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Abstract— In this paper, we propose a new algorithm for
SLAM that makes use of a state vector consisting of quantities
that describes the relative locations among features. In contrast to
previous relative map strategies, the new state vector is compact
and always consists of2n − 3 elements (in a 2-D environment)
where n is the number of features in the map. It is also shown
that the information from observations can be transformed and
grouped into two parts: first one containing the information about
the map and the second one containing the information about
the robot location relative to the features in the map. Therefore
the SLAM can be decoupled into two processes where mapping
uses the first part of the transformed observation vector and
localization becomes a 3-dimensional estimation problem. It is
also shown that the information matrix of the map is exactly
sparse, resulting in potential computational savings when an
information filter is used for mapping. The new decoupled SLAM
algorithm is called D-SLAM and is illustrated using simulation.

I. I NTRODUCTION

Simultaneous Localization and Mapping (SLAM) is the
process of building a map of an environment while concur-
rently generating an estimate for the location of the robot.
In traditional SLAM (for example [1], [2]), the state vector
contains both the robot pose and the feature locations and the
localization and mapping are performed simultaneously.

In recent years, a few researchers have discussed the possi-
bility of decoupling the mapping and localization processes
in SLAM in order to gain computational efficiency. Since
the observations made by the robot are about the relative
locations between the robot and features, a natural way to
decouple mapping and localization is to extract information
about the relative locations among the features and then
construct a relative map using this part of information. For
example, Newman [3] introduced a relative map in which the
map state contains the relative locations among the features,
which are invariants under shift but are variants under rotation.
Two filters were used in the estimation, one is the relative
map filter and the other is the geometric projection filter.
Csorba et al. [4], Deans and Herbert [5], and Martinelli [6]
have made use of relative maps where the map state only
contains distances among the features, which are invariants
under shift and rotation. However, all the above approaches
have redundant elements in the state vector of the relative
map. Constraints need to be applied to avoid generating an
inconsistent map. However, application of these constraints
results in a significant increase in computational complexity
of the SLAM algorithm. Moreover, issues of how to extract

the information about the relative map from the original
observations has so far not been fully addressed.

In this paper, we provide a novel decoupled SLAM algo-
rithm (D-SLAM) based on a new formulation of 2-D relative
map with no redundant elements. The main contributions of
this paper are as follows: (1) We show that the minimal
dimension of a vector describing a relative map ofn features
should be2n− 3 and provide a natural formulation of such a
vector consisting of distances and angles among the features.
(2) We recast the observations in a way that the information
about the relative map is separated from the other information,
making it clear which part of information can be used in the
mapping process. (3) We show that the information matrix in
Extended Information Filter (EIF) based D-SLAM algorithm
is an exactly sparse matrix, resulting in significant potential
computational advantages.

The paper is organized as follows. In Section II, we briefly
review the SLAM problem. Natural ways of expressing the
compact 2-D relative maps are discussed in Section III. In
Section IV, the observation vector is recast in to a new form
and the key idea of D-SLAM is provided. Section V states the
details of the mapping and localization processes in D-SLAM.
Simulation results are presented in Section VI. Section VII
concludes the paper and addresses future research directions.

II. SLAM PROBLEM REVIEW

The setting for the SLAM problem is that of a robot with
a known dynamic model, moving through an environment
containing a population of features or landmarks. The robot
is equipped with a sensor that can take measurements of the
relative location between any individual feature and the robot
itself as shown in Figure 1(a). The SLAM problem is to
estimate the position and orientation of the robot together with
the locations of all the features.

The state vector in traditional SLAM is the combination
of the location and orientation of the robot together with all
feature locations. The observation contains information about
the relative location between robot and features and is used to
update both the robot pose estimate and the feature estimates.
In the traditional formulation, the mapping and localization
therefore need to be performed simultaneously.

Recently, different group of people have tried different
ways of decoupling the mapping and localization processes in
SLAM in order to significantly reduce the computation burden



and to avoid the effect of the process model error. One com-
monly used idea is using observation information to construct
a relative map of the features [4],[5],[3],[6]. However, the map
state used in the literature contains redundant elements which
may cause either inconsistency or higher computation load.

In the next two sections, we will (1) provide a natural way
of expressing a relative map with no redundant elements; (2)
address the issue of extracting information about the map from
the observations.

III. C OMPACT RELATIVE MAPS

Relative maps describe the relative locations among the
features while absolute maps describe the absolute locations
of features. Forn point features in a2-D environment, the
dimension of the absolute map with no redundant elements is
2n. Since3 elements are needed to decide a two dimensional
coordinate system (2 for the position of origin and1 for the
orientation), the dimension of a compact relative map should
be 2n− 3.

Suppose there are5 featuresf1, f2, · · · , f5. The location of
featurefi is (xi, yi), i = 1, · · · , 5. Below are the state vectors
of one absolute map and two examples of relative map.




x1

y1

...
x5

y5




,




d12

α312

d13

α412

d14

α512

d15




,




d12

α312

d13

α423

d24

α534

d35




(1)

The meaning of each elements in the two relative maps is
explained in Figures 1(b) and 1(c). In this paper, we will use
the first relative map state vector in our decoupled SLAM
algorithm. This vector can be naturally explained as the polar
coordinates of the featuresf2, f3, f4, f5 in the coordinate
system decided by

−−→
f1f2 (the origin isf1).

As a comparison, we also list the relative map state vectors
used in [3] and [6] (for5 features) as follows:




x2 − x1

y2 − y1

...
x5 − x1

y5 − y1

x3 − x2

y3 − y2

...
x5 − x4

y5 − y4




,




d12

d13

d14

d15

d23

d24

d25

d34

d35

d45




(2)

The redundancy of these two state vectors is obvious.

IV. EXTRACTING MAP INFORMATION FROM

OBSERVATIONS

Since all the observations are made from the robot, the
original observations are information on the relative locations

between robot and features. In order to decouple mapping
and localization in SLAM, another key step is to extract map
information from the original observations. There are two
important issues need to be addressed in extracting of this
information: (1) we want to extract as much information as
possible; (2) we need to make sure that information reuse is
avoided.

We will show below that the measurement vector can be
recast such that the information about the map contained in
the measurements is relatively separated from the information
about the robot location. This is achieved by transforming the
original measurement vector into one containing distances and
angles among features. We assume that the robot observes
more than one feature at a time (this assumption can be relaxed
but this issue is not addressed in this paper).

A. New formulation of measurements

Suppose the robot observesm featuresf1, · · · , fm at a par-
ticular time. Below are different versions of the measurement
vectors.

1) The original measurements:The original measurements
are the measured range and bearing of each observed feature

zold =
[

r1, θ1, · · · , rm, θm

]T
(3)

which contain zero-mean noise with covariance matrixRold.
2) The feature locations in the robot coordinate system:

We use(x̃i, ỹi) to denote the location of thei-th feature in the
robot coordinate system (the origin is the robot location when
the observations are made; thex-axis is along the current robot
heading). These can be easily computed fromri, θi by

x̃i = ri cos θi, ỹi = ri sin θi.

The measurement vector is, therefore

zx̃ỹ =
[

x̃1, ỹ1, · · · , x̃m, ỹm

]T
. (4)

3) Distances and angles:The measurement vector can also
be rewritten as

znew =




αr12

d1r

αφ12

−−−
d12

α312

d13

...
αm12

d1m




=




atan2
(
−ỹ1
−x̃1

)
− atan2

(
ỹ2−ỹ1
x̃2−x̃1

)
√

(−x̃1)2 + (−ỹ1)2

−atan2
(

ỹ2−ỹ1
x̃2−x̃1

)

−−−√
(x̃2 − x̃1)2 + (ỹ2 − ỹ1)2

atan2
(

ỹ3−ỹ1
x̃3−x̃1

)
− atan2

(
ỹ2−ỹ1
x̃2−x̃1

)
√

(x̃3 − x̃1)2 + (ỹ3 − ỹ1)2
...

atan2
(

ỹm−ỹ1
x̃m−x̃1

)
− atan2

(
ỹ2−ỹ1
x̃2−x̃1

)
√

(x̃m − x̃1)2 + (ỹm − ỹ1)2




(5)
The physical meaning of the new measurement vector is

shown in Figure 2(b) while that of the original measurements
shown in Figure 2(a). (In this paper the notation should be
read in context. For example,d12 may mean the real, the
estimated or the measured distance from feature1 to feature
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Fig. 1. SLAM problem and different versions of 2-D relative maps

(a) Original measurements used in traditional
SLAM

(b) New measurements used in D-SLAM

Fig. 2. Idea of D-SLAM

2. The reader should be able to tell the exact meaning from
the context.)

It can now be seen that the measurement vector shown in (5)
can be naturally partitioned into two vectors. The last2m− 3
measurements contain information about distances and angles
among features that are independent of the coordinate system
(see the similarity with the second vector in (1)). The first
three measurements depend on the robot pose and features
f1, f2. This part carries information about the robot.

Therefore we denote

zrob =




αr12

d1r

αφ12


 , zmap =




d12

α312

d13

...
αm12

d1m




. (6)

There is a one to one correspondence betweenzold and
znew =

[
zT
rob, z

T
map

]T
and there is no dependence among

the elements inznew, thereforezold and znew contain the
same information. But we note here that the two measurement

vectors zrob and zmap are not independent, so we can not
say that the information has been completely divided into two
parts.

B. Measurement noise covariances

In all the Extended Kalman Filter (or Extended Information
Filter) related literature, a basic assumption is that: ifx is a
Gaussian random (vector) variable with meanx̄ and variance
matrix Rx, then any (vector) function ofx, g(x), is also
Gaussian providedx is near x̄. Its mean value isg(x̄) and
covariance matrix is∇gRx∇gT where∇g is the Jacobian of
g evaluated at̄x. This relationship can be used to compute
the covariance matrix of the noise on the new measurements
vectorzmap.

C. The key idea of D-SLAM

In D-SLAM, the key idea is to use only zmap in the
mapping.

Sincezrob andzmap are not independent,zrob also contains
some information about the map, thus the D-SLAM algorithm
has some information loss. Also due to this correlation, the
localization process needs to be formulated carefully in order



that the same observation information is not reused. In the
next section, we describe how this issue is dealt with and
state the details of the mapping and localization algorithms in
D-SLAM.

V. D-SLAM A LGORITHM USING RELATIVE MAPS

In this section, we describe how we can decouple the
mapping and localization using the 2-D relative map version
1 in (1) (Figure 1(b)).

A. Mapping in D-SLAM

1) State vector:Suppose the total number of features isn.
The state vector for mapping is

X = (d12, α312, d13, α412, d14, · · · , αn12, d1n)T . (7)

As explained in Section III, this vector expresses the polar
coordinates of the featuresf2, · · · , fn in the coordinate system
decided by

−−→
f1f2.

Since all the features are assumed to be stationary, the
mapping problem is a non-linear static estimation problem.
We use the Extended Information Filter (EIF) to compute the
map (for details about EIF equations, refer to [13] or [2]). At
time stepk (before the observation), the estimation of the state
vector isX̂(k) and the information matrix isI(k)(I(0) = 0).
The relation between information vector and the estimated
state vector is

i(k) = I(k)X̂(k). (8)

So initially, i(0) = 0.
2) Measurement model:Suppose at timek, the robot ob-

servesm featuresfk1 , fk2 , · · · , fkm . The model of the new
measurement for mapping is

zmap(k) = [dk1k2 , αk3k1k2 , dk1k3 , · · · , αkmk1k2 , dk1km ]T

= Hmap(X) + wmap

(9)
where Hmap(X) can be obtained by the relationship
between [dk1k2 , αk3k1k2 , dk1k3 , · · · , αkmk1k2 , dk1km ]T

and [αk112, d1k1 , · · · , αkm12, d1km ]T . wmap is the new
measurement noise whose covariance matrixRmap can be
computed according to Section IV-B.

3) Initialization of new features and the update of old
features: Suppose at time0, the robot observes features
f1, f2, · · · , fm, then the (recast) measurementzmap(0) =
[d12, α312, d13, · · · , αm12, d1m]T is used to initialize the first
2m− 3 elements in the state vectorX.

We assume thatfk1 , fk2 are old features in the ob-
servation made at timek. For any new featurefki ,
the corresponding stateαki12, d1ki can be initialized by
αk112, d1k1 , αk212, d1k2 , αkik1k2 , dk1ki , where αkik1k2 , dk1ki

are from the (recast) measurementzmap(k).
The formulas for updating the information vector and the

information matrix are as follows:

I(k + 1) = I(k) +∇HT
mapR

−1
map∇Hmap

i(k + 1) = i(k) +∇HT
mapR

−1
map[zmap(k)−

Hmap(X̂(k)) +∇HmapX̂(k)]
(10)

whereHmap is the function in the observation model (9) and
∇Hmap is the Jacobian ofHmap evaluated on the current state
estimationX̂(k).

As we can see, using the information vector, it is not
necessary to compute the inverse of the high dimensional
matrix I(k + 1) in the update step. We only need part of the
current state estimation to compute∇Hmap and∇HmapX̂(k)
(similar to that in [2]).

4) Sparse information matrix:Due to the sparse structure
of ∇Hmap, the information matrixI(k + 1) is an exactly
sparse matrix. This makes it possible to significantly reduce the
computation cost of the recovery of the current state estimation
by using the properties of sparse matrix (for example, see [11]
or [2] that uses amortized approximate map recovery).

In the above information filter, the initialization of new
features and the update of old features are performed in the
same step. This makes the filter structure more straightforward.

B. Localization in D-SLAM

We want to estimate the relative location of the robot with
respect to the coordinate system with origin atf1 andx-axis
along the vector

−−→
f1f2.

1) State vector:The state vector is three dimensional

Xr = (d1r, αr12, αφ12)T . (11)

We have two pieces of information on the robot location.
One is from the observations. Another is from the process
model plus the priori knowledge of the robot location.

2) Process Model:The process model can be obtained by
the dynamic model of the robot. It is a (nonlinear) recursion

Xr(k + 1) = F (Xr(k), u(k), dr) (12)

where u(k) is the control input at timek, and dr is the
Gaussian process noise with covarianceΣ. The exact formula
of function F depends on the type of the robot.

3) Measurement Model:Suppose at timek, the robot ob-
servesm old featuresfk1 , · · · , fkm . Their corresponding state
vector is denoted asXs = [αk112, d1k1 , · · · , αkm12, d1km ]T .
The measurement model used for localization is

zloc(k) = [rk1 , θk1 , · · · , rkm , θkm ]T

= Hloc(Xr, Xs) + wloc
(13)

where Hloc(Xr, Xs) can be obtained from the
relationship between [rk1 , θk1 , · · · , rkm , θkm ]T and
[d1r, αr12, αφ12, αk112, d1k1 , · · · , αkm12, d1km ]T . wloc is
the new measurement noise. Its covariance matrixRloc can
be obtained byRold (covariance matrix of noise onzold).

4) Location estimation1: At time k, one estimation ofXr

can be obtained by (13) together with the previous estimation
of the mapX̂(k − 1) and its covariance matrixP (k − 1).

5) Location estimation2: We can obtain another estimation
of Xr at timek using the process model as follows

X̂r(k) = F (X̂r(k − 1), u(k − 1), 0),
Pr(k) = ∇FXrPr(k − 1)∇FT

Xr
+∇FdrΣ∇FT

dr
,
(14)

where∇FXr ,∇Fdr are the Jacobians ofF with respect to
Xr, dr evaluated at(X̂r(k − 1), u(k − 1), 0), respectively.



6) Combining the two estimation:Close examination of the
estimation process reveals that the two estimates generated
above are not independent. In this scenario, Covariance Inter-
section (CI) [8], which facilitates combining two correlated
pieces of information when the extent of correlation itself is
unknown, can be used to combine the two estimates. This
is the technique we used in the simulation. But in the some
cases, for example in an indoor robot equipped with a laser
sensor, estimate1 itself may provide a sufficiently accurate
robot location.

Note that the information about the robot location obtained
from the localization process will never be used in the mapping
process, so we are not reusing the same information although
zmap in (9) andzloc in (13) are not independent.

VI. RESULTS

In this section the relative map based D-SLAM algorithm
is evaluated using the results from a computer simulation and
the outcome is compared with traditional SLAM.

The environment used is a square with the width of 40
meters. We put 196 features arranged in uniformly spaced
rows and columns. The interval between two adjacent features
is 3 meters. The robot starts from the left bottom corner
and follows a circular trajectory, then in the end returns to
somewhere near its starting location. Robot speed is 20cm/s
and turnrate is 0.2rad/s. A sensor with a field of view of
180 degrees and a range of 6 meters is simulated to generate
relative range and bearing measurements between the robot
and the features.

In order to make a comparison, we need to convert the
relative map to an absolute map. In our relative map, all
the distances are with respect to the first feature and all the
angles are with respect to the direction decided by the first
two features the robot observes. So we specify the absolute
location of the first feature and the direction from the first
feature to the second feature, then the absolute locations of all
the features can be easily computed. Thus the absolute map
is recovered. We also transfer the map from the traditional
SLAM algorithm into the same coordinate system to make
the comparison.

Figure 3(a) and Figure 3(b) show the maps obtained from
the two algorithms. Figure 3(e) and Figure 3(d) demonstrate
that the uncertainty of the features monotonically decrease.
However, it can also be seen that the uncertainty of the
feature location estimates are more conservative in D-SLAM,
compared to the optimal (traditional) SLAM estimator. As
stated previously, this information loss is expected. Figure 3(c)
shows the sparse information matrix containing5073 non-zero
elements out of48841 obtained by the D-SLAM algorithm. It
is seen that the features that are not in close proximity do not
have any links in the information matrix. If the robot closes
more loops, there will be more off-diagonal non-zero elements.
But this does not affect the exact sparseness.

VII. C ONCLUSIONS AND FURTHER REMARKS

The main contribution of this paper is the reformulation of
the simultaneous localization and mapping (SLAM) algorithm

for mobile robots such that the mapping and localization can
be treated as two independent processes – D-SLAM using
relative map. This new algorithm is based on (1) a novel
minimal dimensional description of a relative map which
contains certain amount of distances and angles among the
features, and (2) a method to recast the observation vector such
that the information about the relative map can be extracted.

The most significant advantage of this algorithm is that there
is no prediction step for mapping, and thus the information
matrix associated with the map estimation is exactly sparse
and only the features that are in the close vicinity are linked
through the information matrix. This has significant implica-
tions in terms of the computational complexity of the proposed
D-SLAM algorithm. Some recent results have also shown that
large errors in the robot orientation introduce significant errors
to the Jacobian matrices used in traditional SLAM, leading to
erroneous estimates [14] [15]. D-SLAM does not have the
robot location in the state vector used for mapping thus may
be more robust than traditional SLAM.

Although the robot location is not incorporated in the state
vector used in mapping, correlations among the features are
still preserved in the information matrix. It is, therefore, not
surprising to see a large reduction in the uncertainty of feature
locations that are far away from the initial location of the robot
as the loop is closed (see Figure 3(d) around500 second mark,
the time when the robot comes back to the vicinity of its
starting position).

D-SLAM, however, results in some information loss. This is
because we recast the observation into two parts and do not use
all the observation information in mapping and localization.
Simulation results show that a key factor that influences the
extent of this information loss is the ratio between process
noise and observation noise. We believe that in many practical
scenarios, with the availability of high frequency scanners such
as the SICK laser, the information loss is not a significant
drawback.

In this work, relative map is used in the D-SLAM algorithm.
Recently, we have also demonstrated that absolute map can
be used in D-SLAM algorithm [16]. Some further research is
required to analyse the computational complexity and the data
association process. Work is in progress on a detailed analysis
of information loss and the implementation of the algorithm
using data available in the Robotics Data Set Repository:
Radish and some outdoor data collected at our centre.
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