 The widespread use of GPS (Global Positioning System) has facilitated the position estimation 
problem for outdoor mobile robots. Nonetheless, there are many scenarios where GPS coverage is 
limited or unavailable: under tree canopies, in canyons, and in many urban environments. In indoor 
settings GPS is unavailable, although sometimes landmarks can be used for absolute positioning. 
 In this paper we propose a resolution-optimal path planner that considers uncertainty, while 
optimizing any monotonic objective function such as mobility cost, risk, energy expended, etc. The 
environment is represented as a grid, in which the cost of each cell corresponds to the cost of traveling 
from the center of the cell to its edge. The resulting path minimizes the expected value of the objective 
function along the path, while ensuring that the uncertainty in the position of the robot does not 
compromise the safety of the robot or the reachability of the goal. 
 The planner uses a single-parameter error propagation model in order to minimize the number 
of dimensions required. This model is a conservative estimate of the true error projection model and 
can provide an accurate estimate of the higher-dimension model, depending on the type of error that is 
predominant in the system. Additionally, the planner is able to handle regions with GPS coverage, 
where the uncertainty stops propagating and is reduced to a fixed value. 
 Even though the planner utilized is a 3-D planner, the characteristics of the search space and 
the simplified error propagation model allow the planner to have a time complexity close to that of a 2-
D planner. The planning time is under 1 second for worlds of up to 150x150 cells, and under 10 
seconds for worlds of up to 250x250 cells. 
 This paper is organized as follows: section 2 contains a review the relevant literature in the 
area of planning with uncertainty. Section 3 explains the motion model and the uncertainty propagation 
problem. Section 4 explains our approach to the problem. Section 5 shows some results of the planner 
applied to synthetic and geographic data and analyzes the performance of the algorithm. Section 6 
contains the conclusions and explores future directions for this research. 

2 Related Work 
 There is abundant work in planning with uncertainty in the research literature. Latombe [1][2] 
has an extensive review on the state of the art as of 1991. Since then, important contributions by 
Lazanas and Latombe [3], Bouilly [4][5], Haït et al. [6], Fraichard [7], and others have not only 
expanded the theoretical approaches to planning with uncertainty, but also addressed some of its 
practical limitations. 
 There is, however, little work in creating optimal planners. Although the planner proposed by 
Bouilly [4] calculates an optimal path with respect to uncertainty or path length (i.e.: a path of 
minimum uncertainty or minimum path length), the approach is not applicable to finding optimal paths 
with respect to other important criteria. 
 To the best of our knowledge, only Roy and Thrun  [8] have solved the problem of finding 
optimal paths for continuous cost worlds in the presence of uncertainty. The planner they propose 
includes many of the elements of the planner proposed here, but is based on an approximate solution to 
a POMDP. This approach requires pre-processing all the states in the search space, which later allows 
for very fast planning. However, the total planning time (including the pre-processing stage) is very 
long. We are presenting an alternate semi-deterministic approach based on A*, which in average has 
much lower time complexity.  
 
 



3 Motion Model and Uncertainty Propagation 
 The first-order motion model for a point-sized robot moving in two dimensions is: 
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where the state of the robot is represented by x(t), y(t) and θ(t) (x-position, y-position and heading 
respectively), and the inputs to the model are represented by v(t) and ω(t) (longitudinal speed and rate 
of change for the heading respectively). Equation (1) can also be expressed as: 
 
 ( ) ( ( ), ( ))t f t t=x x u�  (2) 
 
where ( ) ( ( ), ( ), ( ))t x t y t tθ=x  and ( ) ( ( ), ( ))t v t tω=u . 
 If we allow for error terms in (1), the resulting equation is: 
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where vw  and wω  are random errors in the inputs v(t) and ω(t) (longitudinal control error and gyro 
drift), and xw�

 and yw �
 are random model errors.   

 Using the extended Kalman filter (EKF) analysis for this system, which assumes that the 
random errors are zero-mean Gaussian distributions, we can model the error propagation as follows:  
 
 ( 1) ( ) ( )T Tk k k+ = ⋅ ⋅ + ⋅ ⋅P A P A L Q L  (4) 
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 Kelly [10] calculated closed-form solutions for some trajectories. For a straight trajectory 
along the x-axis keeping all inputs constant, the errors behave as follows: 
 
 
 
 
- The error due to the longitudinal control wv is reflected in the x direction, and is given by 

2 2
x v vtσ σ= ⋅ , or x v vtσ σ= (See Figure 1). 

 
 



 
Figure 1. Uncertainty propagation for error in longitudinal control 

 
- The error due to wω is reflected in the y direction, and is given by 2 2 2 3

y v tωσ σ= ⋅ , or 
3/ 2

y v tωσ σ= ⋅ ⋅ (See Figure 2). 
 

 
Figure 2. Uncertainty propagation for error due to gyro drift 

 
 
 
 
 
 
 
 
 
 
- The error due to xw�  is reflected in the x direction, and is given by 2 2

x x tσ σ= ⋅� , or x x tσ σ= � (See 
Figure 3). 

 



  
Figure 3. Uncertainty propagation for errors due to xw�  

 
- The error due to yw �  is reflected in the y direction, and is given by 2 2

x x tσ σ= ⋅� , or x x tσ σ= � (See 
Figure 4). 

 

  
Figure 4. Uncertainty propagation for errors due to yw �  

 Additionally, there are errors in the initial position of the robot. Errors in x and y do not 
increase unless there is uncertainty in the model or in the controls. Errors in the heading angle, 
however, do propagate linearly with t. For initial angle errors of less than 15 degrees, the small angle 
approximation can be used to obtain the expression: .

oy vtθσ σ= (See Figure 5 and Figure 6). 
 A straight line trajectory maximizes each one of the error terms (see [10] for the proof) 
therefore we can use the results of this trajectory as an upper bound on the error for any trajectory. The 
dominant terms in the error propagation model depend on the navigation system and on the planning 
horizon for the robot. 

 
 



 
Figure 5. Uncertainty propagation for errors in initial position alone. 

 

 
Figure 6. Uncertainty propagation for errors in initial angle alone. 

 
For a planning horizon of 3km at a speed of 5 m/s, with longitudinal control error of 10% of 

the commanded speed (  = 0.1  = 0.5 / )v v m sσ , gyro drift of 10 deg/hr ( ωσ =10 deg/hr = 4.84.10-5 
rad/sec) and  model error of 0.1m/s in x and y ( x yσ σ= = 0.1 m/s), the dominant term is the 
longitudinal control error (See Figure 7). 
 However, when considering the error caused by the uncertainty in the initial angle, this 
becomes the dominant error source for errors as small as 0.25 degrees (See Figure 8). 
 
 
 
 
 
  
 



  
Figure 7. Comparison between different types of error 

  
 

Figure 8. Comparison between different values of initial angle error and longitudinal control error 

 
Figure 9 shows the results of combining all the types of error (with the values mentioned above, and an 
initial heading angle of 0.25 degrees) for a straight trajectory. Figure 10 shows the same analysis for a 
random trajectory. 
 



  
Figure 9. Error propagation for a straight trajectory with all error sources combined 

 

  
Figure 10. Error propagation for a random trajectory with all error sources combined 

4 Implementation 
4.1 Simplified error propagation model 
 In order to keep the planning problem tractable and efficient, we will approximate the 
probability density function (pdf) of the error with a symmetric Gaussian distribution, centered at the 
most likely location of the robot: 
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where k

cq  is the most likely location of the robot at step k, and σk is the standard deviation of the 
distribution.  
 



 
 Let us define: 
 2k kε σ= ⋅  (9) 
 
 We can then model the boundary of the uncertainty region as a disk centered at k

cq  with a 
radius kε . To propagate the uncertainty, we use the model: 
 1 1) ( , )k k k k
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where ku is the uncertainty accrued per unit of distance traveled, 1k

c
−q  is the previous position along the 

path, and 1( , )k k
c cd −q q  is the distance between the two adjacent path locations 1k

c
−q  and k

cq .  
 Equivalently, we can define the uncertainty at location k

cq  as: 
 0 0) ( , )k k

c c u c ck Dε ε( ) = ( +q q q q  (11) 
where 0

cq  is the initial most likely location of the robot, and 0( , )k
c cD q q  is the total distance traveled 

along the path from 0
cq  to k

cq . The uncertainty rate ku is typically between 0.01 and 0.1 (1% to 10%) of 
distance traveled.  
 By modeling the error propagation in this manner, we are assuming that the dominant term is 
the uncertainty in the initial angle. Even though we are not explicitly modeling θ as a state variable, the 
effects of uncertainty in this variable are accounted for in the uncertainty propagation model for 
q=(x,y).  
 
4.2 Planning with uncertainty 
 In a deterministic planner, the position of the robot on the plane is usually defined as q=(x,y), 
where x and y are deterministic variables. Because the position of the robot is now a probability 
distribution, the new representation for the position of the robot is  
 
 ( | , )k k

cp εq q  (12) 
 
where q is a random variable representing the position of the robot, k

cq  is the most likely location of 
the robot, and kε is the uncertainty in the position. As mentioned in the previous section, this pdf is 
modeled as a Gaussian distribution centered at k

cq  and with standard deviation / 2k kσ ε= . 
  
 The expected cost of going from a most likely location k

cq  to an adjacent most likely location 
1k

c
+q  is 
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where 1( , )k k

o i jC +q q  is the deterministic cost of traveling from k
iq  to 1k

j
+q .  

 Expressing the joint probability as a conditional probability:  
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 If k

uk ε<< , then 1k kε ε +≈  (for a single step increment). We can then model the transition 
from k

cq  to 1k
c
+q  as a deterministic transition for the distribution ( )| ,k k k

i cp εq q .  
 Under this assumption: 
  (16) 
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=q q  (See Figure 11) 
 Substituting (16) in (15): 
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Figure 11. ( )1 1| , , ,k k k k
i c k cp ε ε+ +q q q  and state transitions when uk ε<<  

 
Since k

iq and '
k

iq  are neighbors, we can express 1
'( , )k k

o i iC +q q  as: 
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where a=b=1 for horizontal or vertical neighboring cells, and a=b= 2 for diagonal neighboring cells. 
 Substituting (18) in (17): 
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where  
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is the expected cost of traversing cell k

cq  if the uncertainty at this location is kε .  
 Since it is possible to reach a cell k

cq  with different uncertainties, we will create an augmented 
state vector r such that: 
 ( , )ε=r q  (22) 
 
hence defining a 3-D configuration space where x and y are the first two dimensions, and ε is the third 
dimension.  
 The planner used for planning with uncertainty is a modified version of A* in 3-D. The 
planner works as follows: we have a start location q0 with uncertainty ε0,  an end location qf

 with 
uncertainty εf, and a 2-D cost map C. We form the augmented state variable 0 0 0( , )ε=r q and place it 
in the OPEN list. The state rk with lowest expected total cost to the goal is popped from the OPEN list. 
Next, rk is expanded, and its successors rjk+1 are placed in the OPEN list.  
 Since ε is function of q, the successors of rk are calculated only in the 2-D workspace defined 
by qk, instead of the 3-D configuration space defined by rk (See Figure 12). 
 As the states are placed in the OPEN list, their uncertainty is updated using (10), and the 
expected total path cost of rjk+1 is updated according to (20). However, if any states within the 
uncertainty region of rjk+1 are labeled as OBST (obstacles), then the expected total path cost of rjk+1  is 
set to infinity, therefore preventing any further expansion of that state. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Successors of state qk 

Like in A*, the process described above is repeated until a cell rk+1 such that 1k f+
=q q and 

1k fε ε+ ≤ is popped out of the OPEN list. The path connecting the backpointers from rk+1 to r0 is the 
optimal path between 0q  and fq with a final uncertainty lower than fε . If the OPEN list becomes 
empty and no such state has been found, then there is not path between 0q  and fq  such that the final 
uncertainty is lower than fε . 
 
4.3 Using localization regions 
 The planner has the capability of using localization regions, such as areas with GPS coverage. 
If a state propagation yields a distribution that is totally contained in a GPS region (within 2σ), the 
uncertainty of this state is set to zero (or other constant value associated with the GPS region) instead 
of using (10) to propagate the uncertainty. This allows the planner to hop from one GPS region to 
another, if the lowest cost path requires it. 
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5 Results 

5.1 Route planning example 
 The following is an example of our planner applied to the problem of finding the best path 
between two locations on opposite sides of Indiantown Gap, PA. In Figure 13 we can see the results 
when uncertainty is not being considered. We can use a regular 2-D planner for this task, or we could 
use our planner with an uncertainty rate of zero. If the uncertainty rate is zero, the third dimension of 
the planning s 
pace is collapsed, and the search space becomes two-dimensional. 
 Figure 14 shows the resulting path when we use our planner and a propagation model with an 
uncertainty rate of 2%. Notice how the path is shortened in order to fit through the narrow opening in 
the lower left corner of the map.  
 Figure 15 shows the resulting path when the uncertainty rate is increased to 4%. The path 
cannot pass through the opening in the lower left corner, and now it has to go through the opening in 
the top right, producing a more costly path. 
 
 

  
Figure 13. Path calculated with no uncertainty. Total path cost : 9357 

 

 Figure 16 shows the resulting path for the same uncertainty rate when there is a GPS region in 
the left side of the map (small rectangle). In this case the lowest cost path is obtained by going to the 
GPS region first (which resets the uncertainty to zero) and then going through the gap in the lower left 
corner (which was not feasible without the GPS region) 

 



 
Figure 14. Path calculated with uncertainty rate ku  = 2.0%. Total expected path cost: 20598 

 

  
Figure 15. Path calculated with uncertainty rate ku = 4.0%. Total expected path cost = 44107 



  
Figure 16. Path calculated with uncertainty rate ku = 4.0%, and using GPS regions (small square area on the left). Total expected 

path cost = 19458 

5.2 Performance 
 The space complexity of the current implementation of the planner is ( )x y uO n n n⋅ ⋅ , where 
xn , yn and un  are the dimensions along the x, y and u directions. 

 The time complexity  is ( ),O Q R+ where: 
- 2( )u x y uQ k n n n= ⋅ ⋅ ⋅  is the number of operations required to calculate the expected cost. 
- log( ))x y u x y uR n n n n n n= ⋅ ⋅ ⋅ ⋅ ⋅  is the number of operations required by A* to calculate the path 
- ku is the uncertainty rate.   
 
 For ku > 0, the Q term dominates the time complexity of the algorithm. If ku = 0, or the 
calculation of the expected value is performed beforehand, then the R term becomes the dominant one.  
 However, because of the uncertainty is dependent on x and y, the states expanded by the 
algorithm are far fewer than x y un n n⋅ ⋅ , and the average time complexity of the algorithm is 
consequently much lower as well. 
 For binary-cost worlds, the search space for the algorithm is a 2-D manifold, with a cone-like 
shape around the start location (Figure 17 shows a cross-section of the search space containing the start 
location). In this type of world, the number of propagations is ( )x yO n n⋅  
 For continuous-cost worlds, the search space is something between a 2-D manifold and a thin 
3-D volume (Figure 18 shows a cross-section of the search space containing the start location). In this 
type of world the number of propagations is '( )x y uO n n n⋅ ⋅ , where 'un  is the average number of 
propagations per cell. Figure 19 shows 'un  vs un for a batch of 1800 simulations with ku varying 
between 1% and 10%, and x yn n= varying from 50 to 250 cells. We can see that even though 'un  does 
increase with un , it is always a small fraction of .un  For 100un =  the average value of 'un  is 3.4, and 
the maximum value is 7.9.  
 



 
Figure 17. State expansion for binary cost world 

 
Figure 18. State expansion for continuous cost world 

 

Figure 19. Propagations per cell vs number of uncertainty levels 



6 Conclusions and Future Work 
 We have introduced an efficient path planner that calculates resolution-optimal paths while 
considering uncertainty in position. Even though the planner uses three dimensions to represent the 
state variables, the computational complexity of the algorithm is very close to that of a 2-D algorithm.  
 The algorithm takes advantage of the small increase in uncertainty from one step to the next, 
to model the transitions in a semi-deterministic fashion. This enables the use of a deterministic planner 
such as A* to solve the planning problem.  
 Because of the efficient use of the state space, the algorithm does not require a lengthy pre-
processing stage as required by Roy and Thrun [8]. The planning time is under 1 second for worlds up 
to 150x150, and under 10 seconds for worlds up to 250x250. Figure 20 shows the average planning 
time for 1800 simulations modeling 10 different worlds with sizes from 50x50 to 250x250 (in xy). The 
uncertainty levels used varied from 1 to 100, and the uncertainty rates from 1% to 10%. The processor 
used was a Pentium M 1.4GHz. 
 Our algorithm runs in significantly less time than algorithms that require pre-processing of all 
states. Depending on the size of the world and the uncertainty rate the speed up factor of our algorithm 
is between 8 and 80 times, depending on the size and characteristics of the world (See Figure 21).  
 Future work includes producing a version of the algorithm that allows for more efficient 
replanning and exploring more complex representations of the error propagation model.  
 
 

  
 

Figure 20. Planning time for different world sizes and uncertainty rates 

 
 
 
 
 



  
Figure 21. Speed up factor in total planning time compared to preprocessing all states. 
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