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Abstract— This paper presents an approach to detect safe
landing areas for a flying robot, on the basis of a sequence
of monocular images. The approach does not require precise
position and attitude sensors: it exploits the relations between
2D image homographies and 3D planes. The combination of a
robust homography estimation and of an adaptive thresholding
of correlation scores between registered images yields the update
of a stochastic grid, that exhibits the horizontal planar areas
perceived. This grid allows the integration of data gathered at
various altitudes. Results are presented throughout the article.

I. INTRODUCTION

In the context of the development of autonomous UAVs,
various functionalities that exploit environment related infor-
mation are required, e.g to achieve mapping tasks or mobile
ground target following. Among these functionalities, the au-
tonomous detection of safe landing areas in initially unknown
environments is an important one: it can be required to ensure
a safe emergency landing, or to determine areas where a
payload can be delivered for instance.

If the literature abounds with contributions in which the
UAV detects known landing areas (such as “H” patterns for
helicopters — e.g. [1]), there are less contributions that deals
with the detection of landing areas in unknown environments.
Approaches that recover the terrain 3D geometry have been
proposed to detect landing areas: in [2], inertial and accurate
RTK GPS data are used to recover a digital terrain map. In
[3], an approach that exploits a on-board stereovision bench
is used. Others use texture and contrast information (e.g, [4]).

In this paper, we consider the problem of detecting safe
landing areas, i.e. nearly horizontal obstacle-free areas, for
low-cost small UAVs. This context precludes the use of heavy
sensors such as a scanning laser range-finders, of a stereo-
scopic bench, that require a fairly large baseline to provide
useful 3D over a wide range of elevations, or of heavy high
quality inertial sensors. Our approach mainly relies on the real-
time processing of monocular image sequences, and on coarse
UAV attitude and motion estimates provided by low cost and
light inertial and GPS sensors.

Related work

The vision literature provides sound formalisms and tools
to achieve the detection of planar regions in monocular image
sequences. The approaches can be classified in two main
categories: the ones that explicitly recover the scene 3D
structure, and the ones that do not.
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In the first category, the Euclidean 3D geometry of the scene
is first recovered, and then analyzed to extract the boundaries
of planar regions [5], [6], [7], [8]. These approaches mainly
rely on the computation of the fundamental matrix, and a batch
process is often required to refine the scene reconstruction.
The latter is not an option for a real-time application, and the
computation of the fundamental matrix can be unstable, e.g.
when the observed scene is mostly planar — even a stratified
projective reconstruction approach fails in such cases [9].
Plane plus parallax approaches allow to compute both 3D
parameters of the plane and the relative pose of a couple of
cameras: such an approach is given in [10], but it relies on
the assumption that the reference plane is parallel to the focal
plane, which can in general not be guaranteed for an UAV.

Approaches that rely on homography estimations to extract
planar regions are much more suited to our context [11],
[12]. They do not explicitly reconstruct the 3D geometry
of the perceived scene, thus avoiding stability issues in the
computation of fundamental matrices. Nevertheless, they can
yield the estimation of the detected planes distance and ori-
entation, provided coarse position and orientation information
of the camera are available [13]: this can be applied to visual
odometry for instance [14].

Approach and outline

Our approach to detect safe landing areas incrementally
updates a model of the overflown environment that exhibits the
nearly horizontal obstacle free areas, using mainly homogra-
phy estimations and image correlation techniques. It can bear
with mono-planar scenes scattered with obstacles or not.

Figure 1 illustrates the processing steps applied at each
image acquisition. First, an homography estimation process
is applied on the basis of point matches established with the
previous image. A special attention is paid to the robustness
of the estimation, so as to recover a good estimate of the
corresponding plane orientation (section II). The homography
estimate allows to select the point matches that actually lie in
the detected plane: section III presents how a dense correlation
technique can be applied to determine the image areas that
corresponds to the detected plane — and the ones that do not.
These information are stored and managed by means of a
stochastic grid updated each time the UAV gathers data, in
the cells of which the probability to be planar is encoded.



Depending on the UAV altitude, the detected plane can
still contain obstacles: lower altitude image acquisitions are
therefore required to ensure that the detected plane is a
safe landing area. Section IV presents how data gathered at
different elevations are fused into a consistent representation.
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1: Overview of the process to detect safe landing areas

II. HOMOGRAPHY AND PLANE ESTIMATION

2: Two views geometry of a planar scene

Consider the two views geometry represented figure 2, in
which the two cameras view the same planar scene from two
different positions. Let:

o M.4m, the 3D point with coordinates (X,Y,Z,1) ex-
pressed in the camera ¢ frame,

o Mg, the central projection of M in the normalized fo-
cal plane (z = 1m), with coordinates (z,y, 1) expressed
in the camera ¢ frame,

o my;,, the projection of M in the image plane i, with
pixel coordinates (u,v) in the camera ¢ image frame.

A classical result of projective geometry [9] formulates

m|.,,,, with respect to M|.,,,, and (R, t); .o, the 3D trans-
formation between camera positions 1 and 2:
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where R = [ry,7,73]" and t = [tz,ty,tz]T.
Assuming that M., is on a plane II defined by ax +

by + cz = d in the camera ¢ frame, expression (1) yields:

-1 . tn”
amy;,, = CNC™'m;,,, with N = RJr7 (2)

where C' is the camera projection parameters (calibration
matrix), n” = [a, b, c] and « is a scale factor.

H = CNC™! is the homography that transforms the image
coordinates of any point belonging to the plane II from the
camera 1 image frame to the camera 2 image frame: the
satisfaction of the relation 2 by a pair of pixels matched
between images 1 and 2 states that the corresponding 3D point
belong to the plane II.

A. Estimation of H

A set of pixel matches between the two images is used to
initialize the linear system:

Ah = 0 with h = [h11, h1g, ..., hij, ..., hag, has] T

Since H is 3 x 3 homogeneous matrix known up to a scale
factor «, we have to add an additional constraint to solve this
system. Two classical solutions are possible:

o ||h|| = 1 which implies a Ah = 0 form system with i
defined by 9 parameters,

e hss = 1 which implies a Ah = b form system with a
defined h by 8 parameters.

In our case, the perceived planes being often parallel to the
focal plane, the second solution proved to give more stable
results.

B. Robust estimation

We use the algorithm proposed in [15] to establish Harris
point matches between the images, and a Least Median
Square estimation process [16] to eliminate the outliers, i.e.
the matches that do not lie on the searched plane and the
possible wrong matches. A Monte Carlo technique is applied
to estimate the homography: assuming the outliers percentage
is €, the number m of draws of p matches required to have at
least one draw without outliers is

log[l — P]
log[ll — (1 — &)7]
Since a Least Median Square technique does not provide
a very accurate solution [17], we solve the system defined
by the inliers for the found homography with a classical

Singular Value Decomposition method. The whole processes
is described in algorithm 1.

C. Assessing the existence of a plane

The previous algorithm allows to find an homography if
the majority of the matches corresponds to a plane, but does
not provide any useful information if no plane supports the
majority of the matches — and also if there are no plane in the
perceived scene. We therefore need a criteria to make sure that
the estimated homography actually corresponds to a plane.



Algorithm 1 Robust homography estimator

Given an initial system ||[Ah — b = 0|| with n = 2N
entries in A.

1) Do uniformly m draws of p entries of A
2) For each draw «:

a) Minimize (SVD) :
p
I-L:armin A;h — b;]?
gh ;[ J ]]

b) With }ii, computes the N residuals :
. 2
Eje1.N] = [Aj h; — bj]
c) Computes the score : €meq; = rln%i £j

3) Store I—i*, the I—il with the lowest associated
€med; - R

4) Keep matches fitting with H* (inliers) and re-
solve H* using a SVD.

A first idea is to analyze the repartition of the residual means
and standard deviation, but an empirical analysis shows that
there are no obvious thresholds than can be helpful. Figure
3-(a) shows the relations between the mean and standard
deviations of the residuals for various estimated homographies,
some corresponding to actual planes and some not : no dis-
criminative threshold can be defined. But the computation of
the Zero-Normalized Cross Correlation score on the matched
points after the application of the homography brings a more
discriminative information. Figure 3-(b) shows the repartition
of the mean of the ZNCC scores and the means of the
residuals: thresholds are easily defined on them to assess that
the computed homography corresponds to a plane.
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3: 2D projection of the three criteria used to decide if a
computed homography fits with a real 3D plane

Figure 4 shows two results of the robust homography
estimation process, and the identification of the matched points
that belong to a plane.

D. Plane orientation estimation

Once the presence of a plane is assessed, one must make
sure that its orientation is nearly horizontal to allow a safe
landing. For that purpose, two solutions can be envisaged.

The first solution is to use equation 2 rewritten as:

T d

n’ = mtT (C'HC - R) 3)

4: Results of the homography estimation process based on
the homography estimate. The “+” signs denote the points
that have been matched : the red ones are the ones that
supports an homography estimate and that have been detected
as belonging to a plane. Note on the right figure that even
though the matched point do not cover a wide area on the
image, the process could detect the planar area.

Thanks to this relation, the orientation of the plane can be
computed on the basis of the GPS and attitude measures — the
elevation d is not required. However, to cope with the poor
precision of the on-board sensors, this relation should be used
using a rather wide baseline.

An other solution is to use a homography decomposition
technique, that yields an estimation of the rotation, translation
and plane normal [13]. With such an approach, two potentially
correct solutions can be computed from each homography
[18]: multiple views of the same scene can be used to select
the correct one.

III. PLANAR SURFACE DETECTION ALGORITHM

Up to now, we know that the matched points retained for
the homography estimate do correspond to a nearly planar
surface, but this information is rather useless to asses the areas
where the UAV can land. This section describes how the image
regions that correspond to the plane are extracted: first, the
acquired images are registered with respect to the first image
in which an horizontal plane has been detected. An analysis of
the stabilized image correlation segments the image pixels into
planar and non-planar areas, and a probabilistic grid structure
is updated.

A. Dense plane detection

Once an homography that corresponds to a horizontal plane
has been estimated, its application to the current image gener-
ates an image that can be registered with the reference image.
Assuming a sufficient parallax effect (see section IV-A), non-
planar image regions should be badly correlated, whereas the
pixels that do lie on the estimated plane will match in the two
registered images (figure 5): as a consequence the registered
image correlation scores give useful information on the image

regjons that correspond .to the detected plane., . .
AR 1mpor ant issue. is’ to defermine "Which image in the

sequence should be correlated with the reference image: one
one hand, one would like to have the distance between the
camera positions as large as possible, so as to estimate the
plane parameters with a good precision. Also, a wider baseline
allows to detect smaller obstacles (see section IV-A). On the
other hand, the overlap between the images should be large
enough to contain a large number of point matches, thus
yielding a precise homography estimate. We currently use the
following approach:



5: ZNCC scores computed between the registered images
whose matches are shown in figure 4 — the whiter the pixels,
the higher the correlation score and the probability that they
correspond to the detected plane.

1) A first image is chosen as the reference frame,

2) For each newly acquired image, the interest points
matching algorithm is run, and the existence of an
homography that corresponds to a horizontal plane is
checked,

3) If a horizontal plane is detected and the overlap area with
the reference images is below 70% of the image surface,
the current image is registered and correlated with the
reference image, and the probabilistic grid structure is
updated,

4) The last registered image is taken as a new reference
and the whole process is re-iterated.

B. Registered images analysis

Experimental trials show that it is not possible to determine
a static value for a threshold on the ZNCC scores that would
yield a good segmentation in planar and non planar areas of the
images. Indeed, despite the normalization properties of ZNCC,
important score variations are observed, depending on the
scene texture and illumination, and on the camera properties
(dynamic of the camera, sharpness of the images...).

We propose here a to adapt the threshold on the ZNCC score
to the variance of the considered pixels. We made statistics
over hundreds of registered images, and recorded the ZNCC
scores of the matched interest points that do correspond to
a plane. Figure 6 shows the scores cumulative distribution
function for each variance class : as reported by [19] it
clearly appears that the scores corresponding to low variance
pixels are usually lower than the ones corresponding to higher
variance pixels. These observations lead us to determine the
automatic threshold algorithm 2.

Algorithm 2 Automatic ZNCC score thresholding

1) Classify the pixel variances of the interest points
that supports the homography.

2) Classify ZNCC scores of inliers points with
respect to variance class Cl,.

3) Get the median value med; of each ZNCC score
class Clince; (i.e. the score that separates the
cumulative distribution function into two equal
areas)

4) Compute the threshold 7; for each score class
Co, as 7, =1—3% (1 —med;)

The definition of 7, = 1 — 3 x (1 — med;)) has been
empirically defined, and has shown to yield good separation
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6: ZNCC scores cumulative distribution function for 6 pixel
variances classes.

results. The use of the median value to define this threshold is
much more stable than the minimal value determined for each
score class C,,. Indeed, there are at most a few hundreds
matched points for two registered images: even though they
are inliers, their small number provides a poor score sampling.

Once the automatic thresholds are defined on the basis of
the matched points that correspond to the detected plane, they
are used to separate all the registered images pixels in two
classes. Figure 7 shows a result of this thresholding process.

7: Hllustration of the thresholding process to determine the
area corresponding to the detected horizontal plane. (a):
reference image. (b): computed ZNCC scores between the reg-
istered images. (c): simple thresholding based on a threshold
defined as pznee + kO onec: many areas corresponding to the
plane have been removed. (d): result of our variance adaptive
thresholding algorithm: all the obstacles are detected (no non
detection), and only a few pixels corresponding to the plane
have been labeled as obstacle.

C. Fusing informations into a grid structure

Now that we are able to segment from two registered images
the areas that do correspond to a planar surface, we store
this information in a data structure, so as to be able to incre-
mentally fuse the informations gathered as the UAV is flying.

We use a grid model, that is referenced with respect to the
first image for which a plane had been detected, and that has
a resolution specified as k times the image resolution (one
grid cell is covered by k x k pixels). Each cell of the grid is



updated with a probability of being planar every time a new
registered image includes it.

The computation of the cell’s probabilities relies on the
classic Bayes rule, using the probabilities of good detection
P; and of false detection P;:

e P, is the ratio between pixels labeled as planar and the

ones that are actually planar.

e Py is the ratio between pixels labeled as planar and that

are not.

Empirical statistics on various illustrative images have lead
us to adopt the values P; = 80% and Py = 12%.

At the initialization of the grid structure, the probability of
each cell to be planar is set to p(0) = 1/2. As new observa-
tions are made, the cell probabilities are updated according to
the following formulas:

B Pap(k)
plh+1) = Pp(k) +de(1 —p(k))

if the pixel fused in the cell is planar, and otherwise :
(1 — Pa)p(k)

pk+1) =

(1= Po)p(k) + (1 = Pr)(1 = p(k))

8: Probabilistic grid refinement process with three images.
The bottom right image shows the reconstructed mosaic with
only the pixels that have been labeled as being planar.

Figure (8) shows the refinement process using three images
updates. While the grid structure is updated, we also update
a mosaic of the pixels that are detected as being planar: this
mosaic is required to register grids structure obtained from
various passes over the terrain (section IV). The grey values
of the mosaic are normalized in order to compensate the
luminosity variation between the images (figure 9).

Performance: On a usual laptop, the overall process
depicted in figure 1 and the interest point detection and
matching step can be applied at a rate of about 2Hz on
512 x 384 images.

Table I shows the computed normals of the plane shown
figure 9, using the homography decomposition approach men-
tioned in section II-D: the various normal estimates are very
similar, and show that the approach allows a quite good

9: Mosaic of a planar surface reconstructed from a sequence
of 40 images — the black areas have been identified as non-
planar.

detection of the plane orientation. Note however that these
normals are expressed in the reference frame of the first image,
but a coarse attitude information suffices to asses that the plane
is nearly horizontal.

[ Image [[ ns ny ns |
5 0.1493  0.1436 0.9783
6 0.1436  0.0909 0.9855
11 0.1093  -0.0045 0.9940
15 0.0619  0.0159 0.9980
20 0.0740  -0.0562  0.9957

I Some normals computed for the plane detected in figure 9,
using various homography estimates. The Z axis is perpendic-
ular to the camera in the outward direction

IV. GRID REFINEMENT
A. Sensitivity of the approach

The magnitude of the parallax is of course the determinant
factor that specifies the height of the obstacles that can be
detected. We led a theoretical analysis to analyze the relations
between the elevation, the baseline, the camera resolution and
field of view, in order to establish the values of the height of
an obstacle over a plane that produces a one pixel shift when
registering the image with the homography corresponding to
the plane (figure 10). Table II summarizes the obtained results.

[ [[ 2e =30m [ zc =50m [ z. =100m ]
ze(mr = 30%, a = 0°) 0.0428m 0.0714m 0.143m
ze(mr = 50%, a = 0°) 0.06m 0.Im 0.2m
ze(mr = 50%, o = 15°) 0.0356m 0.0593m 0.118m
ze(mr = 50%, o = 30°) 0.0242m 0.0406m 0.0807m
ze(Tr = 70%, a = 0°) 0.1m 0.166m 0.333m

II: Elevation z. of an obstacle that yields a 1 pixel shift in

the registered images, as a function of the camera altitude
z., orientation « and overlapping rate T, that implicitly
defines the baseline (see notations figure 10 — the camera
characteristics chosen to establish these figures are the ones of
the camera we used to produce the results shown throughout
the paper)
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10: Characterizatiéﬁ of the c%tectable elevation after the
image registration.

B. Fusing grids acquired over several passes

It is clear that the approach could benefit from the integra-
tion of data acquired at various altitudes. A realistic scenario
of the exploitation of our method would be to first fly over the
terrain at a rather high altitude, select in the grid the areas that
appear as planar, and then to perform a flight at a lower altitude
in order to detect smaller obstacles. Also, the integration of
several passes at similar altitude could help to assess large
planar areas (e.g. to detect landing areas for fixed-wing UAVs).

The possibility to fuse the various probabilistic grids built
is therefore relevant in various contexts. However, the grids
are not geo-referenced, because we do not consider that the
UAV is equipped with a precise GPS and especially a precise
attitude sensor. But the mosaic built along with the grids can
be used to register the grids, using the Harris interest point
matching algorithm. Once registered, the cells probabilities
can be updated thanks to the classical Bayes formula. Figure
(11) illustrates the fusion of two grids.

11: Registration of the mosaics associated to two grids built
during two different passes. The two images on top show the
initial grids, with the matched interest points used to register
them. The bottom image is the resulting mosaic.

V. SUMMARY AND FUTURE WORKS

We have presented an approach that allow the autonomous
detection of safe landing areas detection for an UAV, that
do not require any precise localization and orientation on-
board sensor. On the basis of a robust homography estimation
technique and of an automatic determination of the threshold
to apply on the correlated registered images, the approach is
able to extract the dominant plane in the perceived scene. The
results are stored in a probabilistic grid data structure, that
allows the fusion of several passes over the terrain.

A further analysis of the way to update the grid cell proba-
bilities needs to be conducted. In particular, the probabilities of
good and false detections Py and Py associated to the labeled
pixels should take into account the variance of the pixels.
Similarly, the influence of the baseline between the registered
images should be considered.

Besides its integration on-board an actual UAV, we are
also considering other applications of this approach: detection
of moving elements on the ground, and air/ground robot
cooperation. In the latter case, the approach can readily be

used to detect navigable areas for a ground rover.
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