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Abstract—In this paper, we propose a new algorithm for the information about the relative map from the original
SLAM that makes use of a state vector consisting of quantities ppservations has so far not been fully addressed.
that describes the relative locations among features. In contrastto | this paper, we provide a novel decoupled SLAM algo-
previous relative map strategies, the new state vector is compact . . .
and always consists o2n — 3 elements (in a 2-D environment) rithm (D'SLAM) based on a new formulatlo.n of Z'D re_latlve
where n is the number of features in the map. It is also shown Map with no redundant elements. The main contributions of
that the information from observations can be transformed and this paper are as follows: (1) We show that the minimal
grouped into two parts: first one containing the information about  dimension of a vector describing a relative mapnofeatures
the map and the second one containing the information about gpq1q ey, — 3 and provide a natural formulation of such a
the robot location relative to the features in the map. Therefore . .
the SLAM can be decoupled into two processes where mapping vector consisting of dlstanc_es ar_ld angles among Fhe featqres.
uses the first part of the transformed observation vector and (2) We recast the observations in a way that the information
localization becomes a 3-dimensional estimation problem. It is about the relative map is separated from the other information,
also shown that the information matrix of the map is exactly making it clear which part of information can be used in the
sparse, resulting in potential computational savings when an mapping process. (3) We show that the information matrix in
information filter is used for mapping. The new decoupled SLAM Extended Information Filter (EIF) based D-SLAM algorithm
algorithm is called D-SLAM and is illustrated using simulation. ' . g it ]

is an exactly sparse matrix, resulting in significant potential
|. INTRODUCTION computational advantages.

Simultaneous Localization and Mapping (SLAM) is the The paper is organized as follows. In Section Il, we briefly
process of building a map of an environment while concureview the SLAM problem. Natural ways of expressing the
rently generating an estimate for the location of the robatompact 2-D relative maps are discussed in Section Ill. In
In traditional SLAM (for example [1], [2]), the state vectorSection IV, the observation vector is recast in to a new form
contains both the robot pose and the feature locations and #imel the key idea of D-SLAM is provided. Section V states the
localization and mapping are performed simultaneously.  details of the mapping and localization processes in D-SLAM.

In recent years, a few researchers have discussed the pdSsiulation results are presented in Section VI. Section VII
bility of decoupling the mapping and localization processe®ncludes the paper and addresses future research directions.
in SLAM in order to gain computational efficiency. Since
the observations made by the robot are about the relative
locations between the robot and features, a natural way toThe setting for the SLAM problem is that of a robot with
decouple mapping and localization is to extract informatiod known dynamic model, moving through an environment
about the relative locations among the features and themntaining a population of features or landmarks. The robot
construct a relative map using this part of information. Fos equipped with a sensor that can take measurements of the
example, Newman [3] introduced a relative map in which thelative location between any individual feature and the robot
map state contains the relative locations among the featurigself as shown in Figure 1(a). The SLAM problem is to
which are invariants under shift but are variants under rotatioestimate the position and orientation of the robot together with
Two filters were used in the estimation, one is the relatitbe locations of all the features.
map filter and the other is the geometric projection filter. The state vector in traditional SLAM is the combination
Csorba et al. [4], Deans and Herbert [5], and Martinelli [6pf the location and orientation of the robot together with all
have made use of relative maps where the map state ofggture locations. The observation contains information about
contains distances among the features, which are invariatits relative location between robot and features and is used to
under shift and rotation. However, all the above approachegdate both the robot pose estimate and the feature estimates.
have redundant elements in the state vector of the relativethe traditional formulation, the mapping and localization
map. Constraints need to be applied to avoid generating therefore need to be performed simultaneously.
inconsistent map. However, application of these constraintsRecently, different group of people have tried different
results in a significant increase in computational complexityays of decoupling the mapping and localization processes in
of the SLAM algorithm. Moreover, issues of how to extrac6LAM in order to significantly reduce the computation burden

II. SLAM PROBLEM REVIEW



and to avoid the effect of the process model error. One colretween robot and features. In order to decouple mapping
monly used idea is using observation information to construatd localization in SLAM, another key step is to extract map
a relative map of the features [4],[5],[3],[6]. However, the mamformation from the original observations. There are two
state used in the literature contains redundant elements whiiciportant issues need to be addressed in extracting of this
may cause either inconsistency or higher computation loadinformation: (1) we want to extract as much information as
In the next two sections, we will (1) provide a natural wayossible; (2) we need to make sure that information reuse is
of expressing a relative map with no redundant elements; @joided.
address the issue of extracting information about the map fromWe will show below that the measurement vector can be
the observations. recast such that the information about the map contained in
the measurements is relatively separated from the information
about the robot location. This is achieved by transforming the
Relative maps describe the relative locations among tbeiginal measurement vector into one containing distances and
features while absolute maps describe the absolute locatiamgles among features. We assume that the robot observes
of features. Fom point features in &-D environment, the more than one feature at a time (this assumption can be relaxed
dimension of the absolute map with no redundant elementspbist this issue is not addressed in this paper).
2n. Since3 elements are needed to decide a two dimensional .
coordinate systere(for the position of origin and for the A New formulation of measurements

IIl. COMPACT RELATIVE MAPS

orientation), the dimension of a compact relative map shouldSuppose the robot observesfeaturesfi, - - -, f., at a par-
be 2, — 3. ticular time. Below are different versions of the measurement
Suppose there argfeaturesf;, fo,-- -, f5. The location of Vectors.
featuref; is (z;,v:), i = 1,-- -, 5. Below are the state vectors 1) The original measurementhe original measurements
of one absolute map and two examples of relative map. are the measured range and bearing of each observed feature
i d12 T I d12 ] Zold = [ 7’1,01,«~,7‘m,9m ]T (3)
o1 @312 @312 which contain zero-mean noise with covariance maftjx,.
0 di3 di3 2) The feature locations in the robot coordinate system:
Col stz | 23 (1) We use(z;, 7;) to denote the location of thieth feature in the
T5 dis d24 robot coordinate system (the origin is the robot location when
Ys @512 Q534 the observations are made; thewxis is along the current robot
| dis | dss heading). These can be easily computed frond; by

The meaning of each elements in the two relative maps is
explained in Figures 1(b) and 1(c). In this paper, we will use
the first relative map state vector in our decoupled SLAM The measurement vector is, therefore
algorithm. This vector can be naturally explained as the polar ]T 4)
coordinates of the feature$,, fs3, f4, f5 in the coordinate
system decided bm (the origin is f1). 3) Distances and anglesthe measurement vector can also

As a comparison, we also list the relative map state vectdrs rewritten as

T; =r;cosb;, y; =r;sinb;.

23y = [ ilaglv"'vjm7:&m

used in [3] and [6] (for5 features) as follows: ] ] atan? (%ﬁ) — atan? (i’j:iﬁ)
- A ) ) o ~ _
T2 = dys dr12 V(=71)2 + (—11)2
Y2 — Lr J2—T
dis o —atan2 | =4
: d14 o o
Zs : o1 215 di2 V(&2 — %1% + (52 — 11)?
Ys B ol d23 (2 Frew = | asiz | T | atan2 (gtgl> — atan?2 (7%2:21)
T3 — T2 24 dys3 s
Ys — Y2 das _ V(&3 = 71)2 + (73 — 0)
: d34 ' :
_ dss Qm12 Im—=Y1 . J2—91
25 ;4 i d45 | i dlm i atcm2 (1527—51) — atan2 (ﬁ)
L Y5 — Y4

) L V@ =81+ G~ 31)?
The redundancy of these two state vectors is obvious. 5
The physical meaning of the new measurement vector is
shown in Figure 2(b) while that of the original measurements
shown in Figure 2(a).I\ this paper the notation should be
Since all the observations are made from the robot, thead in context. For examplef;» may mean the real, the
original observations are information on the relative locatiorestimated or the measured distance from featute feature

IV. EXTRACTING MAP INFORMATION FROM
OBSERVATIONS
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Fig. 1. SLAM problem and different versions of 2-D relative maps

(a) Original measurements used in traditional (b) New measurements used in D-SLAM
SLAM

Fig. 2. Idea of D-SLAM

2. The reader should be able to tell the exact meaning fromectors z,.;, and z,,,, are not independent, so we can not

the contex). say that the information has been completely divided into two
It can now be seen that the measurement vector shown in gayts.

can be naturally partitioned into two vectors. The st — 3 : .

measurements contain information about distances and ang .eSMeasurement NOISE covariances

among features that are independent of the coordinate syster all the Extended Kalman Filter (or Extended Information

(see the similarity with the second vector in (1)). The firdrilter) related literature, a basic assumption is that: i a

three measurements depend on the robot pose and feat@@yssian random (vector) variable with meaand variance

f1, f2. This part carries information about the robot. matrix R, then any (vector) function of;, g(z), is also
Therefore we denote Gaussian provided: is nearz. Its mean value igj(z) and

covariance matrix iVgR, Vg’ whereVy is the Jacobian of

d12 g evaluated atz. This relationship can be used to compute
o 2312 the covariance matrix of the noise on the new measurements
. o 13 VECtor Z,map-
Zrob = dlr 5 Zmap = . . (6) P
g1z : C. The key idea of D-SLAM
O;Tj In D-SLAM, the key idea is to use only z,,,, in the
- - mapping.
There is a one to one correspondence betwegn and  Sincez,., andz,,,, are not independent,..;, also contains
Znew = [zf(,b,zﬁap}T and there is no dependence amongsome information about the map, thus the D-SLAM algorithm

the elements inz,..,, thereforez,y and z,., contain the has some information loss. Also due to this correlation, the
same information. But we note here that the two measureméottalization process needs to be formulated carefully in order



that the same observation information is not reused. In there H,,,, is the function in the observation model (9) and
next section, we describe how this issue is dealt with andH,,,, is the Jacobian off,,., evaluated on the current state
state the details of the mapping and localization algorithms érstimationX’(k).
D-SLAM. As we can see, using the information vector, it is not
necessary to compute the inverse of the high dimensional
V. D-SLAM ALGORITHM USING RELATIVE MAPS matrix I(k + 1) in the update step. We only need part of the
In this section, we describe how we can decouple thgrrent state estimation to COMPWEH 0, andVHmap)A((k')
mapping and localization using the 2-D relative map versiqBimilar to that in [2]).
1in (1) (Figure 1(b)). 4) Sparse information matrixDue to the sparse structure
A. Mapping in D-SLAM of VHpap, _the ir_lformation matr_ixI(k +_1)_ i_s an exactly
sparse matrix. This makes it possible to significantly reduce the
computation cost of the recovery of the current state estimation
by using the properties of sparse matrix (for example, see [11]
or [2] that uses amortized approximate map recovery).
In the above information filter, the initialization of new
As explained in Section llI, this vector expresses the pol@gatures and the update of old features are performed in the
coordinates of the featurgfs, - - -, f, in the coordinate system same step. This makes the filter structure more straightforward.

decided byf1f2 o
Since all the features are assumed to be stationary, @TeLocahzatlon in D-SLAM

mapping problem is a non-linear static estimation problem.We want to estimate the relative location of the robot with
We use the Extended Information Filter (EIF) to compute tH&Spect to the coordinate system with originfatand z-axis
map (for details about EIF equations, refer to [13] or [2]). Aglong the vectorf fo.

time stepk (before the observation), the estimation of the state 1) State vector:The state vector is three dimensional
vector is X (k) and the information matrix ig(k)(Z(0) = 0). X, = (dir, iz, agr2) " (11)
The relation between information vector and the estimated
state vector is

1) State vector:Suppose the total number of featuresiis
The state vector for mapping is

T
X = (d1270¢312, di3, 412, d14, -+, Qp2, dln) . (7)

We have two pieces of information on the robot location.
i(k) = I(k)X(k). 8) One is from the pb_servations. Another is from the process
model plus the priori knowledge of the robot location.
So initially, i(0) = 0. 2) Process Model:The process model can be obtained by
2) Measurement modelSuppose at timé;, the robot ob- the dynamic model of the robot. It is a (nonlinear) recursion

servesm featuresfy,, fi,, -, fx,,. The model of the new X, (k 4+ 1) = F(X,(k), u(k), d») (12)

measurement for mapping is
7 where u(k) is the control input at timek, and d, is the
Gaussian process noise with covariadteThe exact formula
Q) of function F' depends on the type of the robot.
where H,,.,(X) can be obtained by the relationship 3) Measurement ModelSuppose at. time, the ropot ob-
between (s s Do - -~ O botas i, |7 servesm old featuresfy,, - - -, fx,,. Their corresponding state
ey WRafatey Thuper o TEmiat2r MEme - vector is denoted aX, = [o, 12, digy, dig, 7.
and [ak,12,d1ky s s Qk,y12, A1k, | - Wmaep 1S the new s k1125 Qlkys " Oky, 12, Ak,

measurement noise whose covariance maRix,, can be The measurement model used for localization is
computed according to Section IV-B. Zoc(k) = [Tk Oks s Thpns Ok, ]” (13)
3) Initialization of new features and the update of old = Hioe(Xr, Xs) + Wioe
features: Suppose at timed, the robot observes featuresyhere H;,.(X,,X,) can be obtained from the
fi, fa,-++, fm, then the (recast) measurement.,(0) = relationship  between [ry,,0k,,---,7%,.,0k,]7  and
[dlg7 asz12,d13, "+, Qm12, dlm}T is used to initialize the first [dlr; 012, 12, ey 12, dlkl bt (g, 12, dlkm]T- Wiee is
2m — 3 elements in the state vectof. the new measurement noise. Its covariance mafjiyx can
We assume thatfy,, fr, are old features in the ob-pe obtained byR,;; (covariance matrix of noise ofy;q).
servation made at timek. For any new featurefy,, 4) Location estimatiorl: At time k, one estimation ofX,
the corresponding state,12,d1x, can be initialized by can be obtained by (13) together with the previous estimation
k125 A1k, s Okp12, kg s Ok ks Dy ko WHETE Ot gy, dieyk, O the mapX (k — 1) and its covariance matri®(k — 1).

Zm(lp(k) = [dk1k27ak3k1k2adk1k37 te 7ak’mk1k’27dk’1km
= Hmap(X) + Wmap

are from the (recast) measurement,, (k). 5) Location estimatior2: We can obtain another estimation
The formulas for updating the information vector and thef X, at timek using the process model as follows
information matrix are as follows: Xk = FX(k—1),uk—1),0),
P.(k) = VFx P.(k—1)VFL +VF;, XVFT,
Ik+1) = I(k )+VH§apRm}lPVHmap ' " (19)
ik+1) = i(k)+ VH,?MP map[zmap(k)— (10) where VFx,,VF,, are the Jacobians of with respect to

Homap(X (k) + V Hypop X (k)] X, d, evaluated at X, (k — 1),u(k — 1),0), respectively.



6) Combining the two estimatiorClose examination of the for mobile robots such that the mapping and localization can
estimation process reveals that the two estimates generdiedtreated as two independent processes — D-SLAM using
above are not independent. In this scenario, Covariance Intetative map. This new algorithm is based on (1) a novel
section (CI) [8], which facilitates combining two correlatedninimal dimensional description of a relative map which
pieces of information when the extent of correlation itself isontains certain amount of distances and angles among the
unknown, can be used to combine the two estimates. Tléatures, and (2) a method to recast the observation vector such
is the technique we used in the simulation. But in the sontieat the information about the relative map can be extracted.
cases, for example in an indoor robot equipped with a laserThe most significant advantage of this algorithm is that there
sensor, estimaté itself may provide a sufficiently accurateis no prediction step for mapping, and thus the information
robot location. matrix associated with the map estimation is exactly sparse

Note that the information about the robot location obtaineghd only the features that are in the close vicinity are linked
from the localization process will never be used in the mappingrough the information matrix. This has significant implica-
process, so we are not reusing the same information althoug@hs in terms of the computational complexity of the proposed
Zmap 1IN (9) @andz,, in (13) are not independent. D-SLAM algorithm. Some recent results have also shown that

VI. RESULTS large errors in the robot orientation introduce significant errors
In this section the relative map based D-SLAM algorithr%o the Jacobian matrices used in traditional SLAM, leading to

is evaluated using the results from a computer simulation aﬁq)oneous estimates [14] [15]. D-SLAM does not have the

the outcome is compared with traditional SLAM. robot location in the state vector used for mapping thus may

The environment used is a square with the width of 4?)e more robust than traditional SLAM.

meters. We put 196 features arranged in uniformly SpaCedAIthough tr_]e robotllocation is qot incorporated in the state
rows and columns. The interval between two adjacent featu?(%ctor used in mapping, correlations among the features are
is 3 meters. The robot starts from the left bottom cornélﬁl preserved in the information matrix. It is, therefore, not
and follows a circular trajectory, then in the end returns l%urpris:ing to see a large reduction in the uncertainty of feature

somewhere near its starting location. Robot speed is 20CrJ{%ations that are far away from the initial location of the robot
and turnrate is 0.2rad/s. A sensor with a field of view Sth,e loop is closed (see Figure 3(d) aroaﬁdsecqqd_mark,_
180 degrees and a range of 6 meters is simulated to genefdfe ime when the robot comes back to the vicinity of its

relative range and bearing measurements between the rotigfting position). ) . . .
and the features. D-SLAM, however, results in some information loss. This is

In order to make a comparison, we need to convert tiRg¢cause we recast the observation into two parts and do not use
relative map to an absolute map. In our relative map, é“_l the (_)bservation information in mapping and_ localization.
the distances are with respect to the first feature and all tREnulation results show that a key factor that influences the
angles are with respect to the direction decided by the fif@tent of this information loss is the ratio between process
two features the robot observes. So we specify the absol(}fiS€ and observation noise. We believe that in many practical
location of the first feature and the direction from the firstcenarios, with the availability of high frequency scanners such
feature to the second feature, then the absolute locations of3fi|the SICK laser, the information loss is not a significant
the features can be easily computed. Thus the absolute risgvback.
is recovered. We also transfer the map from the traditionalln this work, relative map is used in the D-SLAM algorithm.
SLAM algorithm into the same coordinate system to makgecently, we have also demonstrated that absolute map can
the comparison. be used in D-SLAM algorithm [16]. Some further research is

Figure 3(a) and Figure 3(b) show the maps obtained froffiquired to analyse the computational complexity and the data
the two algorithms. Figure 3(e) and Figure 3(d) demonstradgsociation process. Work is in progress on a detailed analysis
that the uncertainty of the features monotonically decread.information loss and the implementation of the algorithm
However, it can also be seen that the uncertainty of thing data available in the Robotics Data Set Repository:
feature location estimates are more conservative in D-SLANadish and some outdoor data collected at our centre.
compared to the optimal (traditional) SLAM estimator. As
stated previously, this information loss is expected. Figure 3(c) ACKNOWLEDGMENT
shows the sparse information matrix containiiig3 non-zero
elements out ofl8841 obtained by the D-SLAM algorithm. It
is seen that the features that are not in close proximity do
have any links in the information matrix. If the robot close
more loops, there will be more off-diagonal non-zero elements.
But this does not affect the exact sparseness.
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