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Abstract— In this paper we study the global localization
problem in SLAM: the determination of the vehicle location in a
previously mapped environment with no other prior information.
We show that, using a grid sampling representation of the
configuration space, it is possible to evaluate all vehicle location
hypotheses in the environment (up to a certain resolution) with
a computational cost that is bilinear: linear both in the number
of map features and in the number of sensor measurements. We
propose apairing-driven algorithm that considers only individual
measurement-feature pairings and thus, in contrast with current
correspondence space algorithms, it avoids searching in the
exponential correspondence space. It uses a voting strategy
that accumulates evidence for each vehicle location hypothesis,
assuring robustness to noise in the sensor measurements and
environment models. The general nature of the proposed strategy
allows the consideration of different types of features and
sensor measurements. Using the popular Victoria Park dataset,
we compare its performance with location-driven algorithms
where the solution space is usually randomly sampled. We show
that the proposed pairing-driven technique is computationally
more efficient in proportion to the density of features in the
environment.

Index Terms— SLAM, Global Localization, Grid Sampling,
Voting Algorithms

I. I NTRODUCTION

A problem of considerable attention in SLAM is the determi-
nation of the location of a vehicle in an environment, given a
set ofm local measurements and a map of the environment
with n features, but no prior information about the vehicle
location. A solution to thisglobal localizationproblem allows
to restart the SLAM algorithm when the vehicle is lost or
when it arrives to a previously mapped area with no odometry
or high odometry error. In environments or situations in which
no GPS fix is possible, this constitutes the only alternative.

Most current global localization algorithms are based on
some form of consensus, and therefore arerobust to spu-
rious sensor measurements, or the detection of features not
present in the map. In current applications of interest, because
large environments are being considered, the issue of global
localization has shifted towardsefficiency. Since sensors are
typically local, and therefore the number of measurements
will normally be bound, attention is drawn to how well these
algorithms scale with the size of the map.

Global localization algorithms can be classified aslocation-
driven or pairing-driven. Location-driven strategies explore
the configuration space, where a set ofs different vehicle
localization hypotheses, or location samples, are considered.
Each is ranked according to how well the local measurements

match the environment map at the hypothesized location.
Algorithms that use random sampling of the configuration
space, such as Monte Carlo localization [1], and those that use
grid sampling, such as Markov Localization [2], [3], belong
to this category. If the environment map is represented as
an occupancy grid, the computational complexity of these
algorithms, called hereLoc driven, is O(s · m).

In contrast to location-driven techniques, pairing-driven
techniques explore thecorrespondence space, where data
association hypotheses are produced considering consistent
combinations of measurement-feature pairings. For the most
promising hypotheses (in terms of the number of pairings),
the vehicle location can be computed and the hypothesis can
be verified. Algorithms that belong to this category traverse
the exponential Interpretation Tree [4] using techniques such
as: hypothesize and test [5], branch and bound [6], maximum
clique [7], or random sampling [8]. In this last work it is
shown that introducing the concept oflocality, any pairing-
driven algorithm can be made linear with the size of the
map, but there remains in the Interpretation Tree search a
component exponential in the number of measurements.

In this work we propose apairing-driven algorithm,
Pair driven, that uses a voting strategy, in the spirit
of the Generalized Hough Transform [9]. In contrast to
current correspondence space algorithms, it evaluates all
location samples considering only individual measurement-
feature pairings. This avoids the exponential computational
cost of interpretation tree traversal, resulting in an algorithm
that is O(n · m), linear with both the number of environ-
ment features and of sensor measurements. We show that
this pairing-driven algorithm is computationally faster than
location-driven algorithms in proportion to the density of
features in the environment. The main reason is that our
algorithm exploits the lattice structure offered by a grid
sampled configuration space (another problem in which a
lattice structure offers advantages is motion planning [10]).
Markov Localization [2], [3] uses grid sampling, but does
not take advantage of the lattice structure that the grid offers.

This paper is organized as follows: section II describes
both location-driven algorithms that work in the configura-
tion space, and pairing-driven algorithms that traverse the
correspondence space. In section III we analyze the alter-
natives in the representation of both the environment and
the configuration space, and their effect in the computational
complexity of these algorithms. In this section we also carry
out a probabilistic analysis of the robustness of these voting



algorithms. Section IV contains comparative experimental
results of running both algorithms in a large outdoor envi-
ronment, using the popular Victoria Park dataset obtained by
Guivant and Nebot [11]. Finally, in section V we draw the
main conclusions of our work and set future directions of
research.

II. A LGORITHMS FOR GLOBAL LOCALIZATION

Assume that the environment map consists ofn features
F = {f1, . . . , fn} distributed in a 2D environment. Without
loss of generality, we will consider 2D point features, so
that fj = (xj , yj)

t. Assume a sensor mounted on the
vehicle obtains observations ofm featuresZ = {z1, . . . , zm},
gathered from the vehicle location to be determined. The
information available from each measurement depends on the
type of sensor. In the case we are considering, sensors can
give range-only (sonar), bearing-only (a camera), or rangeand
bearing (laser) measurements of 2D points.

The configuration space is the space of possible vehicle
location hypotheses of the formx = (x, y, φ)t, where
x ∈ [xmin, xmax], y ∈ [ymin, ymax] and φ ∈ [φmin, φmax].
Given that the configuration space is continuous although
bound, the number of alternative vehicle location hypotheses
is infinite. A limited number of hypotheses, or location
samples, within the bounds, must then be considered. Monte
Carlo methods [1] work by drawing random samples in this
space, while Markov Localization [2], [3] draw grid samples.
Both random sampling and grid sampling methods can be
tuned to adequately represent the solution space for a given
resolution.

Assume that a setX of s samples are obtained from
the configuration space. We can either uniformly divide the
configuration space innx, ny andnφ grid elements inx, y and
φ, respectively, or equivalently, we can randomly sample the
configuration space ins = nx ·ny ·nφ location samples. The
appropriate resolution depends on the distribution of features
in the environment and on the precision of the local sensor.

Global localization algorithms work by evaluating the com-
patibility between sensor measurements and environment fea-
tures considering their individual properties, such as length,
radius, color, etc., but mainly analyze their relative geometry
and the compatibility between the measurements predicted
from the map and the actual measurements. Both Monte
Carlo methods and Markov Localization methods compute
the likelihood of each location sample given an occupancy
grid map and the measurements.

In the case of feature-based maps, the correspondence
space techniques that are usually applied try to maximize the
number of observations that successfully match a feature in
the map. The implicit assumption is that the likelihood of a
location hypothesis increases with the number of matchings.
In section III-D we perform a probabilistic analysis that
supports this assumption.

Thus we consider global localization algorithms that eval-
uate each location sample by computing its corresponding
number of observation-feature matches. There are two basic

Algorithm 1 Loc driven:
consider each alternative location hypothesis in turn

votes = 0
for each hypothesisx ∈ X do

for each measurementzi ∈ Z do
Fi = predict features(x, zi)
if any compatible feature(Fi, F) then

votes(x) = votes(x) + 1
end if

end for
end for

Algorithm 2 Pair driven:
consider each measurement-feature matching in turn

votes = 0
for each measurementzi ∈ Z do

for each featurefj ∈ F do
Xij = hypothesize locations(fj , zi)
Xv = compute compatible locations(Xij , X)
votes(Xv) = votes(Xv) + 1

end for
end for

alternatives with respect to how to proceed in the evaluation
of each sample in the setX of alternative vehicle locations:
location-drivenstrategies, andpairing-drivenstrategies.

• In a location-drivenstrategy, each vehicle location hy-
pothesisx is considered in turn. Each of them sensor
measurements will agree with the location hypothe-
sis if its hypothesized absolute location matches one
or more of then environment features. Algorithm 1,
Loc driven, implements this alternative.Fi is the set
of hypothesized feature locations that would produce
the measurement. In the case of range and bearing, it
will be one 2D point, in the case of range, it will
be a set of 2D points in a circle around the vehicle
location sample at the measured range distance, etc.
The validity of a measurement-feature association can
be determined using error bounds; statistical validations
usingχ2 tests can also be carried out. In this algorithm,
each location hypothesis is ranked according to the
number of measurements for which a feature association
can be established. This strategy amounts to considering
each candidate location and counting the number of votes
cast by measurements that agree with that location.

• In a pairing-driven strategy, each measurementzi is
considered in turn. For every featurefj in map F, we
compute the vehicle location(s) from where the feature
could have produce the measurement. We then find
the locations inX compatible with these hypothesized
locations, and update their ranking (see algorithm 2,
Pair driven). You can consider this as a voting strat-
egy in the spirit of the Hough transform [9]: each mea-
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; For Bearing Only:
; zi = θi

;
Xij = [ ]
for φ = φmin to φmax stepφstep do
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(xi, yi) = pol2cart(θi + φ, ρ)
Xij = [Xij ; [(xj − xi) (yj − yi) (φ)]]

end for
end for

Fig. 1. Hypothesized vehicle locations in theX space, generated by a measurement of a 2D point feature at(1.0, 1.0), whose location relative to the vehicle
is at (1.0, 0.0), when the measurement gives range and bearing (top), range only, such as polaroid sonars (center), and bearing only (bottom). Algorithms on
the right show the actual implementation of functionXij = hypothesize locations(fj , zi) for each case.

surementzi will determine the set of vehicle locations
Xij from which it is feasible to detect the environment
featurefj in order to produce the given measurement,
and vote for location samplesXv sufficiently close to
those feasible locations. It amounts to consulting each
voter (the measurements) in turn and adding a vote to
each of the candidates (the vehicle location samples) it
points out. The amount of votes the measurement casts
depends on the type of map features and sensor measure-
ments. Fig. 1 shows the votes that a measurement would
cast when detecting a 2D point feature at coordinates
(1.0, 0.0) with respect to the vehicle, when the feature
is at absolute coordinates(1.0, 1.0), and the sensor is
range and bearing (for example a laser scanner), range-
only (sonar), and bearing-only (a camera).

Both strategies are bound to obtain roughly the same

results, and so from the point of view of robustness,
Loc driven and Pair driven can be considered basi-
cally equivalent. In the next section we discuss how the
representation that we choose, both for the environment map
and for the configuration space, will play a crucial role in the
computational cost of these algorithms.

III. C OMPUTATIONAL COMPLEXITY AND ROBUSTNESS OF

GLOBAL LOCALIZATION ALGORITHMS

A. Computational complexity ofLoc driven

The representation of the environment map has a very
important effect in the complexity ofLoc driven. This
algorithm traverses the whole configuration space, computing
the support for each of thes = nx ·ny ·nφ candidate locations.
It gathers evidence by predicting the absolute location of
each of them measurements in trying to find any compatible



Sensor Loc driven Pair driven Pair driven/Loc driven

Range and bearing O(nx · ny · nφ · m) O(n · m · nφ) n/(nx · ny)
Range-only O(nx · ny · nφ · m · nθ) O(n · m · nφ · nθ) n/(nx · ny)
Bearing-only O(nx · ny · nφ · m · nr) O(n · m · nφ · nr) n/(nx · ny)

Fig. 2. Comparative computational cost ofLoc driven andPair driven

feature. If the absolute map feature coordinates are maintained
explicitly, in a location vector(f1 · · · fn)t, a naive implemen-
tation of any compatible feature would sequentially
consider all then alternative features inF. The computational
complexity would then beO(nx · ny · nφ · m · n).

In some cases, such as when features are 2D points and
the sensor gives range and bearing measurements, the map
can be preprocessed into a tree, and then finding a match for
a predicted measurement at a hypothesized location can be
computed inO(log n) instead ofO(n).

Alternatively, an implicit, indexed representation of the
absolute feature locations can be maintained, for example
using an occupancy grid or binary image. Using such a
representation, determining whether a predicted measurement
is present in the map amounts to consulting the corresponding
element(s) in the occupancy grid or image. If we have a
range and bearing sensor, instead of incurring in aO(n)
cost, we incur inO(1). For a range-only sensor, we have to
consult elements of the occupancy grid in an arc of a circle
around the hypothesized vehicle location at the given range.
Discretizing this arc innθ angles, the cost will beO(nθ)

1. In
the case of bearing-only sensors, and discretizing the viewing
direction innr steps, we will have to consultO(nr) elements.
Table 2 contains a summary of the resulting computational
complexities.

B. Computational complexity ofPair driven

Algorithm 2, Pair driven, considers each of them
measurements in turn, and then each of then map fea-
tures in turn. It hypothesizes the setXij of vehicle lo-
cations from where featurefj would produce measure-
ment zi. If the s location samples are randomly drawn,
X will be represented a set of location hypotheses with
explicit coordinates. Again, a first implementation of function
compute compatible locations, would costO(s); it
would sequentially consider each alternative location sample
x in X to decide whether it is compatible with any ofXij .
The total computational complexity ofPair driven would
then beO(m · n · s) = O(m · n · nx · ny · nφ).

Alternatively, if grid sampling is used, samples of the
configuration space are drawn in a systematic way, evenly
placed in the center of equally-sizedtiles that fully cover
the configuration space and exhibit a lattice structure, and
can easily be represented by a location grid. This allows to
compute the closest sample to a given location hypothesis,

1In the case of indoor sonar, the span ofθ is around30deg. In the pure
range-only case, the span ofθ will be 360deg. In this case there is no need
to sampleφ in neither algorithm because the vehicle orientation cannot be
recovered from the observations.
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required by functioncompute compatible locations
in constant time. Thus, using a grid sampling method,
Pair driven can be bilinear in both the number of features
and the number of measurements,O(n · m). The number of
hypothesized locations will beO(nφ) for range and bearing
sensors, inO(nφ·nθ) for range-only sensors, and inO(nφ·nr)
for bearing-only sensors (see fig. 1). Since sensors are local,
nφ andnr are constants.

C. Loc driven .vs.Pair driven

How do both algorithms compare? Consider the case
of range and bearing sensors: the computational cost of
Loc driven will be O(nx·ny·nφ·m), whilePair driven
will be O(n ·m ·nφ). Their ratio then will be equal toρ, the
density of features per grid cell unit:

Pair driven

Loc driven
=

n · m · nφ

nx · ny · nφ · m
=

n

nx · ny

= ρ

This will be the case for any type of sensor (see table
2). This means that the computational cost of algorithm
Pair driven will be a fraction of the cost ofLoc driven
proportional to feature density. This makes it especially
efficient in sparse environments, like Victoria Park, Sydney,
where in an area of around197m×93m there are99 trees. If
you decide to discretize the configuration space every1.5m,
you will obtain 132 × 63, 8316 grid elements in position. If
n = 99 then you can expectPair driven to run about82
times faster.



D. A probabilistic analysis of the robustness of voting strate-
gies

Global localization problems in fact pose a twofold ques-
tion: (1) is the vehicle in the map? (2) if so, where? Both
Loc driven and Pair driven compute the number of
observation-feature pairings for each element in the set of
location samples, so we further need to decide when the
hypothesis with the highest number of votes can be accepted
and thus the vehicle can be considered to be in the map. In
[8], an empirical thresholdt = 6 of six matchings was used
to prevent false positives for the Victoria Park dataset.

In the following, we carry out a probabilistic analysis
of voting strategies, that allows to compute the probability
of accepting a location hypothesis formed with matchings
occurring at random.

Consider thePair driven algorithm in the case of range
and bearing. Each observation castsn · nφ votes, that are to
be distributed among some of thenx · ny · nφ grid cells,
or candidate locations. Assuming that features are randomly
distributed in the environment, the probability that a given
candidate randomly gets a vote from an observation is equal
to the density of features in the map:

n · nφ

nx · ny · nφ

= ρ

Thus, the probability that a given candidate is randomly
voted by k of the m observations follows the binomial
distribution [12] as follows:

pm (k) =
k

k!(m − k)!
ρk (1 − ρ)

m−k

As a result, the expected number of candidates in the
configuration space havingk votes will be:

rk,m = nx · ny · nφ · pm (k)

Similar results can be obtained by considering the
Loc driven algorithm, as well as other sensors.

This analysis can be used to derive an adequate threshold
for the acceptance of a location hypothesis. For the Victoria
Park dataset, figure 3 shows, for different values ofm, the
number of cells expected to getk of them votes. We can see
that a fixedt = 6 pairings criteria is not uniformly restrictive:
for a small number of observations, saym = 6, the expected
number of cells with 6 random pairings is8.5220e−6, but
for m = 18, this expected number climbs up to0.1370.

We can limit the probability of accepting random false
positives by setting a fix bound tork,m. For example, in order
to haverk,m ≤ 10−2 random false positives, form = 5 the
thresholdt should be set to5 , while for m = 18, t should
be set to7.

IV. EXPERIMENTS

An experimental comparison of both algorithms previously
detailed is carried out using the dataset obtained by Guivant
and Nebot [11]. We used 2500 steps of the trajectory of an
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outdoor vehicle equipped with a laser sensor along Victo-
ria Park, Sydney. Point features, corresponding to trees are
segmented from the scan using thefind trees algorithm
[11]. A stochastic map ofn = 99 point features was generated
with the first 1000 steps (fig. 4). The remaining steps (1001 to
2500) were used in the relocation algorithms,Loc driven
andPair driven. In this way, the statistical independence
between the scans and the stochastic map is guaranteed. To
verify the vehicle locations calculated by our algorithms,we
obtained a reference solution running continuous SLAM until
step 2500. The number of observations gathered from each
position of the vehicle ranges betweenm = 3 andm = 18.
Figure 5 shows the segmented trees for a scan ofm = 16
measurements corresponding to step1888.

Both algorithms are executed using a grid sampled config-
uration space of resolution1.5m for x and y, and1deg for
φ. Fig. 6 shows a summarized table of votes corresponding
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to the result of executingPair driven at step1888. For
each grid cell in position, the corresponding image pixel
depicts the maximum number of votes of all orientations
corresponding to that position. For this example there is only
one cell solution with16 votes, represented by a black pixel
in the image, and only one cell with7 votes, a neighbor of
the most voted cell (a predictable tessellation effect). The
remaining cells contain less than6 votes, as predicted by our
probabilistic analysis (fig. 3).

In order to compare the computational complexity of
Loc driven andPair driven we have executed the al-
gorithms for all the test steps.Loc driven has been imple-
mented representing the map using an occupancy grid. Figure
7 shows the mean running time of each algorithm versus the
number of measurements. Both algorithms were implemented
in MATLAB, and executed on a Pentium IV, at 2.8GHz.
Algorithm Pair driven is faster thanLoc driven by
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Fig. 8. True positive solutions: 565 out of 737 steps. Missing steps (false
negatives) are due to insufficient number of measurements, or insufficient
number of pairings.

a factor of around60. The differences of this result with a
predicted80 times gain in efficiency for this data are probably
due to slightly different implementations of the operations in
each algorithm, as well as memory management issues in
MATLAB array operations.

In [8] it was shown that, for the same Victoria Park dataset,
with less than 6 pairings there is insufficient evidence to assert
that the vehicle is within map limits without having false
positives. In order to compare the results of this work with
the RS algorithm in [8], we first consider the criteria oft =
6 pairings as a threshold for accepting the solution of the
algorithms.

Of the 1500 test steps, we consider 737 steps within map
limits (see fig. 4, continuous line). In 74 steps of those
(10.1%), the number of segmented trees was less than six.
In 98 steps (13.3%) there are six or more measurements, but
our algorithm finds less than six pairings. Thus, there is a total
of 172 false negatives (23.4%). In the 565 remaining cases
(76.6%), the algorithm found six or more pairings, and the
solution obtained was always consistent with the reference
solution, without false positives (fig. 8). These results show
that thePair driven algorithm is slightly more prone to
false negativesthan theRS algorithm reported in [8]. In that
work, in 604 cases (82%), RS finds six or more pairings, in
39 more cases. The difference is expected, since it is well
known that voting algorithms using strategies of the type of
the Hough Transform are sensitive to tessellation effects [13].
In some cases, some of the votes for the correct solution may
fall in bordering cells if the solution is close to the border.
Further work will be necessary to refine the determination of
the resolution of the grid.

In these results, the false negative rate is rather high.
The reason is that, in steps in which there are less than
6 observations, the answer is always negative, because of
insufficient data. We can improve the results if we use the



variable threshold described in subsection III-D. For steps
with m = 4 observations, we consider a thresholdt4 = 4; the
expected number of random hypotheses will be0.0601. For
larger values ofm, we will set tm so thatrk,m, the expected
number of false cells, will be less than10−2: tm = 5 for
m = 5 . . . 6, tm = 6 for m = 7 . . . 12, and tm = 7 for
m = 13 . . . 18. Using this threshold, we obtain true positive
solutions in 609 cases, around82.6%. We still consider
steps withm = 1 . . . 3 observations as having insufficient
information,22 cases.

We also tested the580 steps in which the vehicle is outside
the map limits (fig. 4, dashed line). Using the new threshold,
there are no false positive answers.

V. D ISCUSSION

In this paper we have shown that the global localization
problem in SLAM can be solved in time linear with both
the size of the map and the number of sensor measurements.
The representation of the vehicle configuration space via grid
sampling allows to use a more efficient pairing-driven voting
strategy than the location-driven voting strategy that Monte
Carlo style algorithms use. Recent works [14] suggest that,for
motion planning, there is no advantage in the use of random
sampling techniques. In this paper we point out an advantage
in the use of grid sampling for global localization in SLAM.

Surprisingly, in contrast to most of the global localization
literature, in our experiments we are able to localize the
vehicle in one-shot. The reasons are that the environment
is sparse, without symmetries, and the laser scanner is very
precise. More complex scenarios will probably require to
move the vehicle in order to acquire sufficient information
for localization.

Incorporating vehicle motion to consider measurements
obtained at more than one location can be easily considered
in the algorithm, and thus constitutes immediate future work.
Additional future work will also include considering incre-
mental sampling strategies [10], that will allow to incorporate
the decision on the grid resolution into the voting algorithm.
This will allow the algorithm to quickly identify the most
promising regions of the configuration space using low res-
olution, and then concentrating on these regions using high
resolution, further improving the computational cost of global
localization.

We feel that this technique may also be useful as a
bootstrapping step for Monte Carlo methods. With no prior
information on vehicle location in a very large environment,
our algorithm could be used to determine promising areas
within the environment. A Monte Carlo algorithm could then
take control focusing on those areas with a smaller number
of random particles.
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