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Abstract—In this paper we study the global localizaton  match the environment map at the hypothesized location.
problem in SLAM: the determination of the vehicle location in a Algorithms that use random sampling of the configuration
previously mapped environment with no other prior information. space, such as Monte Carlo localization [1], and those st u

We show that, using a grid sampling representation of the . . L
configuration space, it is possible to evaluate all vehicle location grid sampling, such as Markov Localization [2], [3], belong

hypotheses in the environment (up to a certain resolution) with 0 this category. If the environment map is represented as
a computational cost that is bilinear: linear both in the number ~ an occupancy grid, the computational complexity of these
of map features and in the number of sensor measurements. We  algorithms, called hereoc _dri ven, is O(s - m).

propose apairing-driven algorithm that considers only individual In contrast to location-driven techniques, pairing-dnive

measurement-feature pairings and thus, in contrast with curren .

correspondence space algorithms, it avoids searching in the technl_qu_es explore theorrespondence spa,qavh_ere data_
exponential correspondence space. It uses a voting strategy association hypotheses are produced considering camtsiste
that accumulates evidence for each vehicle location hypothesis, combinations of measurement-feature pairings. For thet mos
assuring robustness to noise in the sensor measurements and promising hypotheses (in terms of the number of pairings),
environment models. The general nature of the proposed stratg/ the vehicle location can be computed and the hypothesis can

allows the consideration of different types of features and o . .
sensor measurements. Using the popular Victoria Park dataset, be verified. Algorithms that belong to this category tragers

we compare its performance with location-driven algorithms  the exponential Interpretation Tree [4] using techniqueshs
where the solution space is usually randomly sampled. We show as: hypothesize and test [5], branch and bound [6], maximum

that the proposed pairing-driven technique is computationally  clique [7], or random sampling [8]. In this last work it is
more efficient in proportion to the density of features in the shown that introducing the concept lafcality, any pairing-
environment. . . . . .
driven algorithm can be made linear with the size of the
Index Terms— SLAM, Global Localization, Grid Sampling, map, but there remains in the Interpretation Tree search a
Voting Algorithms component exponential in the number of measurements.
In this work we propose apairing-driven algorithm,
|. INTRODUCTION Pai r .driven, that uses a voting strategy, in the spirit
A problem of considerable attention in SLAM is the determi- of the Generalized Hough Transform [9]. In contrast to
nation of the location of a vehicle in an environment, given acurrent correspondence space algorithms, it evaluates all
set of m local measurements and a map of the environmenlpocation samples considering only individual measurement
with n features, but no prior information about the vehicle feature pairings. This avoids the exponential computation
location. A solution to thiglobal localizationproblem allows  cost of interpretation tree traversal, resulting in an atgm
to restart the SLAM algorithm when the vehicle is lost orthat is O(n - m), linear with both the number of environ-
when it arrives to a previously mapped area with no odometrynent features and of sensor measurements. We show that
or high odometry error. In environments or situations inethi  this pairing-driven algorithm is computationally fastérah
no GPS fix is possible, this constitutes the only alternative location-driven algorithms in proportion to the density of
Most current global localization algorithms are based orfeatures in the environment. The main reason is that our
some form of consensus, and therefore mmeustto spu-  algorithm exploits the lattice structure offered by a grid
rious sensor measurements, or the detection of features nsampled configuration space (another problem in which a
present in the map. In current applications of interestabse lattice structure offers advantages is motion planning)[10
large environments are being considered, the issue of lglobMarkov Localization [2], [3] uses grid sampling, but does
localization has shifted towardsfficiency Since sensors are not take advantage of the lattice structure that the gridrsff
typically local, and therefore the number of measurements This paper is organized as follows: section Il describes
will normally be bound, attention is drawn to how well these both location-driven algorithms that work in the configura-
algorithms scale with the size of the map. tion space, and pairing-driven algorithms that traverse th
Global localization algorithms can be classified@=tion-  correspondence space. In section Il we analyze the alter-
driven or pairing-driven Location-driven strategies explore natives in the representation of both the environment and
the configuration spacewhere a set ofs different vehicle the configuration space, and their effect in the computation
localization hypotheses, or location samples, are coreide complexity of these algorithms. In this section we alsocarr
Each is ranked according to how well the local measurementsut a probabilistic analysis of the robustness of thesengoti



algorithms. Section IV contains comparative experimentaNgOfithm 1 Loc.dri ven: . .
results of running both algorithms in a large outdoor envi-consider each alternative location hypothesis in turn

ronment, using the popular Victoria Park dataset obtained b
Guivant and Nebot [11]. Finally, in section V we draw the
main conclusions of our work and set future directions of
research.

II. ALGORITHMS FOR GLOBAL LOCALIZATION

Assume that the environment map consistsnoffeatures
F = {f;,...,f,} distributed in a 2D environment. Without
loss of generality, we will consider 2D point features, so

votes = 0
for each hypothesisx € X do

for each measurement; € Z do
F; = predict_features(x, z;)
if any_conpati bl e_f eat ure(F;, F) then
votes(x) = votes(x) + 1
end if
end for

end for

that f; = (x;, y;)'. Assume a sensor mounted on the
vehicle obtains observations of featuresZ = {z, ..

 Zon by

gathered from the vehicle location to be determined. TheéAlgorithm 2 Pai r dri ven: o
information available from each measurement depends on tHegonsider each measurement-feature matching in turn

type of sensor. In the case we are considering, sensors can
give range-only (sonar), bearing-only (a camera), or ramgk
bearing (laser) measurements of 2D points.

The configuration space is the space of possible vehicle
location hypotheses of the formx = (z, y, ¢)!, where
WS [-Tminvl'maaz]: Yy € [yminaymaz] and¢ € [(bmiru(bmax]-
Given that the configuration space is continuous although
bound, the number of alternative vehicle location hypatkes

votes = 0
for each measurement; € Z do

for each featuref; ¢ F do
X,; = hypothesize_locations(f;, z;)
X, = compute_compatible_locations(X;;, X)
votes(X,) = votes(X,) + 1

end for

end for

is infinite. A limited number of hypotheses, or location
samples, within the bounds, must then be considered. Monte
Carlo methods [1] work by drawing random samples in this

space, while Markov Localization [2], [3] draw grid samples alternatives with respect to how to proceed in the evalnatio
Both random sampling and grid sampling methods can p&f each sample in the s&t of alternative vehicle locations:
tuned to adequately represent the solution space for a givdpcation-drivenstrategies, angairing-drivenstrategies.

resolution.

Assume that a seK of s samples are obtained from
the configuration space. We can either uniformly divide the
configuration space in,, n, andn, grid elements irx, y and
¢, respectively, or equivalently, we can randomly sample the
configuration space i8 = n, - n, - ny location samples. The
appropriate resolution depends on the distribution ofufiesest
in the environment and on the precision of the local sensor.

Global localization algorithms work by evaluating the com-
patibility between sensor measurements and environmant fe
tures considering their individual properties, such agtlen
radius, color, etc., but mainly analyze their relative getm
and the compatibility between the measurements predicted
from the map and the actual measurements. Both Monte
Carlo methods and Markov Localization methods compute
the likelihood of each location sample given an occupancy
grid map and the measurements.

In the case of feature-based maps, the correspondence
space techniques that are usually applied try to maximize th

number of observations that successfully match a feature in «

the map. The implicit assumption is that the likelihood of a
location hypothesis increases with the number of matchings
In section IlI-D we perform a probabilistic analysis that
supports this assumption.

Thus we consider global localization algorithms that eval-
uate each location sample by computing its corresponding
number of observation-feature matches. There are two basic

« In alocation-drivenstrategy, each vehicle location hy-

pothesisx is considered in turn. Each of the sensor
measurements will agree with the location hypothe-
sis if its hypothesized absolute location matches one
or more of then environment features. Algorithm 1,
Loc_dri ven, implements this alternativd; is the set

of hypothesized feature locations that would produce
the measurement. In the case of range and bearing, it
will be one 2D point, in the case of range, it will
be a set of 2D points in a circle around the vehicle
location sample at the measured range distance, etc.
The validity of a measurement-feature association can
be determined using error bounds; statistical validations
using x? tests can also be carried out. In this algorithm,
each location hypothesis is ranked according to the
number of measurements for which a feature association
can be established. This strategy amounts to considering
each candidate location and counting the number of votes
cast by measurements that agree with that location.

In a pairing-driven strategy, each measurement is
considered in turn. For every featufe in map F, we
compute the vehicle location(s) from where the feature
could have produce the measurement. We then find
the locations inX compatible with these hypothesized
locations, and update their ranking (see algorithm 2,
Pai r _dri ven). You can consider this as a voting strat-
egy in the spirit of the Hough transform [9]: each mea-



X,; = hypothesize locations(f;, z;) :

= (2, yj)

; For Range and Bearing:
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Fig. 1. Hypothesized vehicle locations in the space, generated by a measurement of a 2D point featieCat .0), whose location relative to the vehicle
is at (1.0, 0.0), when the measurement gives range and be&ojp)y ange only, such as polaroid sonars (center), andrigeanly (bottom). Algorithms on
the right show the actual implementation of functi®n; = hypothesize_locations(f;, z;) for each case.

surementz; will determine the set of vehicle locations results, and so from the point of view of robustness,
X;; from which it is feasible to detect the environment Loc_dri ven and Pai r _dri ven can be considered basi-
featuref; in order to produce the given measurement,cally equivalent. In the next section we discuss how the
and vote for location sampleX, sufficiently close to representation that we choose, both for the environment map
those feasible locations. It amounts to consulting eactand for the configuration space, will play a crucial role ie th
voter (the measurements) in turn and adding a vote t@eomputational cost of these algorithms.
each of the candidates (the vehicle location samples) it
points out. The amount of votes the measurement castdl. COMPUTATIONAL COMPLEXITY AND ROBUSTNESS OF
depends on the type of map features and sensor measure- GLOBAL LOCALIZATION ALGORITHMS
ments. Fig. 1 shov_vs the votes f[hat a measurement_woulg_ Computational complexity dfoc_dr i ven
cast when detecting a 2D point feature at coordinates
(1.0,0.0) with respect to the vehicle, when the feature The representation of the environment map has a very
is at absolute coordinated.0,1.0), and the sensor is important effect in the complexity ofoc.driven. This
range and bearing (for examp|e a laser Scanner), rangédgorithm traverses the whole configuration space, Comguti
only (sonar), and bearing-only (a camera). the support for each of the= n,-n,-n4 candidate locations.
It gathers evidence by predicting the absolute location of
Both strategies are bound to obtain roughly the sameach of then measurements in trying to find any compatible



Sensor Loc.driven Pai r driven Pair driven/Loc_driven
Range and bearing O(n, - n, - ng - m) O(n-m-ny) n/(ng - ny)
Range-only O(ng -ny -ng-m-ng) | O(n-m-ng-ng) n/(ng - ny)
Bearing-only O(ng -ny -ng-m-ny) | On-m-ng-n,) n/(ng - ny)

Fig. 2. Comparative computational costlodc_dri ven andPai r _.dri ven

feature. If the absolute map feature coordinates are nia@t
explicitly, in a location vecto(f; - - - f,,)?, a naive implemel
tation of any_conpati bl e_f eat ur e would sequentiall
consider all the: alternative features if. The computation
complexity would then b&(n, - n, - ng - m - n).

In some cases, such as when features are 2D poin
the sensor gives range and bearing measurements, tt
can be preprocessed into a tree, and then finding a mat
a predicted measurement at a hypothesized location ¢
computed inO(log n) instead ofO(n).

Alternatively, animplicit, indexed representation of tl
absolute feature locations can be maintained, for exe
using an occupancy grid or binary image. Using su
representation, determining whether a predicted measu
's present in the map amounts to -Consu-ltmg the cormespg...... Fig. 3. Number of location hypotheses expected to get a cemtanber of
element(s) in the occupancy grid or image. If we have dotes. form — 1 to m — 18 observations.
range and bearing sensor, instead of incurring i®@)
cost, we incur inO(1). For a range-only sensor, we have to
consult elements of the occupancy grid in an arc of a Cirderequired by functiorconput e_conpat i bl e | ocat i ons
around the hypothesized vehicle location at the given range, constant time. Thus, using a grid sampling method,
Discretizing this arc imy angles, the cost will b&)(n)*. In Pai r _dr i ven can be bilinear in both the number of features
the case pf bearing-only sensors, and discretizing theingew and the number of measurement - m). The number of
direction inn, §teps, we will have to Consuﬂ_(”"") elements_. hypothesized locations will b&(n,) for range and bearing
Table 2 _c_ontalns a summary of the resulting computatlonaéensors, irO (n,,ng) for range-only sensors, and @11,
complexities. for bearing-only sensors (see fig. 1). Since sensors ar¢ loca
ng andn, are constants.

Expected number of cells

10" I I I
0 1 2 3 5

4
Number of votes

B. Computational complexity &fai r .dri ven

Algorithm 2, Pai r _dri ven, considers each of then ) ) )
measurements in turn, and then each of themap fea- C- Loc.driven .vs.Pair driven

tures in turn. It hypothesizes the s&;; of vehicle lo- How do both algorithms compare? Consider the case

cations from where fgaturefj would produce measure- of range and bearing sensors: the computational cost of
ment z;. If the s location samples are randomly drawn, | J. /i ven will be O(n-n,-ny-m), while Pai r dri ven

X will be represented a set of location hypotheses Wm\/vill be O(n-m - ny). Their ratio then will be equal tp, the
explicit coordinates. Again, a first implementation of function density of features per grid cell unit:

conput e_conpati bl e_l ocati ons, would costO(s); it

would sequentially consider each alternative locationgam

x in X to decide whether it is compatible with any &f;;. Pair_driven n-m-ne n

The total computational complexity &fai r .dri ven would Loc driven Ny Ny -Ng M - Ny -1y, =r
then beO(m-n-s) =0O(m-n-ny - ny - ng).

Alternatively, if grid sampling is used, samples of the This will be the case for any type of sensor (see table
configuration space are drawn in a systematic way, evenl2). This means that the computational cost of algorithm
placed in the center of equally-sizdilies that fully cover  Pai r _dri ven will be a fraction of the cost dfoc _dri ven
the configuration space and exhibit a lattice structure, angroportional to feature density. This makes it especially
can easily be represented by a location grid. This allows tefficient in sparse environments, like Victoria Park, Sygne
compute the closest sample to a given location hypothesisyhere in an area of arounid7m x 93m there are99 trees. If

you decide to discretize the configuration space evesyn,

n the case of indoor sonar, the spanfois around30deg. In the pure you will obtain 132 x 63, 8316 grid elements in position. If
range-only case, the span ®fwill be 360deg. In this case there is no need . .

n = 99 then you can exped®ai r _dri ven to run about82

to sample¢ in neither algorithm because the vehicle orientation caieo ‘
recovered from the observations. times faster.




D. A probabilistic analysis of the robustness of voting &t

gies
Global localization problems in fact pose a twofold gL 60
tion: (1) is the vehicle in the map? (2) if so, where? B 0l

Loc_driven and Pai r _.dri ven compute the number «
observation-feature pairings for each element in the s
location samples, so we further need to decide wher ok
hypothesis with the highest number of votes can be acct
and thus the vehicle can be considered to be in the ms ° .
[8], an empirical threshold = 6 of six matchings was use —q0f
to prevent false positives for the Victoria Park dataset. . « ®
In the following, we carry out a probabilistic analy:
of voting strategies, that allows to compute the probak -80
of accepting a location hypothesis formed with matchi 100k ‘ ‘ ‘ ‘ ‘
occurring at random. -50 0 50 100 150
Consider théPai r _dr i ven algorithm in the case of ran¢ . . _ . _ _
and bearing. Each observation castsn, votes, that are to  [19: 4 Stochastic map of 2D points buit untl step 1000 witte 169
C . eatures. Reference vehicle trajectory inside the mapd$iole) and outside
be distributed among some of the, - n, - ng grid cells,  of map (dashed line). Tree radiuses5; distances are in meters.
or candidate locations. Assuming that features are random|
distributed in the environment, the probability that a give
candidate randomly gets a vote from an observation is equa
to the density of features in the map:

Observations: 16
80

n-neg
— =
Ng * My * N 60
Thus, the probability that a given candidate is randomly
voted by k of the m observations follows the binomial 40
distribution [12] as follows: * e
20 N\ l®
k —k * o o
m (k) = ———— pF (1—p)™ e :
-80 -60 -40 -20 0 20 40 60 80

As a result, the expected number of candidates in the
configuration space having votes will be:

Tkym = Ng " Ny " N¢ - Pm (k)
o . . . Fig. 5. Segmented trees by the algorithm at step 1888. Treesesik 5;
Similar results can be obtained by considering thedistances are in meters.

Loc_dri ven algorithm, as well as other sensors.
This analysis can be used to derive an adequate threshold
for the acceptance of a location hypothesis. For the Viatori outdoor vehicle equipped with a laser sensor along Victo-
Park dataset, figure 3 shows, for different valuesigfthe  ria Park, Sydney. Point features, corresponding to trees ar
number of cells expected to getof the m votes. We can see segmented from the scan using thiend_t r ees algorithm
that a fixedt = 6 pairings criteria is not uniformly restrictive: [11]. A stochastic map of = 99 point features was generated
for a small number of observations, say= 6, the expected With the first 1000 steps (fig. 4). The remaining steps (1001 to
number of cells with 6 random pairings #5220e—6, but ~ 2500) were used in the relocation algorithrhec dri ven
for m = 18, this expected number climbs up @oL370. andPai r _dri ven. In this way, the statistical independence
We can limit the probability of accepting random false between the scans and the stochastic map is guaranteed. To
positives by setting a fix bound tq. ,,,. For example, in order Vverify the vehicle locations calculated by our algorithme,
to haver; ,, < 10-2 random false positives, for = 5 the ~ obtained a reference solution running continuous SLAMIunti
thresholdt should be set t& , while for m = 18, t should step 2500. The number of observations gathered from each

be set to7. position of the vehicle ranges between= 3 andm = 18.
Figure 5 shows the segmented trees for a scamof 16
IV. EXPERIMENTS measurements corresponding to st&gs.

An experimental comparison of both algorithms previously Both algorithms are executed using a grid sampled config-
detailed is carried out using the dataset obtained by Gtiivaruration space of resolutioh.5m for x andy, and 1deg for
and Nebot [11]. We used 2500 steps of the trajectory of ar. Fig. 6 shows a summarized table of votes corresponding
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Fig. 6. Cumulative voting table for step888 (m = 16) with dark pixel
representing an unique hypothesis solution with votes = 16.
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a factor of around;0. The differences of this result with a
predicted30 times gain in efficiency for this data are probably
due to slightly different implementations of the operasion
each algorithm, as well as memory management issues in
MATLAB array operations.

In [8] it was shown that, for the same Victoria Park dataset,
with less than 6 pairings there is insufficient evidence se#s
that the vehicle is within map limits without having false
positives. In order to compare the results of this work with
the RS algorithm in [8], we first consider the criteria of=
6 pairings as a threshold for accepting the solution of the
118 algorithms.

S e S e 10 1 12 13 1 15 15 1 s Of the 1500 test steps, we consider 737 steps within map
Measurements m limits (see fig. 4, continuous line). In 74 steps of those
(10.1%), the number of segmented trees was less than six.
In 98 steps 13.3%) there are six or more measurements, but
our algorithm finds less than six pairings. Thus, there igal to
of 172 false negatives2§.4%). In the 565 remaining cases
to the result of executingai r .dri ven at step1888. For  (76.6%), the algorithm found six or more pairings, and the
each grid cell in position, the corresponding image pixelsolution obtained was always consistent with the reference
depicts the maximum number of votes of all orientationssolution, without false positives (fig. 8). These resultsvgh
corresponding to that position. For this example there Ig on that thePai r _dri ven algorithm is slightly more prone to
one cell solution withl6 votes, represented by a black pixel false negativeshan theRS algorithm reported in [8]. In that
in the image, and only one cell with votes, a neighbor of work, in 604 cases (82%), RS finds six or more pairings, in
the most voted cell (a predictable tessellation effect)e Th 39 more cases. The difference is expected, since it is well
remaining cells contain less th&nvotes, as predicted by our known that voting algorithms using strategies of the type of
probabilistic analysis (fig. 3). the Hough Transform are sensitive to tessellation effek3§ [

In order to compare the computational complexity of In some cases, some of the votes for the correct solution may
Loc_dri ven andPai r _.dri ven we have executed the al- fall in bordering cells if the solution is close to the border
gorithms for all the test stepsoc_dri ven has been imple- Further work will be necessary to refine the determination of
mented representing the map using an occupancy grid. Figutge resolution of the grid.

7 shows the mean running time of each algorithm versus the In these results, the false negative rate is rather high.
number of measurements. Both algorithms were implementetdihe reason is that, in steps in which there are less than
in MATLAB, and executed on a Pentium IV, at 2.8GHz. 6 observations, the answer is always negative, because of
Algorithm Pai r _dri ven is faster thanLoc_dri ven by insufficient data. We can improve the results if we use the

—©— Pair_driven

136
0.64

127

0.481

Mean running time Pair_driven (seg) Y-axis
Mean running time Loc_driven (seg) Y-axis

Fig. 7. Mean running time of each algorithm versus the number of
measurements.
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Incorporating vehicle motion to consider measurements

obtained at more than one location can be easily considered

in the algorithm, and thus constitutes immediate futurekwor

Additional future work will also include considering inere

mental sampling strategies [10], that will allow to incorate

the decision on the grid resolution into the voting algarith

This will allow the algorithm to quickly identify the most

promising regions of the configuration space using low res-

olution, and then concentrating on these regions using high

resolution, further improving the computational cost adlusl

localization.
We feel that this technique may also be useful as a

bootstrapping step for Monte Carlo methods. With no prior

information on vehicle location in a very large environment

our algorithm could be used to determine promising areas

within the environment. A Monte Carlo algorithm could then

take control focusing on those areas with a smaller number

of random particles.
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