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Abstract— Our long-term objective is to develop robots that
engage in natural language-mediated cooperative tasks with
humans. To support this goal, we are developing an amodal
representation and associated processes which is called a grounded
situation model (GSM). We are also developing a modular
architecture in which the GSM resides in a centrally located
module, around which there are language, perception, and action-
related modules. The GSM acts as a sensor-updated ”structured
blackboard”, that serves as a workspace with contents similar
to a ”theatrical stage” in the robot’s ”mind”, which might be
filled in with present, past or imagined situations. Two main
desiderata drive the design of the GSM: first, ”parsing” situations
into ontological types and relations that reflect human language
semantics, and second, allowing bidirectional translation between
sensory-derived data/expectations and linguistic descriptions. We
present an implemented system that allows of a range of conver-
sational and assistive behavior by a manipulator robot. The robot
updates beliefs (held in the GSM) about its physical environment,
the human user, and itself, based on a mixture of linguistic,
visual and proprioceptive evidence. It can answer basic questions
about the present or past and also perform actions through
verbal interaction. Most importantly, a novel contribution of our
approach is the robot’s ability for seamless integration of both
language- and sensor-derived information about the situation:
For example, the system can acquire parts of situations either by
seeing them or by “imagining” them through descriptions given
by the user: “There is a red ball at the left”. These situations can
later be used to create mental imagery and sensory expectations,
thus enabling the aforementioned bidirectionality.

I. ROBOTS, LANGUAGE AND MODULARITY

As robots grow in ability and complexity, natural language
is likely to assume an increasingly central role in human-
robot interaction. Our current work is part of a larger effort
to develop conversational interfaces for interactive robots ([3],
[6], [11], [8]). Robots that understand and use natural language
may find application in entertainment, assistive, and educa-
tional domains. Such interactive robots are prime examples
of systems where integration of numerous technologies in
complex ways is required, and thus well designed modularity
is necessary. One of the main challenges that one faces when
designing such a system, is interfacing perceptual/motor with
speech modules: existing natural language processing (NLP)
systems cannot simply ”plug and play”.

One historical reason behind this incompatibility is that the
development of NLP and robotics have proceeded with rela-
tively little interaction. NLP deals with the discrete, symbolic
world of words and sentences whereas robotics the continuous

and stochastic: one must confront the noisy, uncertain nature
of physically embodied systems with sensory-motor grounded
interaction. Current computational models of semantics used
in NLP are variants of “dictionary definitions”, essentially
structured networks of word-like symbols. It is impossible
to directly apply these approaches in any principled way to
endow robots with linguistic skills since the underlying theo-
ries of semantics in symbol-based NLP provide no appropriate
“hooks” for action and perception [9].

We posit that an important step towards bridging the
language-robot divide is to develop new knowledge represen-
tations that facilitate cross-modal interoperability. Motivated
by these concerns, we have developed a grounded situation
model (GSM) which lies at the center of our proposed modular
architecture. The GSM acts as a sensor-updated ”structured
blackboard”, that serves as a workspace with contents similar
to a ”theatrical stage” in the agent’s ”mind”, which might be
filled in with present, past or imagined situations. It provides
connection points to both speech-processing (through discrete
verbal categories) as well as to perceptual/motor subsystems
(through continuous / stochastic descriptions).

When building conversational systems, one must select
a subset of human language to be produced/comprehended.
Although we may eventually want robots that can converse
about a range of abstract topics, a natural starting point is
to develop means for robots to talk about their immediate
physical and social context. This parallels the development of
semantics from concrete to abstract domains in children [10].

II. CHALLENGES IN CROSS-MODAL REPRESENTATION

A central problem in connecting language and perception is
the potential for mismatched levels of specificity. For example,
the descriptive phrase “there is a cup on the table” and
the visual observation of the cup will lead to consistent
knowledge but with very different levels of specificity. The
linguistic description does not provide information about the
size, orientation, and color of the cup, and provides only
bounds on its location (it’s somewhere on the table). Visual
perception in contrast will provide far more detail. How is a
robot to translate between such varying sources of knowledge?
More generally, sensory, motor, and linguistic sources differ
in levels of specificity/ambiguity, yet must be aligned sensory
verification, cross-modal belief propagation, and action.



In our approach, a grounded situation model serves as a
mediating amodal representation that connects sensory-derived
percepts with linguistic structures as well as action parameters.
The GSM is amodal in the sense of being neither a viewer-
dependent 2D image, nor an absolute 3D spatial model (it
even includes invisibles such as the beliefs of others), nor
an unstructured list of language-like propositions describing
beliefs. It is a representation accumulating information coming
in from multiple modalities (vision, touch, proprioception,
language), which has a structure analogous to the situation
the robot is embedded in or is imagining.

The overall GSM design was driven by two desiderata:
first, ”parsing” situations into ontological types and rela-
tions that reflect human language semantics, and second,
allowing bidirectional translation between sensory-derived
data/expectations and linguistic descriptions. The GSM design
was then further specified by a set of behavioral goals
for a manipulator robot under development in our lab [8]
which we anticipate will serve as a basis for developing more
sophisticated linguistic abilities in future work. The robot’s
world consists of a table top on which various objects are
placed and manipulated. We set the following behavioral goals:

Answering questions about the present physical context:
such as, “What color is the one on the left?” (a question about
objects on the table).

Quantifying and expressing confidence in beliefs: Thus,
when asked about the location of an object that it hasn’t seen
for a while, it might answer, “Probably at the left, but maybe
not”, expressing uncertainty since the object might have been
moved while the robot was not looking.

Respond to spoken requests: such as “Look to the left” or
“Hand me the small red one” with situationally appropriate
motor actions.

Imagining situations described through language: so that
the robot can understand commands such as “Imagine an
object at the left”, or descriptions such as “There is a small
object at the right”. Such speech acts must be translated into
representations that may later be related to sensory input.

Remembering and resolving temporal referents: so that the
robot can keep track of salient past events and talk about them.
This would enable the robot to answer questions such as “What
color was the object that was at the center of the table when
the red one appeared?”.

The GSM and associated cross-modal belief update and
language processing algorithms we have developed enable
each of these situationally-grounded linguistic behaviors.

III. RELATION TO PREVIOUS WORK

The notion of a situation or mental model has been proposed
by cognitive psychologists ([12], [5]) in this spirit, but most
such work focuses only on the connection between mental
models and language. For example, Johnson-Laird provides
an elaborate overall account, but mainly focuses on language
understanding and inference making. Most behavioral experi-
ments reviewed in [12] probe the structure of human mental
models, and assess the relevance of their prime “dimensions”

(space, time, protagonist etc.). However, again most of these
experiments involve only language (story understanding). In
contrast, in our work, the processes providing sensory-motor
grounding of situation models are also specified.

Below, a short review of existing robots with conversational
abilities is given. The approaches taken towards connecting
language with perception and action will be briefly examined,
as well as their behavioral repertoires.

In [3], the authors propose a natural-model semantics
which they apply to the interpretation of robot commands,
in two robotic aids for the disabled. As the above robots
are not equipped with perceptual systems, a model of the
environment consisting of 3D object positions and properties is
entered manually into a knowledge base. Total confidence and
complete knowledge is assumed. In [6], a Bayesian network
interconnects visual to verbal information about objects. The
system can interpret gestures, and includes visual attention
mechanisms, but can only handle action requests. In [11], an
occupancy map built by range sensor data plays part of the
role of a GSM. Objects are individuated, and spatial relations
are exploited in answering questions and interpreting action
requests. The robot Leonardo [1] uses a cognitive architecture
built on top of the c5 codebase, an extension of c4[2]. A
centrally located “Belief system” module interconnects speech,
vision and action. Hierarchical structures called “percept trees”
classify sensory inputs to “snapshots” which are fed to the
belief system, which decides whether to create or update
beliefs about objects and their properties. The system mod-
els not only robot beliefs but also human beliefs, through
representations having the same structure (which our system
accomplishes by using embedded GSM’s). Also, the system
models attentional/referent focus, which our system does not.

However, our system has three novel abilities compared
to all of the above mentioned systems. These were already
explicated in the behavioral specification given in the previ-
ous section, under the headings: “Quantifying and express-
ing confidence in beliefs”, “Imagining situations described
through language” and “Remembering and resolving temporal
referents”. Through the second of these, objects instantiated
through language can be referred to, acted upon, and can also
be visualised in mental imagery (thus enabling bidirectionality
between language and vision, the second design desideratum).
The GSM has enabled our system to attain these abilities.

IV. EMBODIMENT

The robot is an arm with 7 degrees of freedom, equipped
with force feedback actuators, a gripper with force-sensitive
touch sensors integrated into each finger tip, joint angle
encoders, and dual cameras mounted around the gripper.

A layer of low-level software consists of numerous modules
that run on a set of networked computers running Linux. Front
end visual processing is carried out by the following modules:
camera capture, color-based segmentation, face detection , and
2D region detection and tracking. Currently only one of the
robot’s cameras are used for visual perception. The output of
the visual subsystem is a stream of detected faces and regions



at 20 frames per second. Low-level motor control is based on
PID controllers. At a higher-level, motor primitives such as
“pick up” have been coded as parameterized action schemas.
In addition to looking at, grasping, and moving objects, the
robot can also weight objects by lifting.

The robot’s environment consists of a table populated by
objects, and a human interacting with the robot and the objects,
who is standing near the edge of the table. The robot’s purpose
is to serve as a “conversational helping hand”.

V. GSM REPRESENTATIONS

As mentioned before, the overall GSM design was driven
by two desiderata, and then was further specified by the
behavioral goals. In order to fulfill the first desideratum, the
GSM should reflect the natural hierarchy of agents, bodies,
body parts, and properties that is implied in human languages.

Fig. 1. Hierarchical structure of the GSM

Thus, at the highest level, the situation model consists of
agents and relations among them. Any inanimate object is
modeled as being potentially agentive. The GSM contains all
the information the robot has acquired about itself and its
environment, in the form of one agent structure for the self,
another agent structure for the human, and one more for each
inanimate object. Every agent structure breaks down to a three-
part representation, consisting of the body (physical realm),
the mind (mental realm), and the interface (between physical
and mental). The body consists of simple objects (body parts)
and spatial object relations. The mental realm is represented
by a recursively embedded GSM associated with each body,
enabling the robot to maintain a “theory of mind” about other

entities. The interface consists of the specifications of contact
points between mental and the physical, i.e., “sensory entry”
and “action output” parameters. At present, the only element
of the mental realm that is fully functional is the ability for
the robot to model another agent’s visual point of view. In
this paper, we will focus on only the physical realm of the
GSM since the motivating behaviors defined earlier deal with
physically-grounded semantics. In future work in which we are
planning to develop socially-grounded linguistic behaviors, the
mental realm of the GSM will become crucial.

Objects in the physical realm bottom out in clusters of
properties. For example, the representation of a ball will
bottom out in a set of properties that model the look, feel, and
location of the ball. In order to fulfill the second desideratum,
i.e. allowing bidirectional translation between sensory-derived
data/expectations and linguistic descriptions, each property is
encoded by a set of three layers of linked representations:

Layer 1 (L1) maintains stochastic representations of proper-
ties, suited for sensory measurements. Let us assume that we
have acquired multiple noisy measurements of the position
property of a particular object by computing the centroid of a
tracked visual region over time. We would like to encode our
knowledge of the position in a summary form, which should
give little weight to non-persistent outliers, which should not
cause any significant loss of measurement resolution, and
which should still retain an ability to remember the spread
of sensed values and our confidence in them. We should
also be able to lower our confidence when measurements
become outdated, and furthermore actively drive the acqui-
sition of more current sensory information whenever required.
To satisfy the above requirements, it would be reasonable to
represent position property as a stochastic variable, through a
probability distribution (e,g., a continuous parametric form, or
as we have implemented it, a discretized histogram).

Layer 2 (L2) maintains continuous single-valued encodings
of properties, suited for use as action control parameters.
Consider a scenario where we want to execute an action which
requires the position of the object as a parameter. For example,
we might want to use the object as a target for a lift motor
routine. The stochastic distribution must be sampled in order
to guide action. In our current implementation, the continuous
layer may be generated by selecting the maximum density
point from L1. A second motivation for maintaining L2 is to
support simulation based reasoning. To simulate interaction of
objects over time, a single value for properties such as size,
orientation, and position leads to computationally tractable
physical simulation, whereas stochastic representations would
be far more complex and time-consuming to manipulate.

Layer 3 (L3) maintains discrete, categorical encodings
of properties, suited for interfaces with natural language.
Consider the scenario of asking the robot where an object
is. To respond, a verbal spatial category must be produced
and communicated by the robot (e.g., “at the left”). We need
to be able to provide a single discrete value corresponding to
the verbal category chosen, or better yet, provide a probability
distribution over multiple spatial categories. This is what the



categorical layer, L3, accomplishes. It represents a property
as a distribution over a number of verbal categories (while
in L1 we had a fine-grained distribution over sensory-derived
measurements). For example, we might have “left”, “right”,
“center” in the case of position, or “red”, “blue” in the case
of color etc. We have suggested that the categorical layer is
motivated by the need for production of verbal descriptions.
It is equally motivated by the converse need, translating from
verbal descriptions to property representations: the robot might
be told that “there is an object at the center”. If there is total
confidence in the linguistic source, the robot can represent the
information as a discrete distribution over the categories, with
P (location = center) = 1 and all other probabilities zero.

To summarize, the GSM represents a situation as a hierarchy
of objects in the physical realm linked, optionally, to a mental
realm. The realms bottom out in a linked three-layered rep-
resentation comprising stochastic (L1), continuous (L2), and
categorical (L3) levels. A particular configuration of the GSM
represents a moment in time – a snapshot of the state of the
situation. An event is a structure providing landmarks on the
sequence of moments. It consists of an event type ID, start/end
time indices, and a list of participants (agents or bodyparts).

VI. GSM ALGORITHMS

The GSM is used for two basic purposes, belief maintenance
and action control. The constituents of the GSM hierarchy, and
each object’s layered property representation is created and
maintained using update procedures described in this section.
Conceptually, we treat the robot’s external physical world as a
fourth property layer (“L0”) that interacts with L1 via sensory-
motor processes. In this conceptualization, perception is seen
as a bottom up process caused by the physical world and
propagating through layers of representation and hierarchical
structure. Action, on the other hand, is seen as top down,
starting with encoded new desired states in the hierarchical
GSM which are “pushed down” to effect change in the
physical environment to effect desired change.

A. Situation Model Updating

We will use the updating of an object’s position property as
an illustrative example (Figure 2). We will adopt the notation
Ci/Rj for the columns/rows of this figure. Pseudo-code is
available online at http://www.media.mit.edu/∼nmav.

Sensory information updates of the stochastic layer: Given
no information (sensory or linguistic) about the position of an
object, we are faced with a choice: what should be the initial
probability distribution on positions? In our robot’s particular
case, objects are assumed to be on the table - thus the object’s
location must be bounded in space defined by the surface of
the table. As a first approximation the a priori probabilities of
unseen object positions are spread uniformly across the table

Now let us suppose that an estimate of the position of an
object is generated by the visual system. How should the prob-
ability distribution of the stochastic layer be updated? We have
chosen to calculate the new distribution as the weighted sum
of the old distribution with a rectangular envelope centered

at the new measurement. In the limiting case, this envelope
consists of only one bin, namely the bin which contains the
new measurement. The weight and envelope can be adjusted to
fit the noise and temporal characteristics of the measurement.

As a general rule, we assume that over time, knowledge
becomes less reliable without information refreshing. For ex-
ample, let us suppose that sensory information is not currently
available about an object’s position because the robot is not
looking at it. Over time, the robot’s confidence in knowing the
position of the object should decrease (someone might move it
while the robot is not moving, etc.). To model this confidence
decay in L1, we use a diffusion process. The new value of
each element of the position distribution in L1 is given by the
weighted sum of its old value with that of its neighbors within
a pre-specified neighborhood. The expected rates of change
dictate the settings of the weights. Diffusion parameters are
set separately for each property modality. Color and shape
beliefs are diffused much more slowly since they are far less
likely to shift over time (but color, will, for example, shift in
perception as lighting conditions change).

For example, in C1 an object has been visible for some
period of time and is still visible. In R2C1, the resulting
distribution has become very sharp after the object was stable
and visible for some time - in fact it consists of a single bin
(under the cross-hair). The robot knows where the object is
with certainty. In contrast, in R2C2 and R2C3, the robot’s head
has looked away, and the object has not been visible for some
time (C2), and even more time (C3). The diffusion process
has taken over and spread out the distribution.

Speech-derived information updating the categorical layer:
The categorical layer consists of a distribution over a set of
verbal positional categories (“right”, “center” etc.) . If the
robot receives information that the property value “left” was
given through speech for the object under consideration, then
the robot sets P(“left”) = 1 while the probability of other
categories is set to zero. If such information is absent, it has
two choices. Either the system can assume an empirical prior
over the verbal categories, or it can use a non-informative
uniform prior, and again we have chosen to implement the
latter. In C4, the position is specified by the verbal information
“...at the center”. Thus, in R4C4 we have P(“center”)=1 while
P(other category)=0. In contrast, when no spatial information
is given through speech we get a uniform pdf (see R4C5).

The stochastic layer (L1) feeds the categorical layer (L3):
Whenever information enters the GSM (either via L1 or L3)
or when a change occurs due to diffusion, the three layers
must be updated in order to ensure cross-layer consistency. If
the change has occurred at the stochastic layer, then update
information feeds the categorical and vice-versa. The contin-
uous layer is always fed via the stochastic. The stochastic
layer contains more specific information than the categorical,
and thus the forward feeding process is many-to-one and
straightforward. Each property has an associated classifier.
The classifier maps continuous sensory-derived values to cate-
gories. The classifier could in principle be implemented by any
algorithm, such as SVM’s, neural networks, etc. For simplicity



Fig. 2. GSM layer contents: objects instantiated through vision, persistent objs, objs instantiated on the basis of speech.

we have implemented nearest neighbor classification around
predetermined centers (for more refined spatial models, see
[7]. Initially, all verbal categories are assigned zero probability.
Then, each bin of the stochastic layer is considered. The
probability of the verbal category associated with the center
of the bin (according to the classifier) is increased by the
amount of probability that corresponds to the bin of the
stochastic layer that is under consideration. As a result, we
obtain probabilities of verbal categories as the sum of the
probabilities of their corresponding bins in the stochastic
layer. The narrowly-spread stochastic distribution in C2R2 has
created the narrowly-spread categorical in R4, and the wide-
spread of C3R2 leads to the one in R4.

The categorical layer feeds the stochastic layer: If we try
to invert the previous transformation, a one-to-many mapping
results. In order to achieve uniqueness, we enforced the
constraint that the stochastic layer bins that correspond to
the same verbal category should be equiprobable. Originally,
the stochastic layer elements are all assigned zero probability.
Each category is considered in turn. The elements that cor-
respond to the category under consideration are marked, and
the probability of the category under consideration is spread
equally among them. In C4, when R4 is fed to R2, the area
corresponding to the bins whose centers would be classified as
belonging to the “center” spatial category is filled with equal
probability. In C5, each category corresponds to a rectangle
such as the one shown in the C4R2 for “center”, thus the
whole of C5R2 is equiprobable.

Translation from the categorical layer to descriptive speech:
Consider the case of R4C1. Unquestionably, as P(“center”)
approaches unity, the robot can describe its position as “at
the center”. But things are less clear in C2 and C3. There, ac-
cording to a decision tree created with preset thresholds on the
probabilities of the three most highly probable categories and

the entropy of the distribution, numerous different resulting
verbalizations occur. For example, if P(most likely category)
> 0.7 and < 0.9, then we get “most probably at the <spatial
category>” (C2). As a further example, when the distribution
is almost equiprobable as quantified by its entropy, then we
get “I have no idea” (C3). The decision thresholds that were
currently arbitrarily set, but could be empirically learned.

The stochastic layer feeds the continuous layer: Here, we
are seeking a single representative value for the distribution
of the stochastic layer. Here we have chosen the statistical
mean (and not mode), as no bimodals distributions arise. In
our example, all the distributions shown in R2 share the same
mean, i.e. the center of the table. Thus, if the robot were to
look at an object, in both cases the same target fixation point
would selected to guide the motor system.

B. Temporal model construction
Moments are created in a straightforward manner. The

current GSM state is copied and time-indexed. In the current
implementation, moments are stored forever. For round-the-
clock operation, some form of memory filter / consolidation
must be added, but this has not been explored yet.

Events are created and continuously updated based on
the current and previous moments, through event classifiers.
Events might be instantaneous or optionally encode duration.
For example, when velocity (approximated by positional dif-
ferences) rises above a preset threshold, it triggers the creation
of the instantaneous “start moving” event. In contrast, an
event having duration is first created, and then its end time
is continuously updated as long as the event holds (e.g., the
“is moving” event has duration equal to the period that an
object is observed in motion). The event classifiers are again
very simple in this first prototype. However, they are plug-in
replaceable by more complicated trainable classifiers, utilizing
hidden markov models, stochastic context free grammars etc.



C. Spoken Language Processing

We use the Sphinx 4 continuous speech recognizer to
convert incoming speech into text transcripts. Keyword-based
semantic frames are used to parse speech transcripts.

After passing through the recognizer, utterances are then
classified in terms of their speech act type: questions (“Where
is...”, “What color is...”, etc.), action requests (“Touch...”,
“Look at...”, etc.), information about the situation (“There
is...”), viewpoint-dependent actions (“Touch the one on my
left”, etc.). Tense information (present/past) is also extracted.

Object reference resolution: Reference to an object can be
resolved to any part of the three main agents of the situation
model: me (robot), you (human partner) and others (objects
on the table). It might be resolved to one, many, or no such
parts. It might be referred to either through “part names” (my
head, your arm) or through “definite descriptions” (the small
red one, the large ones at the top). The simple objects (body
parts) of the robot and the user are usually referred to by part
names, while the objects on the table (others), are referred
through attributive descriptions. Consider the question “Where
was the blue object when your head started moving?”. In this
case, both part names (“your head”) as well as attributive
descriptions (“blue object”) are used, one for each object
referent. The robot might either ask a disambiguating question
(supplemented with deictic pointing by the robot) until it
narrows down to a single referent, or it might carry out the
requested action in succession on all the referents fitting the
description. The course of action taken depends on the action
requested, on whether it can accept groups of objects as
arguments, and also on whether plural or singular was used.
For example, assume that three objects are on the table - a
small red sphere, a large red sphere, and a blue sphere. If the
human requests “Touch the red one!”, the robot will answer
“do you mean this one or that one?” while pointing to the two
red spheres in succession. Then, the human can narrow down
by saying “Touch the small red one”. Else, if the human had
requested “Touch the red ones!” then the robot would touch
both red spheres in succession. These behaviors are selected
via a decision tree which is driven by the number of matching
referents, the plural or singular number, and the possibility or
not of carrying out the specified action with multiple referents.

Temporal reference resolution: In the case of questions or
actions involving the past, temporal references must also be
resolved. Their existence is detected through the keyword
“when”. After “when”, an event description involving object
referents should follow. Consider the meaning of the phrase
“when your head started moving”. This amounts to going back
in time until a matching event is found, and resolving to the
time of this event. The referrable event classes can be found in
the appendix. The participants are either the objects, the user,
or the robot itself. In the case multiple candidate events are
found, only the most recent is reported. If the requested action
is not a question, then one further condition should hold: the
referred object should still exist, so that it can be acted upon.

VII. MODULAR IMPLEMENTATION ARCHITECTURE

The software implementation of the GSM and its associated
algorithms is organized around a set of modules (Figure 3):

Situation Model: the module holding the current state of the
GSM. This module broadcasts its contents to other modules
over network connections, and processes requests for object
creation/deletion/updates from the modality-specific modules
in order to maintain the GSM object hierarchy.

Visor, Proprioceptor, Imaginer (modality-specific modules):
Each of these modules propose changes to the current GSM
state, which is broadcast from the Situation Model. Visor
listens to the visual stream, while Proprioceptor connects to
the robot’s position and force encoders. Imaginer processes
linguistic descriptions about real or imaginary situations. Via
the imaginer, the situation model can now be fed not only
through the senses but also through linguistic descriptions, and
be later updated by either.

Inquirer: Provides the capability of answering simple ques-
tions about the present, such as “What color are the objects
at the left?”, and also of acting on objects described through
the present: “Touch the blue one”. Carries out object referent
resolution, and requests appropriate actions.

Rememberer: Through this module, the past becomes ac-
cessible. It uses the “event” lists in order to resolve temporal
referents such as “when the red one appeared” etc. Then, and
after also having resolved the object referents at the right
times, it feeds the appropriate “moments”.

Fig. 3. Modular implementation architecture.

The primary data structure that is exchanged among mod-
ules is the present state of the situation. Changes to this
are proposed by the various sensory-specific modules (visor,
imaginer etc.), which then drive both language and motor
actions (through the inquirer and the rememberer). Moments
and events are only held in the rememberer.



VIII. CURRENT PERFORMANCE

The implementation of the GSM and its associated algo-
rithms may be evaluated at various levels. Although none of
the conversational robotics papers that we refer to include
quantitative evaluations, we could attempt quantifying the
performance of our system’s components (speech recognition,
vision etc.). However, the main focus of this paper has been the
design of the representations, the algorithms and the architec-
ture to operationalize the GSM concept for a robot. To evaluate
this more holistic goal, we believe a functional (behavioral)
evaluation of the complete system is more appropriate.

One approach to such behavioral evaluation is to use stan-
dard language comprehension tests administered to children.
For example, the Token Test [4] is commonly used to as-
sess language skills of young children who exhibit language
acquisition difficulties. To administer the test, the evaluator
arranges a set of physical tokens on a table and asks the
subject to perform various manipulation tasks (“When I touch
the green square, you take the white one”, etc.). The Token
Test is an ideal evaluation for our system since it evaluates
basic language-to-world mapping skills and does not rely on
social or cultural knowledge.

The Token Test is divided into five parts ordered in increas-
ing difficulty. Using the GSM based system we have described,
our robot is now able to pass the first two parts. For example,
it responds appropriately to requests such as: “Touch the large
red circle!”. As a whole, the robot might make some errors due
to failures of various subsystems. Speech recognition errors or
visual processing errors are two most common causes since
the dialog structures are quite simple. But the main point
we would like to emphasize is that the GSM and related
algorithms provides our robot with the capacity for passing
two of five parts of the test. Below, we suggest next steps for
tackling the remaining parts.

However, our implementation based on the GSM can
achieve more than simply respond to Token Test style requests.
A human communication partner can also ask questions about
what it sees, knows, and remembers about its table top world.
Furthermore, the human can describe parts of the environment
that the robot can’t see, causing our robot’s imagination
module to instantiate categorical beliefs which can be verified
and enriched by consequent perception.

A. Detailed Example of Performance

This example is part of the accompanying video. A user
informs the robot that “there is a blue object at the left” (which
is fed to the imaginer). Thus, the categorical layers are filled
with the values corresponding to the verbal categories given,
i.e. “left” for position, “blue” for color, and all categories
equiprobable for size. Thus, if the robot is asked “What color
is the one at the left?” it will answer “blue”, even though it has
never seen the object yet, and doesn’t know exactly what shade
of blue it is. However, when the robot is asked “How big is the
one at the left?” it promptly responds “I have no idea” given
that this information was not linguistically transmitted and that
all size categories are a priori equally likely for blue objects

at the left. Later, when it will see the object, it would answer
“It is small”, as it has captured adequate sensory information.

Fig. 4. GSM contents after the robot is told that, “There is a blue object at
the left”.

In Figure 4, the robot has already seen a red and a green
object, as can be seen in the GSM. Furthermore, the user has
informed the robot that “there is a blue object at the left”, and
the robot has created a representation for it. Notice that the left
area of the table is not currently visible due to the field of view
of the robot. Thus, the blue object that was described through
language has not been seen yet. At the “stochastic position”
window, the blue rectangular area corresponds to the position
values classified as belonging to the spatial category “left”.
Notice how this differs from the single-point distribution for
the green object (which is currently visible by the robot’s
camera as seen in the “display” window). Also, notice how
it differs from the cloud-like distribution for the red object,
that hasn’t been seen for a while (and thus its distribution has
diffused, as it might have moved in the mean time). At the
“stochastic radius” window, the area between the inner and
outer blue circles correspond to the possible radii the blue
object might take. Notice how the radius of the green is already
determined by previous observations, and thus the inner and
outer green circles coincide (similarly for the red). Thus, when
the robot is asked “How big is the blue one?” it responds with
“I have no idea”, while if it is asked “How big is the green
one?” it gives a specific answer, i.e. “small” in this case.

In Figure 5, the robot has now moved its head, and the blue
object that it had previously imagined (after “there is a blue
object at the left”) has now been seen. Compare to Fig. 4: At
the “stochastic position” window the blue rectangular area in
Fig. 4 has shrunk to a single point (the point under the leftmost
cross in Fig. 5). Thus, the robot doesn’t only know that the
blue object is somewhere at the left, but is much more certain
about exactly where it is. At the “stochastic radius” window,
the outer and inner blue circles that existed in Figure 4 have
shrunk and expanded in order to coincide with each other, and
their current radius happens to be within the “small” category.
Thus, when the robot is now asked “what size is the blue one?”
it will respond with “small” (and not “I have no idea” as it
would before seeing the blue object and after hearing “there
is a blue object at the left”).



Fig. 5. GSM contents after the robot moves its head and sees the blue obj.

IX. FUTURE DIRECTIONS

Our current work is focused on three main objectives.
First, we aim towards enabling the system to handle richer
representations of object shapes, acquired through multiple
views, integrated in an active-vision framework. Richer shape
capabilities will enable the incorporation of richer spatial
relations, such as containment and support, which in turn
figure prominently in natural language semantics.

Second, we are enhancing the representation of other agents
(i.e. the human user), in order to include not only their
viewpoint towards the world, but also a complete embedded
GSM ascribed to the other agent. Using embedded GSMs, it
will for example be possible for the robot to encode differences
in beliefs it holds from those it believes its human partner
holds. Language planning can then take into account agent-
dependent GSM contents to choose appropriate words.

Our third objective is behavioral: to develop the GSM to
a stage that enables the robot to pass all five sections of
the standard Token Test for Children [4]. We think that the
required extensions can be designed atop of the current GSM-
based architecture in a principled way.

X. CONCLUSION

We believe that the primary obstacle towards effective
human-robot communication in natural language lies in the
traditional separation of language from sensing and acting.
Our main thesis is that special amodal knowledge structures
representing situations are needed as bridges. We have pre-
sented the design and implementation of such a structure,
namely a grounded situation model, that serves as a bridge
for an interactive conversational robot, and which resides
in a centrally located module in the implemented modular
architecture. The overall design of the GSM was driven by
two desiderata, and then the design of the specific GSM was
further refined through a set of behavioral goals that were
explicated. In the resulting system, all behavioral goals have
been achieved, and a summary of all implemented behaviors
is given in the appendix. The robot is currently able to pass
the first two parts of the Token Test, a standard test used to
assess early situated language skills. The robot is also able to
answer questions about the present and past, act on objects
and locations, and integrate verbal with sensory information
about the world. As explicated before, the robot has three novel

abilities compared to other existing conversational robots, and
the GSM together with the implemented modular architecture
have been instrumental in attaining them. We believe that the
suggested GSM design, with its hierarchical object structure,
three-layered property representations, and recursively embed-
ded GSM’s, provides an important step towards endowing
robots with physically and socially grounded language skills,
and ultimately towards truly cooperative conversational robots.

APPENDIX

A. Current Behavioral Repertoire

The system responds to the following utterance classes:
1. Questions (present/past):
<question> is/are the <obj des>
<question> was/were the <obj des> when <event des>
2. Action requests (referent description in present/past):
<action> the <obj des>
<action> the <obj des> when <event des>
3. Imaginer request: Imagine/There is a <obj des>
4. Location-centered “look at”: Look at <location>
5. Viewpoint: <action> the one on my/your left/right
6. Basic mode switching:
Wake up, sleep, relax, look at me/the table
Types:
<question> belongs to {where, how big, what color}
<action> belongs to {touch, pick up, hand me, look at}
<obj des> contains <size> <color> <object> <locus>
<event des> contains <actor> <event type>
<size> belongs to {small, medium, large}
<color> belongs to {red, green, blue}
<locus> belongs to {center, left, right, top, bottom}
<actor> is either an <obj des> or <agent part>
<agent part> belongs to {my, your} × {head, arm}
<event type> belongs to {appeared, disappeared, started mov-
ing, stopped moving, came in view, came out of view}
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