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Abstract— This paper presents a method for robot and land-
marks 2D localization, in man made environments, taking profit
of scene planes. The method uses bearing-only measurements
that are robustly matched in three views. In our experiments
we obtain them from vertical lines corresponding to natural
landmarks. With these three view line-matches a trifocal tensor
can be computed. This tensor contains the three views geometry
and is used to estimate the aforementioned localization. As it
is very usual to find a planar surface, we use the homography
corresponding to that plane to obtain the tensor with one match
less than the general case method. This implies lower computa-
tional complexity, mainly when trying a robust estimation, where
we see a reduction in the number of iterations needed. Another
advantage of obtaining an homography during the process is that
it can help to automatically detect singular situations, such us
totally planar scenes. It is shown that our proposal performs
similarly to the general case method in a general scenario and
better in case that we have some dominant plane in the scene. This
paper includes simulated results proving this, as well as examples
with real images, both with conventional and omnidirectional
cameras.

Index Terms - 1D trifocal tensor, scene planes, bearing-only
data, localization, SLAM initialization.

I. INTRODUCTION

Most robot autonomous tasks can not be acomplished
just using the odometry information, due to its well-known
limitations. Laser range and vision sensors are mostly used to
provide the robot with scene information to carry out those
autonomous tasks. Mobile robots work many times on planar
surfaces. To define the scene or the situation in this case, i.e.
to be localized, three motion parameters for a robot location
and two more for each feature are needed. This is the task we
are dealing with in this work (Fig.1).

In the last years, many Simultaneous Localization and
Mapping (SLAM) algorithms have been proposed as a good
method to achieve those tasks in unknown scenes, using
different sensors, e.g. [1]. We are going to focus in the case
of using bearing-only data. In this case, the SLAM methods
can bee seen as an iterative process that need to be initial-
ized somehow, because just with one bearing-measurements
acquisition we can not directly estimate the distance for the
observed landmarks. In case of planar motion this initialization
can be done with linear methods using three different initial
acquisitions, as explained in [2]. When working with images,
the projection in a 1D virtual retina of vertical landmarks in
the scene can be treated as bearing-only data. Similarly in
omnidirectional images for the radial lines, which came from

projected scene vertical landmarks [3]. As it is known, typi-
cally three acquisitions from different positions of the bearing-
sensor are needed to recover robot and landmark localization.
The trifocal tensor gives a closed formulation to relate those
three views. Recently a work has appeared proposing a way
to avoid the need of these three first acquisitions. It is based
in multi-hypotesis ideas [4], with good performance for the
SLAM, but it increases a little the complexity of the problem
and they still need several acquisitions until they have a defined
estimation of landmarks position.

The 1D trifocal tensor was previously presented [5], to-
gether with an algorithm to compute motion from it in a closed
form. The 1D trifocal tensor has also been used for calibration
of 1D cameras [6]. Also in its application to omnidirectional
cameras we can find some previous related works, about
localization [3] and about radial distortion correction [7]. This
tensor can be computed linearly from seven matches although
with calibrated cameras five matches are enough [5]. The use
of constraints imposed by the scene can reduce the number of
necessary matches. Here we study the situation with a plane
available in the scene. These ideas have been used in case of
general 3D scenes, following the well known two view plane-
parallax constructions and extending it to more views, chapters
12 an 15 in [8]. The trifocal tensor and multi-view constraints
based on homographies were studied in [9].

In this paper, we suppose a scene that contains at least one
plane, more exactly three coplanar feature-matches, which is
quite usual when a robot moves on man-made environments.
We show how to estimate the 1D tensor from only four
matches and evaluate the robot and landmarks localization
obtained from that tensor. One goal of this work is to show
a way to reduce the computational cost of previous methods
aiming the same, by taking profit of the existence of a plane in
the scene. This may be very useful in real time applications.
Another advantage of obtaining an homography during the
process is that it can help to automatically detect singular
situations, such us totally planar scenes. We proof the good
performace of the proposal with experiments both with simu-
lated data and with real images. There are tests with pinhole
cameras, where we use the projection of vertical landmarks
in the scene, as well as with omnidirectional images, with
the advantage in this case that the camera calibration is not
needed.
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Fig. 1. The goal is to obtain the relative localization of the robot
(θ′ , t′ = [t′x, t′z ]; θ′′, t′′ = [t′′x, t′′z ]) and the position of the landmarks (x),
from the three view matches (u u′ u′′) of natural landmarks.

II. PLANAR TRIFOCAL TENSOR

The bearing-only data obtained by a robot moving on
a planar surface can be converted to measurements in 1D
perspective cameras using a projective formulation. Thus, we
can easily convert a bearing measurement α from a scene
feature to its projective formulation in a 1D virtual retina
as u = (tan α, 1)T or u = (sin α, cos α)T , which are
projectively equivalent. In our case, the bearing-only data is
particularized to vertical lines detected in images. We can
consider only the x line coordinate in the image is relevant.
Therefore they can be treated as elements of the P1 projective
space and so we are in the same 1D case. With three views
from different positions a trifocal tensor can be linearly com-
puted, and robot and landmarks localization can be obtained
(Fig. 1).

Let us name the homogeneous representation of a feature
in P2 space as x = [x1, x2, x3]T and its homogeneous
representation in the P1 projective space as u = [u1, u2]T .
This projection to P1 projective space can be expressed by a
2 × 3 matrix M in each image, in such a way that

λu = Mx; λ′u′ = M′x; λ′′u′′ = M′′x (1)

where λ, λ′ and λ′′ are the respective scale factors.
Let us suppose all the scene features in a common reference

frame placed in the first robot location. Then, the projection
matrixes relating the observed features in the scene and in the
corresponding image are M = K[I|0], M′ = K[R′|t′] and
M′′ = K[R′′|t′′], for the first, second and third robot locations
respectively. These matrixes are composed by internal and
external parameters. The internal ones are enclosed in the
calibration matrix K =

[
f c0
0 1

]
, where f is the focal length

in pixels and c0 is the position of the principal point. In
case of omnidirectional images, the calibration matrix used is
the identity. Supposing squared pixels, the only parameter to
calibrate is the center of projection, what can be automatically
done from the radial lines.

The external parameters are the translations t′ = [t′x, t′z]
T ,

t′′ = [t′′x, t′′z ]T and rotations R′ =
[

cosθ′ sinθ′
−sinθ′ cosθ′

]
,

R′′ =
[

cosθ′′ sinθ′′
−sinθ′′ cosθ′′

]
made by the sensor from the

second and third position in relation to the first (Fig. 1).
The projection equations (1) from the three locations can

be written in the following way[
M u 0 0
M′ 0 u′ 0
M′′ 0 0 u′′

]
[x,−λ,−λ′,−λ′′]T = 0. (2)

As neither x nor the scale factors can be null, it originates∣∣∣∣∣
M u 0 0
M′ 0 u′ 0
M′′ 0 0 u′′

∣∣∣∣∣ = 0 (3)

that can be written as the trifocal constraint for 3 views [6]:
2∑

i=1

2∑
j=1

2∑
k=1

Tijkuiu
′
ju′′

k = 0. (4)

This can be developed as

T111u1u′
1u′′

1 + T112u1u′
1u′′

2 + T121u1u′
2u′′

1 + T122u1u′
2u′′

2+
T211u2u′

1u′′
1 + T212u2u′

1u′′
2 + T221u2u′

2u′′
1 + T222u2u′

2u′′
2 = 0,

(5)

where Tijk (i, j, k = 1, 2) are the eight elements of the
2 × 2 × 2 trifocal tensor whose components are the 3 × 3
minors of the 6 × 3 matrix [MM′ M′′]T , in such a way that
to obtain Tijk = [̄i j̄ k̄] we take the īth row of M, the j̄th row
of M′ and the k̄th row of M′′, meaning ·̄ a mapping from
[1,2] to [2,-1] (1̄ would mean 2nd row and 2̄ would mean 1st

row with sign changed).
Being v the number of views, and l the number of bearing-

only measurements we have vl equations. We have 3 motion
parameters to compute for each robot location (except for the
first one, because we locate it in the origin) and 2 parameters
for each landmark. So the number of parameters to estimate is
3(v − 1) + 2l− 1 (−1 because we can only get the results up
to a scale factor). If the number of images is 2, the problem
is unsolvable, even with infinite number of landmarks (vl ≥
3v− 3+2l− 1). The minimum number of views necessary to
solve this problem is 3, with at least 5 measurements.

The 1D trifocal tensor has 8 parameters up to a scale, so it
can be estimated from 7 corresponding triplets. With calibrated
cameras the following additional constraints apply [5]:

−T111 + T122 + T212 + T221 = 0
T112 + T121 + T211 − T222 = 0,

(6)

then only five three-view matches are needed.
Using five matches and the calibration conditions is com-

putationally more efficient and it gives better results in motion
estimation than the classical seven degrees of freedom tensor
computed from seven matches [10]. The computation of the
trifocal tensor can be carried out as explained above using
Singular Value Decomposition (SVD). With more matches
than the minimal case, that procedure would give the least
squares solution, which assumes that all the measures could
be interpreted with the same model. This is very sensitive to
outliers, so we need robust estimation methods to avoid them.
In our work we have chosen ransac [11], which makes a search
in the space of solutions using random subsets of minimum
number of matches.



III. SCENE PLANE AND THE 1D TRIFOCAL TENSOR

When the robot moves in man-made environments, many
times there are planes in the scene which can be used in the
computation of the trifocal tensor, then the number of matches
needed may be reduced. This idea has been applied in the case
of three 3D views, with the 2D trifocal tensor, e.g. [12] [9]. In
this section, we study that situation for the 1D trifocal tensor.

It is shown in the literature of multiple view geometry [13]
that there exist a relation between the projections of a line in
three images, the tensor T defined between the three views and
two homographies H21 (from image 1 to 2) and H31 (from
image 1 to 3) corresponding to a transformation through the
same plane but between different couple of images. There have
been developed for line features in a 3D scene. We transfer
those constraints to point features in a 2D scene with 1D
projections. These new constraints are obtained as follows.

If we have a point projection in three views, u,u′ and u′′,
and 2 homographies, H21 and H31, the following relations are
known for any point in the plane of the scene:

u′ = H21u , u′′ = H31u (7)

On the other hand, the constraint imposed by the 1D trifocal
tensor (5) can be reordered as,

u1(T111u′
1u′′

1 + T112u′
1u′′

2 + T121u′
2u′′

1 + T122u′
2u′′

2 )+
u2(T211u′

1u′′
1 + T212u′

1u′′
2 + T221u′

2u′′
1 + T222u′

2u′′
2 ) = 0.

If we name T1 =
[

T111 T112

T121 T122

]
and T2 =

[
T211 T212

T221 T222

]
,

this equation can be written as [u1u2]

[
u′T T1u′′
u′T T2u′′

]
= 0.

Therefore, we have the following equality up to a scale (∼=)[
u1

u2

]
∼=

[
u′T T2u′′
−u′T T1u′′

]
, and substituting with (7) we get

[
u1

u2

]
∼=

[
uT HT

21T2H31u
−uT HT

21T1H31u

]
. (8)

From (8) we obtain 4 additional constraints for the 1D tensor:
• First, equation (8) must be certain for any point u. So

let us consider that u could be in the form u = [0 u2]T

or u = [u1 0]T . Replacing in that equation with u in these
two special forms and developing the expressions we get
two new constraints (to simplify the expressions, let us name
B1 = HT

21T2H31 and B2 = −HT
21T1H31 ):

B1(2, 2) = 0
B2(1, 1) = 0

(9)

where Bn(a, b) means (row a, column b) of the matrix Bn.
• Moreover the scale factor must be the same for both u

components in (8), therefore uT HT
21T2H31u

u1
= −uT HT

21T1H31u
u2

must be true. Developing this expression we get the other two
new constraints:

B1(1, 1) = B2(2, 1) + B2(1, 2)
B2(2, 2) = B1(2, 1) + B1(1, 2).

(10)

It is known that 3 matched features at least are needed
to compute 1D homographies from visual data in two 1D
projections [14]. The corresponding coordinates in the pro-
jective space P1 of the matched features in first and second

images (u = [u1, u2]T and u′ = [u′
1, u

′
2]

T ) are related

through the homography H21:
[

u′
1

u′
2

]
= H21

[
u1

u2

]
, with

H21 =
[

h11 h12

h21 h22

]
, what provides one equation to

solve H21:

[ u1u′
2 u2u′

2 u1u′
1 u2u′

1 ]


 h11

h12

h21

h22


 = 0.

With the coordinates of at least three bearing-only mea-
surements, in our case three vertical lines, we can construct
a 3x4 A matrix. The homography solution corresponds to the
eigenvector associated to the least eigenvalue of the AT A
matrix and it can be solved by singular value decomposition
of matrix A. Similarly to obtain H31.

The coplanarity condition reduces in one the minimum
number of matched features needed to compute the tensor.
Therefore, the tensor, in the calibrated case, can be computed
from 4 matched features, three of them being coplanar in the
scene. This tensor gives a general constraint for all observed
landmarks from the three robot positions, independently of its
location in the scene. This reduction of the minimum number
of matches is specially convenient due to the robust technique
used. In this case instead of doing a random search in a 5
degrees of freedom (d.o.f.) space of solutions, we have to do a
search in a 3 d.o.f. space, to robustly estimate the homography
and the features belonging to it, plus a second search in a
1 d.o.f. space of solutions, to estimate the tensor with the
homography plus a feature match which is out of the plane.

For instance, let us suppose a situation with 40% of outliers.
If we execute the algorithm for the 5 matches tensor, the ransac
algorithm needs to perform 57 iterations to get a result with
99% probability of being correct. On the other hand, if we
choose the 4 matches tensor estimation, the ransac algorithm
will just need 19 (for homographies) + 6 (for tensor) iterations
for the same level of confidence. To sum up, around twice
more time required for the classical way of estimating the
tensor. However, we should notice that this big difference is
realistic only in the case that the plane is dominant in the
scene. Otherwise we should consider higher level of outliers
for the plane based method than for the general ones. Then,
the outliers would be not only the wrong matches but also
many matches which do not belong to the plane. If we suppose
a 50% of outliers in that search, the number of iterations
obtained (35+7 iterations) would still be lower than the 5
matches tensor, with the advantage that the estimation of the
homography can give us some clue about singular situations
(e.g. when all the scene is explained by it because it is totally
planar).

IV. ROBOT AND LANDMARK LOCALIZATION

When the motion is performed on a plane, 6 parameters,
up to a scale factor for translation, should be computed:
θ′, t′, θ′′, t′ (Fig. 1). The algorithm we use to compute motion
recovers the epipoles with a technique proposed for the 3D
case [15], also applied for the 2D case in [2]. We have also
used it in a general scene with omnidirectional images [3].



Here we explain a summary of this method to get the
localization parameters from the 1D trifocal tensor:
• The directions of translation are given by the epipoles and

the rotations between robot positions are obtained by trigono-
metric relations between the epipoles. To get the epipoles,
we first obtain the intrinsic homographies of the tensor,
corresponding to the X and Z axis of the images. From these
homographies, we compute the corresponding homologies for
the tree images. The epipoles are the eigenvectors mapped to
themselves through these homologies.
• Once the rotation and translation between the cameras

have been obtained, the landmark localization is computed
solving the system of the 3 equations (two are enough) which
project them in P1 (1) in the three images.

The method provides two solutions for the motion parame-
ters, defined up to a scale for the translations and landmarks
location. This scale and ambiguity problem can be solved
easily with some extra information. It can be obtained for
example from odometry or from other previous knowledge of
the scene.

V. EXPERIMENTAL RESULTS

In this section we show several experiments with simu-
lated data to show the trifocal tensor performance in motion
computation, when estimated with 5 matches or with a scene
plane and 4 matches. There are shown also experiments with
different types of real images, to show the performance in
robot localization and landmarks reconstruction.

A. Simulation Experiments

First, some tests were run with simulated data to establish
the performance of motion estimation through the trifocal
tensor. We implemented a simulator of 2D scenes which are
projected into 1D virtual cameras with field of view of 53◦ and
1024 pixels. We present the results for two different simulated
movements, MovA and MovB. The first one could fit a com-
mon multi-robot configuration, and the second one represents
a typical situation with a mobile robot going forward. In Fig. 2
we can see the position of the cameras, its field of view and
the localization of the features in each movement.
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Fig. 2. MovA and MovB. Two simulated scenarios, showing landmarks and
3 camera positions with their corresponding field of view.

Measurement errors were simulated as gaussian random
noise (of zero mean and standard deviations varying from 0 to
1 pixel) added to features image coordinates. Each experiment
was repeated 100 times. The evaluation parameters shown for
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Fig. 3. Dominant Plane case: 20 matches in the plane and 10 out of it.
Trifocal Tensor estimated with 5 and with 4 matches (100 executions for
each case with different random matches). RMS error in rotation, translation
direction and reprojection for MovA (left) and MovB(right) of Fig. 2.

each of them are: the RMS (root-mean-square) error in the
computation of the rotation angles (θ′ and θ′′), the RMS error
in the directions of translation (t′ and t′′) and the average RMS
features reprojection error in the three images.

We took into account that there is a plane in the scene,
supposing the features that belong to the plane are known. In
this situation, we can estimate the tensor with 1 match less than
in a general case, as explained in Section III. We considered
a plane parallel to the first image, placed 20 units ahead the
origin, in both scenarios (Fig.2).

We evaluated the performance in the localization with the
two ways to estimate the tensor, with 4 matches or with 5.
There were different cases of study, depending how many
matched features belong to the plane: most of them in the
plane (dominant plane in the scene), equally distributed (no
dominant plane) or all of them in the plane.

Simulating a general scenario (when there is no dominant
plane, but still a plane exists), we obtained very similar results
for both tensors. In these simulations we generated 10 matches
on the plane and 20 or 30 out of it. In all the cases errors
were similar between methods, an example is shown in Fig. 4.
However, when the plane is the predominant element in the
scene (most matched features are on it), we found some
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Fig. 4. Trifocal tensor estimated with 5 and with 4 matches (100 executions
for each case with different random matches). RMS error in rotation, trans-
lation direction and reprojection for MovA of Fig. 2. Left: General case, 10
matches in the plane and 20 out of it (no dominant plane). Right: All matches
in the plane, singular situation where the tensor does not exist.

advantages in the use of the 4 matches tensor. In Fig. 3 we can
see the comparison between results from the tensor using plane
constraints (with 4 matches, tensor4) and from the general
tensor (with 5 matches, tensor5). In these simulations, we
generated 20 random matches on the plane and 10 out of it.
We can observe for MovA that tensor4 behaves better than
tensor5, specially when the noise increases. Computing this
4 matches tensor has another advantage, as the intermediate
estimation of the homography can give us a clue about being
in singular situations. For example, if the whole scene can be
explained with the homography (all the matches fit it), we have
a planar scene and then there is no sense to continue with the
tensor estimation, as it does not exists in those cases. We also
tried the localization estimation if all the matches belong to
the plane, and the expected bad results can be seen in Fig. 4.

B. Real images Experiments

We show two examples with real images, one with conven-
tional and other with omnidirectional cameras. In the first one
we want to show the results with a scene where the plane
is dominant. In the second one, when it is not. The scale
factor was solved using data from the ground truth (only one
known distance is necessary). The line matching is not the

subject of study here, we used methods developed in previous
works, both for conventional images [10] and omnidirectional
ones [3]. They are based in nearest neighbor search over the
descriptors of the region around each line, and in checking
some topological consistence similarly to the work in [16].

1) Using conventional cameras (1R): In this experiment
we used a conventional camera with known calibration matrix.
We automatically extracted and matched vertical lines in three
views. These 3 images with the line matches (the ones used to
estimate the plane are in red) and a scheme of these features
reconstruction is shown in Fig. 5. In this case, as the plane
is dominant in the scene, it is possible to estimate robustly
which features belong to a plane. The tables at the bottom of
the same figure contain the localization errors: rotations (θ′,
θ′′) and direction of translations (t′, t′′), as well as the feature
reconstruction errors: in the image reprojection and in the
2D reconstruction in the scene. The ground truth motion for
this experiment was obtained with the aid of Photomodeler
software, where a set of points are manually given to get a
photogrammetric reconstruction. Similarly to the simulation
results, we observe better performance in the results from
the tensor computed through a homography (TT4). We made
different tries using more or less matches from out of the
plane. As could be expected, the more we decreased those set
of matches which do not belong to the plane, the more the
errors with the TT5 increased.
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θ′ θ′′ t′ t′′ repr. err (std) 2D x 2D z
TT5 0.14o 0.1o 3.8o 3.9o 0.3 pix.(0.3) 0.7 m. 2.7 m.
TT4 0.17o 0.5o 2.9o 3.4o 0.6 pix.(0.8) 0.5 m. 1.5 m.

Fig. 5. Experiment 1R. Top & Middle-left: Outdoor real images with line
robust matches. Coplanar lines [1..14] marked in red. Middle-right: Scene
scheme with robot locations and landmarks reconstruction obtained through
the classical tensor (TT5 in pink o), through the tensor with an homography
(TT4 in red *) and landmarks location obtained from the ground truth motion
(obtained with Photomodeller, in blue +). Bottom: robot and landmarks
localization errors.

2) Using omnidirectional cameras (2R): Next we show
an example with omnidirectional images. In this case the



calibration of the camera is not necessary. If we suppose
squared pixels, it is only required the center of projection. It
does not coincide with the center of the image, but we estimate
it automatically from the radial lines [3]. The trifocal tensor
for this kind of image is also robustly computed from the
projected radial lines (vertical landmarks of the scene). With
this kind of images, the segmentation of the lines belonging to
the same plane in the three views is a more difficult task. This
is due to the wide field of view from the scene, what can make
that many planes are visible all the time. Also the number
of lines belonging to one specific plane may be too small,
preventing from their automatic detection. In this cases, the
homography/plane inliers are obtained using a priori knowl-
edge about the scene. This problem has to be deeply studied in
future works. In this experiment we selected them manually. In
Fig. 6 the three views used are shown with the matched lines.
The lines used to estimate an homography are marked in red.
There we see also the scheme of the reconstruction, where
the good performance of the proposal can be appreciated.
Results from both tensors, as expected from the simulations,
are quite similar, with the before mentioned advantages of the
intermediate estimation of an homography. The errors in the
rotation (θ′, θ′′) and translation direction (t′, t′′) estimation
are shown in a table at the bottom of the figure, together with
the features reconstruction errors: image reprojection and 2D
reconstruction in the scene. Here the ground truth motion was
obtained with a metric tape and a goniometer.
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Robot localization error Landmarks reconstruction error
rotation transl. dir. mean image mean mean

θ′ θ′′ t′ t′′ repr. err (std) 2D x 2D z
TT5 0.8o 1.8o 1.5o 6.3o 0.2o(0.3) 0.15 m. 0.16 m.
TT4 0.96o 1.8o 2.05o 6.7o 0.3o(0.2) 0.15 m. 0.15 m.

Fig. 6. Experiment 2R. Top & Middle-left: Indoor omnidirectional images
with robust line matches. Coplanar lines [1..5] marked in red. Middle-right:
Scene scheme with robot locations and landmarks reconstruction obtained
through the classical tensor (TT5 in pink o), through the tensor with an
homography (TT4 in red *) and landmarks location obtained from the ground
truth motion (measured with a metric tape, in blue +). Bottom: robot and
landmarks localization errors.

VI. CONCLUSIONS

In this paper we have presented a method to recover robot
and landmark localization through a trifocal tensor. It is a
low complexity (linear) method that takes profit of planes in
the scene. It uses bearing-only measurements, e.g. obtained
from conventional or omnidirectional images. An important
advantage is that it can be estimated with only four matches,
when three of them are located in a plane of the scene. This
makes the method computationally less expensive than other
similar ones and suitable for real time applications. There is no
loss in performance in general cases, and it even gives better
results when there is a dominant plane in the scene. Also notice
the possibility of detect singular situations automatically in the
intermediate step of homography estimation. The simulation
and real images experiments show the good performance
of our proposal, with quite low errors in localization and
reconstruction, proving its suitability for robotic tasks, such as
bearing only SLAM initialization or multi-robot localization.
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