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1. Introduction  

Much effort in recent years has focused on the development of such mechanical-looking 
humanoid robots as Honda’s Asimo and Sony’s Qrio with the goal of partnering them with 
people in daily situations. Just as an industrial robot’s purpose determines its appearance, a 
partner robot’s purpose will also determine its appearance. Partner robots generally adopt a 
roughly humanoid appearance to facilitate communication with people, because natural 
interaction is the only task that requires a humanlike appearance. In other words, humanoid 
robots mainly have significance insofar as they can interact naturally with people. Therefore, 
it is necessary to discover the principles underlying natural interaction to establish a 
methodology for designing interactive humanoid robots.  
Kanda et al. (Kanda et al., 2002) have tackled this problem by evaluating how the behavior 
of the humanoid robot “Robovie” affects human-robot interaction. But Robovie’s machine-
like appearance distorts our interpretation of its behavior because of the way the complex 
relationship between appearance and behavior influences the interaction. Most research on 

interactive robots has not evaluated the effect of appearance (for exceptions, see (Goetz et 
al., 2003; DiSalvo et al., 2002)) — and especially not in a robot that closely resembles a 

person. Thus, it is not yet clear whether the most comfortable and effective human-robot 
communication would come from a robot that looks mechanical or human. However, we 
may infer a humanlike appearance is important from the fact that human beings have 
developed neural centers specialized for the detection and interpretation of hands and faces 
(Grill-Spector et al., 2004; Farah et al., 2000; Carmel & Bentin, 2002). A robot that closely 
resembles humans in both looks and behavior may prove to be the ultimate communication 
device insofar as it can interact with humans the most naturally.1 We refer to such a device 
as an android to distinguish it from mechanical-looking humanoid robots. When we 
investigate the essence of how we recognize human beings as human, it will become clearer 
how to produce natural interaction. Our study tackles the appearance and behavior problem 
with the objective of realizing an android and having it be accepted as a human being 
(Minato et al., 2006).  

                                                                
1 We use the term natural to denote communication that flows without seeming stilted, forced, bizarre, 

or inhuman.

Source: Humanoid Robots: Human-like Machines, Book edited by: Matthias Hackel
ISBN 978-3-902613-07-3, pp. 642, Itech, Vienna, Austria, June 2007
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Ideally, to generate humanlike movement, an android’s kinematics should be functionally 
equivalent to the human musculoskeletal system. Some researchers have developed a joint 
system that simulates shoulder movement (Okada et al., 2002) and a muscle-tendon system 
to generate humanlike movement (Yoshikai et al., 2003). However, these systems are too 
bulky to be embedded in an android without compromising its humanlike appearance. 
Given current technology, we embed as many actuators as possible to provide many 
degrees of freedom insofar as this does not interfere with making the android look as human 
as possible (Minato et al., 2006). Under these constraints, the main issue concerns how to 
move the android in a natural way so that its movement may be perceived as human.  
A straightforward way to make a robot’s movement more humanlike is to imitate human 
motion. Kashima and Isurugi (Kashima & Isurugi, 1998) extracted essential properties of 
human arm trajectories and designed an evaluation function to generate robot arm 
trajectories accordingly. Another method is to copy human motion as measured by a motion 
capture system to a humanoid robot. Riley et al. (Riley et al., 2000) and Nakaoka et al. 
(Nakaoka et al., 2003) calculated a subject’s joint trajectories from the measured positions of 
markers attached to the body and fed them to the joints of a humanoid robot. In these 
studies the authors assumed the kinematics of the robot to be similar to that of a human 

body. However, since the actual kinematics and joint structures are different between 
human and robot bodies, calculating the joint angles from only the human motion data 

could in some cases result in visibly different motion. This is especially a risk for androids 
because their humanlike form makes us more sensitive to deviations from human ways of 

moving. Thus, slight differences could strongly influence whether the android’s movement 
is perceived as natural or human. Furthermore, these studies did not evaluate the 
naturalness of robot motions. 
Hale et al. (Hale et al., 2003) proposed several evaluation functions to generate a joint 
trajectory (e.g., minimization of jerk) and evaluated the naturalness of generated humanoid 
robot movements according to how human subjects rated their naturalness. In the computer 
animation domain, researchers have tackled a motion synthesis with motion capture data 
(e.g., (Gleicher, 1998)). However, we cannot apply their results directly; we must instead 
repeat their experiment with an android because the results from an android testbed could 

be quite different from those of a humanoid testbed. For example, Mori described a 
phenomenon he termed the “uncanny valley” (Mori, 1970; Fong et al., 2003), which relates to 
the relationship between how humanlike a robot appears and a subject’s perception of 
familiarity. According to Mori, a robot’s familiarity increases with its similarity until a 
certain point is reached at which slight “nonhuman” imperfections cause the robot to appear 
repulsive (Fig. 1). This would be an issue if the similarity of androids fell into the chasm. 
(Mori believes mechanical-looking humanoid robots lie on the left of the first peak.) This 
nonmonotonic relationship can distort the evaluation proposed in existing studies. 
Therefore, it is necessary to develop a motion generation method in which the generated 
“android motion” is perceived as human.  
This paper proposes a method to transfer human motion measured by a motion capture 
system to the android by copying changes in the positions of body surfaces. This method is 
called for because the android’s appearance demands movements that look human, but its 

kinematics is sufficiently different that copying joint-angle information would not yield 
good results. Comparing the similarity of the android’s visible movement to that of a human 
being enables us to develop more natural movements for the android.  
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Figure 1. Uncanny valley (Mori, 1970; Fong et al., 2003) 

In the following sections, we describe the developed android and mention the problem of 
motion transfer and our basic idea about the way to solve it. Then we describe the proposed 
method in detail and show experimental results from applying it to the android.  

2. The Developed Android 

Fig. 2 shows the developed android called Repliee Q2. The android is modeled after a 
Japanese woman. The standing height is about 160 cm. The skin is composed of a kind of 
silicone that feels like human skin. The silicone skin covers the neck, head, and forearms, 
with clothing covering other body parts. Unlike Repliee R1 (Minato et al., 2004), the silicone 
skin does not cover the entire body so as to facilitate flexibility and a maximal range of 
motion. Forty-two highly sensitive tactile sensors composed of PVDF film are mounted 
under the android’s skin and clothes over the entire body, except for the shins, calves, and 
feet. Since the output value of each sensor corresponds to its deforming rate, the sensors can 

distinguish different kinds of touch ranging from stroking to hitting. The soft skin and 
tactile sensors give the android a human appearance and enable natural tactile interaction.  
The android is driven by air actuators (air cylinders and air motors) that give it 42 degrees of 
freedom (DoFs) from the waist up. The legs and feet are not powered; it can neither stand 
up nor move from a chair. A high power-to-weight ratio is necessary for the air actuator in 
order to mount multiple actuators in the human-sized body. 
The configuration of the DoFs is shown in Table 1. Fig. 4 shows the kinematic structure of 
the body, excluding the face and fingers. Some joints are driven by the air motors and others 
adopt a slider-crank mechanism. The DoFs of the shoulders enable them to move up and 
down and backwards and forwards; this shoulder structure is more complicated than that of 
most existing humanoid robots. Moreover, parallel link mechanisms adopted in some parts 
complicate the kinematics of the android, for example in the waist. The android can 
generate a wide range of motions and gestures as well as various kinds of micro-motions 
such as the shoulder movements typically caused by human breathing. Furthermore, the 
android can make some facial expressions and mouth shapes, as shown in Fig. 3. Because 
the android has servo controllers, it can be controlled by sending data on the desired joint 
angles (cylinder positions and rotor angles) from a host computer. The compliance of the air  
actuator makes for safer interaction, with movements that are generally smoother than other 
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systems typically used. Because of the complicated dynamics of the air actuator, executing 
the trajectory tracking control is difficult. 

Figure 2. The developed android “Repliee Q2” 

Figure 3. Examples of motion and facial expressions 

Degree of freedom 

Eyes pan×2 + tilt×1

Face eyebrows×1 + eyelids×1 + cheeks×1

Mouth 7 (including the upper and lower lips) 

Neck 3 

Shoulder 5×2

Elbow 2×2

Wrist 2×2

Fingers 2×2

Torso 4 

Table 1. The DoF configuration of Repliee Q2. 
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Figure 4. Kinematic structure of the android 

3. Transferring Human Motion 

3.1 The basic idea 

One method to realize humanlike motion in a humanoid robot is through imitation. Thus, 
we consider how to map human motion to the android. Most previous research assumes the 
kinematics of the human body is similar to that of the robot except for the scale. Thus, they 
aim to reproduce human motion by reproducing kinematic relations across time and, in 
particular, joint angles between links. For example, the three-dimensional locations of 
markers attached to the skin are measured by a motion capture system, the angles of the 
body’s joints are calculated from these positions, and these angles are transferred to the 
joints of the humanoid robot. It is assumed that by using a joint angle space (which does not 

represent link lengths), morphological differences between the human subject and the 
humanoid robot can be ignored. 
However, there is potential for error in calculating a joint angle from motion capture data. 
The joint positions are assumed to be the same between a humanoid robot and the human 

subject who serves as a model; however, the kinematics in fact differs. For example, the 

kinematics of Repliee Q2’s shoulder differs significantly from those of human beings. 
Moreover, as human joints rotate, each joint’s center of rotation changes, but joint-based 
approaches generally assume this is not so. These errors are perhaps more pronounced in 
Repliee Q2, because the android has many degrees of freedom and the shoulder has a more 
complex kinematics than existing humanoid robots. These errors are more problematic for 
an android than a mechanical-looking humanoid robot because we expect natural human 
motion from something that looks human and are disturbed when the motion instead looks 
inhuman.  
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To create movement that appears human, we focus on reproducing positional changes at the 
body’s surface rather than changes in the joint angles. We then measure the postures of a 
person and the android using a motion capture system and find the control input to the 
android so that the postures of person and android become similar to each other. 

3.2 The method to transfer human motion 

We use a motion capture system to measure the postures of a human subject and the 
android. This system can measure the three-dimensional positions of markers attached to 
the surface of bodies in a global coordinate space. First, some markers are attached to the 
android so that all joint motions can be estimated. The reason for this will become clear 
later. Then the same numbers of markers are attached to corresponding positions on the 

subject’s body. We must assume the android’s surface morphology is not too different from 
the subject’s. 
We use a three-layer neural network to construct a mapping from the subject’s posture xh to 
the android’s control input qa, which is the desired joint angle. The reason for the network is 

that it is difficult to obtain the mapping analytically. To train a neural network to map from 
xh to qa would require thousands of pairs of xh, qa as training data, and the subject would 
need to assume the posture of the android for each pair. We avoid this prohibitively lengthy 
task in data collection by adopting feedback error learning (FEL) to train the neural network. 
Kawato et al. (Kawato et al., 1987) proposed feedback error learning as a principle for 
learning motor control in the brain. This employs an approximate way of mapping sensory 
errors to motor errors that subsequently can be used to train a neural network (or other 
method) by supervised learning. Feedback-error learning neither prescribes the type of 
neural network employed in the control system nor the exact layout of the control circuitry. 
We use it to estimate the error between the postures of the subject and the android and feed 
the error back to the network. 

Figure 5. The android control system 

Fig. 5 shows the block diagram of the control system, where the network mapping is shown 
as the feedforward controller. The weights of the feedforward neural network are learned 
by means of a feedback controller. The method has a two-degrees-of-freedom control 
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architecture. The network tunes the feedforward controller to be the inverse model of the 
plant. Thus, the feedback error signal is employed as a teaching signal for learning the 
inverse model. If the inverse model is learned exactly, the output of the plant tracks the 
reference signal by feedforward control. The subject and android’s marker positions are 

represented in their local coordinates xh, xa R
 3m

; the android’s joint angles qa R
n

can be 
observed by a motion capture system and a potentiometer, where m is the number of 
markers and n is the number of DoFs of the android. 

Fig 6. The feedback controller with and without the estimation of the android’s joint angle 

The feedback controller is required to output the feedback control input qb so that the error 
in the marker’s position xd = xa - xh converges to zero (Fig. 6(a)). However, it is difficult to 
obtain qb from xd. To overcome this, we assume the subject has roughly the same 

kinematics as the android and obtain the estimated joint angle q̂h simply by calculating the 

Euler angles (hereafter the transformation from marker positions to joint angles is described 

as T).2 Converging qa to q̂h does not always produce identical postures because q̂h is an 

                                                                
2 There are alternatives to using the Euler angles such as angle decomposition (Grood & Suntay, 1983), 

which has the advantage of providing a sequence independent representation, or least squares, to  
calculate the helical axis and rotational angle (Challis, 1995; Veldpaus et al., 1988). This last method 
provides higher accuracy when many markers are used but has an increased risk of marker crossover.
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approximate joint angle that may include transformation error (Fig. 6(b)). Then we obtain 

the estimated joint angle of the android q̂a using the same transformation T and the 

feedback control input to converge q̂a to q̂h (Fig. 6(c)). This technique enables xa to approach 

xh. The feedback control input approaches zero as learning progresses, while the neural 
network constructs the mapping from xh to the control input qd. We can evaluate the 
apparent posture by measuring the android posture. 
In this system we could have made another neural network for the mapping from xa to qa

using only the android. As long as the android’s body surfaces are reasonably close to the 
subject’s, we can use the mapping to make the control input from xh. Ideally, the mapping 

must learn every possible posture, but this is quite difficult. Therefore, it is still necessary for 
the system to evaluate the error in the apparent posture. 

4. Experiment to Transfer Human Motion 

4.1 Experimental setting 

To verify the proposed method, we conducted an experiment to transfer human motion to 
the android Repliee Q2. We used 21 of the android’s 42 DoFs (n = 21) by excluding the 13 
DoFs of the face, the 4 of the wrists (the cylinders 11, 12, 20, and 21 in Fig. 4), and the 4 of the 
fingers. We used a Hawk Digital System,3 which can track more than 50 markers in real-
time. The system is highly accurate with a measurement error of less than 1 mm. Twenty 
markers were attached to the subject and another 20 to the android as shown in Fig. 7 (m = 
20). Because the android’s waist is fixed, the markers on the waist set the frame of reference 
for an android-centered coordinate space. To facilitate learning, we introduce a 

representation of the marker position xh, xa as shown in Fig. 8. The effect of waist motions is 
removed with respect to the markers on the head. To avoid accumulating the position errors 
at the end of the arms, vectors connecting neighboring pairs of markers represent the 
positions of the markers on the arms. We used arc tangents for the transformation T, in 
which the joint angle is an angle between two neighboring links where a link consists of a 
straight line between two markers.  

The feedback controller outputs qb = K q̂d, where the gain K consists of a diagonal matrix. 

There are 60 nodes in the input layer (20 markers × x, y, z), 300 in the hidden layer, and 21 in 
the output layer (for the 21 DoFs). Using 300 units in the hidden layer provided a good 

balance between computational efficiency and accuracy. Using significantly fewer units 
resulted in too much error, while using significantly more units provided only marginally 
higher accuracy but at the cost of slower convergence. The error signal to the network is t =

qb, where the gain  is a small number. The sampling time for capturing the marker
 positions and controlling the android is 60 ms. Another neural network which has the same 
structure previously learned the mapping from xa to qa to set the initial values of the 
weights. We obtained 50,000 samples of training data (xa and qa) by moving the android 
randomly. The learned network is used to set the initial weights of the feedforward 
network.

                                                                
3 Motion Analysis Corporation, Santa Rosa, California. http://www.motionanalysis.com/
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Figure 7. The marker positions corresponding to each other 

Figure 8. The representation of the marker positions. A marker’s diameter is about 18 mm 
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4.2 Experimental results and analysis 

4.2.1 Surface similarity between the android and subject 

The proposed method assumes a surface similarity between the android and the subject. 
However, the male subject whom the android imitates in the experiments was 15 cm taller 
than the women after whom the android was modeled. To check the similarity, we 
measured the average distance between corresponding pairs of markers when the android 
and subject make each of the given postures; the value was 31 mm (see the Fig. 7). The gap is 
small compared to the size of their bodies, but it is not small enough. 

4.2.2 The learning of the feedforward network 

To show the effect of the feedforward controller, we plot the feedback control input 
averaged among the joints while learning from the initial weights in Fig. 9. The abscissa 
denotes the time step (the sampling time is 60 ms.) Although the value of the ordinate does 
not have a direct physical interpretation, it corresponds to a particular joint angle. The 
subject exhibited various fixed postures. When the subject started to make the posture at 
step 0, error increased rapidly because network learning had not yet converged. The control 
input decreases as learning progresses. This shows that the feedforward controller learned 
so that the feedback control input converges to zero.  
Fig. 10 shows the average position error of a pair of corresponding markers. The subject also 
gave an arbitrary fixed posture. The position errors and the feedback control input both 
decreased as the learning of the feedforward network converged. The result shows the 
feedforward network learned the mapping from the subject’s posture to the android control 
input, which allows the android to adopt the same posture. The android’s posture could not 
match the subject’s posture when the weights of the feedforward network were left at their 
initial values. This is because the initial network was not given every possible posture in the 

pre-learning phase. The result shows the effectiveness of the method to evaluate the 
apparent posture. 

4.2.3 Performance of the system at following fast movements 

To investigate the performance of the system, we obtained a step response using the 
feedforward network after it had learned enough. The subject put his right hand on his knee 
and quickly raised the hand right above his head. Fig. 11 shows the height of the fingers of 
the subject and android. The subject started to move at step 5 and reached the final position 
at step 9, approximately 0.24 seconds later. In this case the delay is 26 steps or 1.56 seconds. 
The arm moved at roughly the maximum speed permitted by the hardware. The android 
arm cannot quite reach the subject’s position because the subject’s position was outside of 
the android’s range of motion. Clearly, the speed of the subject’s movement exceeds the 
android’s capabilities. This experiment is an extreme case. For less extreme gestures, the  
delay will be much less. For example, for the sequence in Fig. 12, the delay was on average 
seven steps or 0.42 seconds. 
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Figure 9. The change of the feedback control input with learning of the network 

Figure 10. The change of the position error with learning of the network 

Figure 11. The step response of the android 
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Figure 12. The generated android’s motion compared to the subject’s motion. The number 
represents the step. 
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4.2.4 The generated android motion 

Fig. 12 shows the subject’s postures during a movement and the corresponding postures of 
the android. The value denotes the time step. The android followed the subject’s movement 
with some delay (the maximum is 15 steps, that is, 0.9 seconds). The trajectories of the 
positions of the android’s markers are considered to be similar to those of the subject, but 
errors still remain, and they cannot be ignored. While we can recognize that the android is 
making the same gesture as the subject, the quality of the movement is not the same. There 
are a couple of major causes of this: 

• The kinematics of the android is too complicated to represent with an ordinary neural 
network. To avoid this limitation, it is possible to introduce the constraint of the body’s 
branching in the network connections. Another idea is to introduce a hierarchical 
representation of the mapping. A human motion can be decomposed into a dominant 
motion that is at least partly driven consciously and secondary motions that are mainly 
nonconscious (e.g., contingent movements to maintain balance, such autonomic 
responses as breathing). We are trying to construct a hierarchical representation of 
motion not only to reduce the computational complexity of learning but to make the 
movement appear more natural.  

• The method deals with a motion as a sequence of postures; it does not precisely 
reproduce higher order properties of motion such as velocity and acceleration because 
varying delays can occur between the subject’s movement and the android’s imitation 
of it. If the subject moves very quickly, the apparent motion of the android differs. 
Moreover, a lack of higher order properties prevents the system from adequately 
compensating for the dynamic characteristics of the android and the delay of the 
feedforward network.  

• The proposed method is limited by the speed of motion. It is necessary to consider the 
properties to overcome the restriction, although the android has absolute physical 
limitations such as a fixed compliance and a maximum speed that is less than that of a 
typical human being.  

Although physical limitations cannot be overcome by any control method, there are ways of 
finessing them to ensure movements still look natural. For example, although the android 
lacks the opponent musculature of human beings, which affords a variable compliance of 
the joints, the wobbly appearance of such movements as rapid waving, which are high in 
both speed and frequency, can be overcome by slowing the movement and removing 
repeated closed curves in the joint angle space to eliminate lag caused by the slowed 
movement. If the goal is humanlike movement, one approach may be to query a database of 
movements that are known to be humanlike to find the one most similar to the movement 
made by the subject, although this begs the question of where those movements came from 
in the first place. Another method is to establish criteria for evaluating the naturalness of a 
movement (Kashima & Isurugi, 1998). This is an area for future study.  

4.3 Required improvement and future work 

In this paper we focus on reproducing positional changes at the body’s surface rather than 
changes in the joint angles to generate the android’s movement. Fig. 6(a) is a 
straightforward method to implement the idea. This paper has adopted the transformation T
from marker positions to estimated joint angles because it is difficult to derive a feedback 
controller which produces the control input qb only from the error in the marker’s 
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positional error xd analytically. We actually do not know which joints should be moved to 
remove a positional error at the body’s surface. This relation must be learned, however, the 
transformation T could disturb the learing. Hence, it is not generally guaranteed that the 

feedback controller which converges the estimated joint angle q̂a to q̂h enables the marker’s 

position xa to approach xh. The assumption that the android’s body surfaces are reasonably 
close to the subject’s could avoid this problem, but the feedback controller shown in Fig. 6(a) 
is essentially necessary for mapping the apparent motion. It is possible to find out how the 
joint changes relate to the movements of body surfaces by analyzing the weights of the 
neural network of the feedforward controller. A feedback controller could be designed to 
output the control input based on the error in the marker’s position with the analyzed 
relation. Concerning the design of the feedback controller, Oyama et al. (Oyama et al., 2001a; 
Oyama et al., 2001b; Oyama et al., 2001c) proposed several methods for learning both of 
feedback and feedforward controllers using neural networks. This is one potential method 
to obtain the feedback controller shown in Fig. 6(a). Assessment of and compensation for 
deformation and displacement of the human skin, which cause marker movement with 
respect to the underlying bone (Leardini et al., 2005), are also useful in designing the 
feedback controller.  
We have not dealt with the android’s gaze and facial expressions in the experiment; 
however, if gaze and facial expressions are unrelated to hand gestures and body 
movements, the appearance is often unnatural, as we have found in our experiments. 
Therefore, to make the android’s movement appear more natural, we have to consider a 
method to implement the android’s eye movements and facial expressions. 

5. Conclusion 

This paper has proposed a method of implementing humanlike motions by mapping their 
three-dimensional appearance to the android using a motion capture system. By measuring 
the android’s posture and comparing it to the posture of a human subject, we propose a new 
method to evaluate motion sequences along bodily surfaces. Unlike other approaches that 
focus on reducing joint angle errors, we consider how to evaluate differences in the 
android’s apparent motion, that is, motion at its visible surfaces. The experimental results 
show the effectiveness of the evaluation: the method can transfer human motion. However, 
the method is restricted by the speed of the motion. We have to introduce a method to deal 
with the dynamic characteristics (Ben=Amor et al., 2007) and physical limitations of the 
android. We also have to evaluate the method with different subjects. We would expect to 
generate the most natural and accurate movements using a female subject who is about the 
same height as the original woman on which the android is based. Moreover, we have to 
evaluate the human likeness of the visible motions by the subjective impressions the android 
gives experimental subjects and the responses it elicits, such as eye contact (Minato et al., 
2006; Shimada et al., 2006), autonomic responses, and so on. Research in these areas is in 
progress. 
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