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Abstract— In this paper the Cartesian compliance control of
a manipulator mounted on a flexible base is considered. The
proposed control law aims at achieving a desired stiffness and
damping in Cartesian coordinates while taking account of the
base flexibility. The controller does not use any measurement of
the base motion, however a model of the base stiffness is required.
For the closed loop system, asymptotic stability in case of free
motion is proven. Furthermore, considering interaction tasks, it
is shown that the controlled manipulator system has a useful
passivity property.

I. INTRODUCTION

It is well known that the flexibility of the base on which a

robot manipulator is mounted can significantly influence the

positioning accuracy [1]. Moreover, the base flexibility is also

relevant from a stability point of view due to the presence of

non-linear couplings between the robot dynamics and the base

dynamics.

In many applications it is not possible to measure the

motion of the base reliably, but still the controller of the arm

should take the base flexibility into account. Otherwise base

vibrations and the gravity load of the arm on the flexible base

will lead to degraded position accuracy of the end-effector.

Typical examples for applications where this is relevant are for

instance Micro/Macro-manipulator systems where the macro-

manipulator represents the base, or mobile manipulation set-

tings where a manipulator is mounted on a mobile base. If

the mobile base is actuated by non-rigid wheels, this leads

to a considerable elasticity. In order to achieve high position

accuracy as required for fine manipulation tasks, one clearly

should take this into account.

The control of a robot mounted on a flexible base has

been treated by several authors. Nenchev et al. proposed

the co-called reaction null-space control [2]. In this method

the dynamic redundancy of a kinematically redundant arm is

exploited such that the robot can perform its tasks without

exciting the vibrations of the base. Furthermore, a gravity-

free environment was considered therein. In contrast to that

our contribution focuses on a compensation of the static end-

effector deviation due to a gravity induced base deflection. In

particular it is also applicable both to redundant and to non-

redundant manipulators. Therefore, the focus of our paper is

somewhat complementary to [2]. Clearly, a combination of

the results from [2] with our approach would be possible, and

would particularly be useful when the control of a kinemati-

cally redundant arm under the effect of gravity is considered.

Another important work on the control of a manipulator

mounted on a flexible structure was presented by Ueda and

Yoshikawa in [3] where they analyze the robustness of a

compliance controller with non-collocated position feedback

in a gravity-free environment. Their analysis is based on

a modal analysis of the linearized system and includes an

additional feedback of the joint acceleration for improving

robustness. In contrary to [3], the controller presented in

this paper avoids the use of non-collocated feedback and a

passivity analysis of the non-linear closed loop system is given.

Several authors treated the vibration damping for a

Micro/Macro-manipulator system. In [4] the reaction force

of a short rigid manipulator mounted at the tip of a large

flexible arm was considered as a control input, and the

motion of the short manipulator was commanded such that

the reaction force acting on the base produced a damping

of the base vibration. Lew and Trudnowski [5] presented a

control scheme in which the control torque from a joint level

PD-controller is augmented by an additional feedback of the

base motion in order to achieve enhanced vibration damping.

In [6] this technique was combined with a special filtering

of the command. A composite controller was proposed in [7]

where the fast part of the control input deals with the joint

angle dynamics while the slow part deals with the base motion.

This composite controller was used together with an inner loop

acceleration feedback.

In this paper we propose a Cartesian compliance controller

for a manipulator mounted on a flexible structure. Since the

gravity load of the manipulator leads to a deflection of the

base, the controller must compensate for this deflection. In

particular, it is assumed that the motion of the base cannot be

measured but the stiffness of the base is known.

The presented controller is related to our recent results on

the control of flexible joint robots [8], [9], [10], [11], [12],

[13]. In [8], [9], [12] a passivity based approach for the com-

pliance control of a flexible joint robot was presented. Therein

a compensation term for the link side gravity components was

computed based only on the motor side positions. This gravity

compensation term was combined with a PD-like stiffness
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and damping control law in Cartesian coordinates. In [10]

the design was improved by merging the computation of the

gravity compensation and the implementation of the stiffness

term. In [11] we showed that the used design approach from

[10] and [8], [9], [12] is not limited to flexible joint robots

but can also be applied to a more general class of systems.

In the present paper in particular the results from [10] and

[11] are applied and the analysis is refined by the use of

the base stiffness as a metric. For simplicity the joints of the

robot are assumed non-elastic. An extension to a system with

both flexible joints and elastic base, however, is quite straight-

forward.

The paper is organized as follows. In Section II the con-

troller is formulated and the stability statements are given.

The proof of stability is shown in Section III. A simulation

study in which the theoretical results are validated is presented

in Section IV. Finally, Section V gives a short summary.

II. CONTROLLER DESIGN

In Section II-A the considered equations of motion and the

relevant model assumptions are discussed. Then, in Section

II-B the desired closed loop behavior is specified in terms

of stiffness and damping. The controller and its stability

properties are formulated in Section II-C.

Kb

f(xb,θ)

g

Fig. 1. Manipulator mounted on a flexible base.

A. Equations of motion

We consider a manipulator arm with n joints mounted on

a flexible base with m degrees-of-freedom (DoF), as sketched

in Fig. 1. According to the notation used in [2] the joint

coordinates of the arm are denoted by θ ∈ R
n, and the

deflection of the base is described by the coordinates xb ∈ R
m.

These coordinates are summarized in the vector q = (xb,θ) ∈
R

m+n. The considered robot model has the form

M(q)

[

ẍb

θ̈

]

+ C(q, q̇)

[

ẋb

θ̇

]

+

[

gb(xb,θ)
gm(xb,θ)

]

=

[

−Kbxb − Dbẋb

τ

]

+ τ ext , (1)

where M(q) ∈ R
(m+n)×(m+n) is the inertia matrix of the

system. The Coriolis and centrifugal forces are summarized

in the term C(q, q̇)q̇. The gravity forces on the arm and

on the base are defined via a gravity potential function

Vg(xb,θ) as gm(xb,θ) = (∂Vg(xb,θ)/∂θ)T and gb(xb,θ) =
(∂Vg(xb,θ)/∂xb)

T . The stiffness and damping of the base

are described by the symmetric and positive definite matrices

Kb ∈ R
m×m and Db ∈ R

m×m. The vector τ ∈ R
n contains

the joint torques of the arm, which are considered as the

control inputs. Finally, τ ext ∈ R
m+n is the vector of external

torques exerted on the system.

For the stability analysis the following well known property

of the system (1) will be needed.

Property 1: For all q ∈ R
m+n the inertia matrix M(q)

is symmetric and positive definite. For all q, q̇ ∈ R
m+n the

matrix Ṁ(q) − 2C(q, q̇) is skew symmetric.

In case that the manipulator or the base configuration

contains not only rotational but also prismatic joints it is of

interest to consider a subset Qp of R
m+n in which all the

prismatic joints are bounded by their respective workspace

boundaries. For a robot with rotational joints only one has

Qp = R
m+n instead.

In order to get a formulation which is independent of

the chosen physical units for the rotational and translational

components of xb, particular vector and matrix norms are

defined as follows. Let R ∈ R
m×m be the square root of

the base stiffness matrix Kb, i.e. Kb = RT R. Then a vector

norm || · ||K : R
m → R

+ for a vector v ∈ R
m can be defined

via the Euclidean vector norm || · ||2 as

||v||K := ||Rv||2 =
(

vT Kbv
)1/2

.

Corresponding to this vector norm a matrix norm for a matrix

A ∈ R
m×m is chosen as

||A||K := ||R−T AR−1||i2 .

Notice that the choice of these norms ensures that the inequal-

ity |vT Av| ≤ ||A||K ||v||2K holds. Moreover, by construction,

the norm of the base stiffness is equal to one, i.e. αk :=
||Kb||K = 1.

One further assumption on the system will be needed which

ensures that the base stiffness is sufficiently high such that it

can withstand the gravity load of the robot. It is well known

that in the set Qp the norm of the Hessian

Hg(q) :=
∂2Vg(xb,θ)

∂x2
b

has an upper bound [14]. It will furthermore be assumed that

the norm of this gravity Hessian is smaller than the norm of

the base stiffness.

Assumption 1: The Hessian Hg(q) satisfies the condition

αg := sup
∀q∈Qp

||Hg(q)||K < αk = 1.

Clearly, this assumption is not restrictive at all, and usually

one has αg << 1.

Similar to a flexible joint robot model, the system (1) is

underactuated due to the flexibility of the base. For a flexible

joint robot each non-actuated DoF is directly connected to the

corresponding actuated DoF via the joint stiffness. In (1) the



non-actuated joints are instead supported by the base stiffness.

In the following it is assumed that the deflection of the base

cannot be measured, but the stiffness Kb of the base is known.

For this situation, a Cartesian compliance controller will be

designed which compensates for the stationary deflection of

the base.

B. Desired Cartesian compliance

The desired behavior is described in r ≤ n Cartesian

coordinates f(xb,θ) ∈ R
r. The matrices Jb(xb,θ) ∈ R

r×m

and Jm(xb,θ) ∈ R
r×n are the Jacobian matrices of f(xb,θ)

with respect to the configuration coordinates θ and xb

Jb(xb,θ) :=
∂f(xb,θ)

∂xb
,

Jm(xb,θ) :=
∂f(xb,θ)

∂θ
.

The deviation of the Cartesian coordinates from the desired

virtual equilibrium position f0 ∈ R
r is denoted by e(xb,θ) =

f(xb,θ)−f0. Notice that in this paper we treat only the non-

singular case, i.e. we assume that the manipulator Jacobian

Jm(xb,θ) keeps non-singular. However, the results can read-

ily be combined for instance with the singularity treatment

technique from [15].

The desired compliance is then specified by a symmetric

and positive definite desired Cartesian stiffness matrix Kd ∈
R

r×r and a positive definite desired Cartesian damping matrix

Dd ∈ R
r×r. Suppose that the external torque τ ext is exerted

on the robot via a (generalized) constant end-effector force

F ext such that the relation

τ ext =
[

JT
b (xb,θ) JT

m(xb,θ)
]

F ext (2)

holds. Then, the steady state of the closed loop system should

satisfy the condition

F ext = Kde(xb,θ) (3)

according to the desired stiffness Kd. Furthermore, the desired

Cartesian potential Vc(xb,θ) consistent with the stiffness

matrix Kd is given by

Vc(xb,θ) :=
1

2
e(xb,θ)T Kde(xb,θ) . (4)

C. Controller formulation

Considering (2) any steady state of the system (1) must

satisfy the equilibrium conditions

gb(xb,θ) = −Kbxb + JT
b (xb,θ)F ext , (5)

gm(xb,θ) = τ + JT
m(xb,θ)F ext . (6)

Notice that equation (6) suggests a feedback law of the

form τ = gm(xb,θ) − JT
m(xb,θ)Kde(xb,θ) for gravity

compensation and stiffness implementation. But this feedback

law is not valid for the considered setting because it is assumed

that the base deflection cannot be measured. Instead, one can

use (5) to obtain a quasi-static estimate x̄b(θ) of xb, which

can be used for the controller design. In the following it will

be shown how such an estimate can be computed and how

its use instead of xb can be considered in the stability proof.

According to the desired stiffness relation (3) the controller

must ensure that in any steady state the condition

gb(xb,θ) = −Kbxb + JT
b (xb,θ)Kde(xb,θ) (7)

holds. Equation (7) can be reformulated as

xb = K−1
b

(

−gb(xb,θ) + JT
b (xb,θ)Kde(xb,θ)

)

:= T (xb,θ) . (8)

For any fixed θ this can be regarded as an implicit equation for

xb. Its solution x̄b(θ) can be used as a quasi-static estimate

of xb.

Notice that Assumption 1 ensures that for Kd = 0 the

function T (xb,θ), considered as a mapping xb → T (xb,θ),
is a contraction1. Let Hc(q) be the Hessian2 of the Cartesian

potential Vc(xb,θ) w.r.t. xb, i.e. Hc(q) := ∂2Vc(xb,θ)
∂x2

b

. The

following assumption then ensures the existence and unique-

ness of x̄b(θ).
Assumption 2: There exists a ρ ∈ R for which the inequal-

ities 0 < ρ < (1 − αg) and

αc = sup
∀q∈Qp

||Hc(q)||K < ρ .

hold.

One can show that under the Assumptions 1 and 2 the function

T (xb,θ) is a contraction mapping also for Kd 6= 0. From this

one can follow that the equation xb = T (xb,θ) has a unique

solution xb = x̄b(θ). Moreover, the iteration

xk+1 = T (xk,θ) (9)

asymptotically converges to this solution, since T (xb,θ) is a

contraction [16].

Assumption 2 can be interpreted as an implicit condition on

the desired stiffness, with regard to the base stiffness. Loosely

speaking it is assumed that the base stiffness Kb is sufficiently

high such that it can balance the gravity load as well as the

effects of the Cartesian stiffness Kd on the base coordinates.

Based on the function x̄b(θ) we choose the control law

as the sum of a gravity compensation component, a stiffness

term, and a damping term in the form

τ = τ g + τ c + τ d , (10)

τ g = gm(x̄b(θ),θ) , (11)

τ c = −JT
m(x̄b(θ),θ)Kde(x̄b(θ),θ) , (12)

τ d = −D(θ)θ̇ , (13)

where the positive definite damping matrix D(θ) is given by

D(θ) = JT
m(x̄b(θ),θ)DdJm(x̄b(θ),θ) . (14)

1A mapping T : V → V defined on a Banach space V with norm || · || is
called a contraction if there exists a ρ < 1 such that ||T (v1) − T (v2)|| ≤
ρ||v1 − v2|| holds for all v1, v2 ∈ V . More details on contractions can be
found, e.g., in [16].

2Notice that this Hessian corresponds to the projection of the desired
Cartesian stiffness Kd via the conservative congruence transformation [17]
onto the base coordinates.



The stability properties of this control law are summarized in

the following proposition.

Proposition 1: Consider the system (1) together with the

control law (10-13). Under Assumptions 1 and 2 the following

properties of the closed loop system hold.

• Desired Stiffness Relation: In case that the external

torque τ ext is exerted on the robot in form of a constant

Cartesian force F ext, then the points defined by the

equations F ext = Kde(xb,θ) and xb = x̄b(θ) are

equilibrium points of the closed loop system.

• Passivity: For interaction tasks with τ ext 6= 0 the closed

loop system is a passive3 mapping from the input τ ext to

the output q̇. This holds even in the redundant case.

• Stability: Consider a non-redundant arm where the num-

ber of actuated joints is equal to the number of task co-

ordinates n = r. Under the assumption that the Jacobian

de(x̄b(θ),θ)/dθ is nonsingular, the closed loop system

for the case of free motion (τ ext = 0) is asymptotically

stable.

The proofs of these statements will be given in Section III.

But beforehand a short discussion of the control law from an

energy based perspective is presented.

D. An energy based perspective on the control law

The desired steady state condition (7) was the basis of

the controller design. Notice that this equation contains three

terms which all can be written as the differential of a potential

function with respect to xb. In particular, one has

gb(xb,θ) =

(

∂Vg(xb,θ)

∂xb

)T

,

Kbxb =

(

∂Vk(xb)

∂xb

)T

,

JT
b (xb,θ)Kde(xb,θ) =

(

∂Vc(xb,θ)

∂xb

)T

,

with the gravity potential Vg(xb,θ), the stiffness potential

Vk(xb) := 1/2xT
b Kbxb, and the Cartesian potential Vc(xb,θ)

from (4). By defining the potential function V0(xb,θ) as

V0(xb,θ) = Vk(xb) + Vg(xb,θ) − Vc(xb,θ) , (15)

one can, one the one hand, write (7) in the form

∂V0(xb,θ)

∂xb
= 0 . (16)

On the other hand, the gravity compensation τ g and the

stiffness term τ c from (10) can be written as τ g + τ c =

3A system ẋ = f(x, u), y = y(x, u) with state x ∈ R
n, input u ∈ R

m

and output y ∈ R
m is said to be passive, if for any admissible input u(t)

the energy that can be extracted from the system in an arbitrary time interval

[t0, t1] is bounded from below [18]: ∃c ∈ R :
R

t1

t0
u(t)T y(t)dt ≥ c.

A sufficient condition therefore is given by the existence of a continuous
function S(x) which is bounded from below and for which the derivative
with respect to time along the solutions of the system satisfies the inequality

Ṡ(x) =
∂S(x)

∂x
f(x, u) ≤ uT y .

(∂V0(xb,θ)/∂θ)
T
xb=x̄b(θ). Moreover, since x̄b(θ) fulfills (7)

this can also be formulated as

τ g + τ c =

(

dV0(x̄b(θ),θ)

dθ

)T

, (17)

and thus −V0(x̄b(θ),θ) may serve as a potential function for

the control input τ .

Finally, for the passivity proof also the Hessian

H0(xb,θ) := ∂2V0(xb,θ)
∂x2

b

will be of interest. This Hessian is

given by

H0(xb,θ) = Kb + Hg(xb,θ) + Hc(xb,θ) ,

and thus from Assumption 1 and 2 it follows that the minimum

eigenvalue of the matrix R−T H0(xb,θ)R−1 is bounded from

below by a positive number, i.e.

λ0 > 1 − αg − αc > 0 , (18)

where λ0 := inf∀q∈Qp λmin(R−T H0(xb,θ)R−1) and

λmin(A) denotes the minimum eigenvalue of a matrix A.

Therefore, the function V0(xb,θ) is positive definite w.r.t xb.

III. PROOF OF PROPOSITION 1

A. Equilibrium points

Considering (5)-(6) and (10-13), one can see that the

equilibrium equations of the system are given by

gb(xb,θ) = −Kbxb + JT
b (xb,θ)F ext, (19)

gm(xb,θ) = gm(x̄b(θ),θ) + JT
m(xb,θ)F ext

−JT
m(x̄b(θ),θ)Kde(x̄b(θ),θ). (20)

It can easily be verified that these equations are fulfilled by

all points (xb,θ) for which

e(x̄b(θ),θ) = K−1
d F ext (21)

xb = x̄b(θ) (22)

hold. Thus, the first property from Proposition 1 is shown.

Next, the passivity statement is considered. Therefore, the

potential function V0(xb,θ) will be used in order to construct

a pseudo energy function V (q, q̇). This function will serve

as a storage function for the proof of passivity and also as a

Lyapunov function for the stability proof in the non-redundant

case. Notice that, apart from Section III-E, the results of this

paper are valid also for the non-redundant case.

B. Pseudo energy function

The pseudo energy function V (q, q̇) is chosen as the sum

of the kinetic energy Vkin(q, q̇) of the manipulator and a

potential function Vpot(q), i.e.

V (q, q̇) = Vkin(q, q̇) + Vpot(xb,θ) .

The kinetic energy is given by

Vkin(q, q̇) :=
1

2

[

ẋb

θ̇

]T

M(q)

[

ẋb

θ̇

]

and clearly is positive definite with respect to the velocities.

The potential function Vpot(xb,θ) is chosen as the sum of the



gravity energy, the potential energy of the base flexibility, and

the potential function of the control torque

Vpot(xb,θ) := Vk(xb) + Vg(xb,θ) − V0(x̄b(θ),θ) .

By comparison with (15) one can see that Vpot(xb,θ) can also

be written as

Vpot(xb,θ) = V0(xb,θ) − V0(x̄b(θ),θ) + Vc(xb,θ) .

C. Properties of the potential function

In the following it is shown that the potential function

Vpot(xb,θ) is non-negative and even positive definite with

respect to e(xb,θ) and x̃b := xb − x̄b(θ). Therefore, the

difference V0(xb,θ) − V0(x̄b(θ),θ) must be shown to be

positive definite in x̃b. Since (∂V0(xb,θ)
∂xb

)xb=x̄b(θ) = 0, this

difference can be written as

V0(xb,θ) − V0(x̄b(θ),θ) =

∫ xb

x̄b(θ)

∫ η

x̄b(θ)

H0(ξ,θ)dξdη ,

and from (18) it follows

V0(xb,θ) − V0(x̄b(θ),θ) > λ0
1

2
||xb − x̄b(θ)||2K .

Therefore, the potential fulfills the inequality

Vpot(xb,θ) > λ0
1

2
||xb − x̄b(θ)||2K + Vc(xb,θ)

= λ0
1

2
||x̃b||

2
K +

1

2
e(xb,θ)T Kde(xb,θ) ,

and thus the potential function is positive semi-definite with

respect to θ and even positive definite with respect to e(xb,θ)
and x̃b. From the above inequality for Vpot(xb,θ) one can

easily follow that the set defined by the equations e(xb,θ) =
0,xb = x̄b(θ) is an isolated minimum of Vpot(xb,θ).

It is also interesting to notice that the steady state equations

(19)-(20) for the case of free motion correspond to the

equations ∂Vpot(xb,θ)/∂xb = 0 and ∂Vpot(xb,θ)/∂θ = 0.

D. Passivity

In order to show the passivity statement from Proposition

1, the function V (q, q̇) is considered as a storage func-

tion. Therefore, its time derivative V̇ (q, q̇) = V̇kin(q, q̇) +
V̇pot(xb,θ) along the solution curves of the system (1) with

the controller (10-13) is computed. Due to Property 1 the time

derivatives of the kinetic energy and the potential are given by

V̇kin(q, q̇) = ẋT
b (−gb(xb,θ) − Kbxb − Dbẋb) +

θ̇
T
(−gm(xb,θ) + τ ) + q̇T τ ext ,

V̇pot(xb,θ) = ẋT
b (gb(xb,θ) + Kbxb) +

θ̇
T

(

gm(xb,θ) −
dV0(x̄b(θ),θ)

dθ

)

.

Substituting the control law (10-13) and considering (17),

leads to

V̇ (q, q̇) = −θ̇
T
D(θ)θ̇ − ẋT

b Dbẋb + q̇T τ ext , (23)

from which one can follow the passivity property easily.

E. Stability

For a redundant robot with r = n the above analysis can be

refined. In this case V (q, q̇) can be considered as a Lyapunov

function. Considering (8) one can see that the derivative of

x̄b(θ) w.r.t θ is given by

∂x̄b(θ)

∂θ
= K−1

b (−Hg(xb,θ) + Hc(xb,θ)) .

From this it follows that the Jacobian

de(x̄b(θ),θ)

dθ
= Jm(x̄b(θ),θ) + Jb(x̄b(θ),θ)

∂x̄b(θ)

∂θ

is non-singular, if the Jacobian of the arm Jm(xb,θ) is

non-singular and the base stiffness is sufficiently high. This

assumption makes the potential Vpot(xb,θ) positive definite

w.r.t. x̃b and θ. Notice that in the previous analysis it was

only shown to be positive definite w.r.t. x̃b and e(xb,θ). For

the case of free motion, i.e. for τ ext = 0, the time derivative

V̇ (q, q̇) from (23) is then negative semi-definite implying

stability. Furthermore, asymptotic stability can be shown by

invoking LaSalle’s invariance principle [16].

Considering the redundant case it should be mentioned that,

unless the controller is augmented by an additional null-space

stiffness component, one can of course only expect conver-

gence of the Cartesian error, but not asymptotical stability

since e(x̄b(θ),θ) = 0 then does not define a unique joint

configuration.

IV. SIMULATION STUDY

For the evaluation of the proposed controller a simple planar

system according to Fig. 2 is considered. A three DoF arm is

mounted on a one DoF flexible base. The inertia of the arm

and of the base is modeled by point masses. For the arm these

point masses are attached to the middle of link 1 and 2 and to

the endpoint of link 3. The stiffness and damping parameters of

the elastic base were chosen as Kb = 10000 Nm/rad and Db =
1400 Nms/rad. This value of Db corresponds to a damping

factor of 0.7 for the base motion when the load of the arm

is neglected. All the other model parameters are depicted in

Fig. 2.

θ1

θ2

θ3

xb

0.5 m

0.5 m
0.5 m

1 kg

1 kg 5 kg

1 m

0

100 kg

Elastic base coordinate

Fig. 2. Simulation Model



As Cartesian coordinates f(xb,θb) ∈ R
3 the position of the

endpoint of link 3 and the orientation of link 3 are chosen. The

controller gain matrices for the desired stiffness Kd and the

desired damping Dd are chosen as diagonal matrices Kd =
diag(Kd,x,Kd,y,Kd,r) and Dd = diag(Dd,x,Dd,y,Dd,r)
with different entries for the translational and for the rotational

coordinates. In the first simulation the position accuracy of the

proposed controller is compared with a Cartesian compliance

controller in which the base motion is ignored. Therefore,

the desired Cartesian stiffness for the translational coordinates

is chosen quite low as Kd,x = Kd,y = 100 N/m. The

orientational stiffness is chosen as Kd,r = 50 Nm/rad. The

damping parameters are simply chosen as Dd,x = Dd,y = 20
Ns/m and Dd,r = 10 Nms/rad.

The initial configuration (see Fig. 3) is chosen such that

initially no gravity load is exerted on the elastic coordinate xb.

Consequently, the initial base deflection is zero. Starting from

the initial end-effector position the desired virtual equilibrium

position x0 ∈ R
3 is then moved about 0.5 m horizontally

along the x-axis. This movement is generated by computing

the step response of a second-order filter with transfer function
1

s2+2s+1 . Figure 3 also shows the joint configuration of the arm

which corresponds to the steady state of the virtual equilibrium

position when the base flexibility is neglected.

The desired motion in x-direction is shown in Fig. 4.

The translational error et =
√

(e2
x + e2

y) resulting from the

proposed flexible base compliance controller (10-13) is shown

in Fig. 5. The computation of x̄b(θ) is done based on the

x

y

Fig. 3. Initial configuration (dashed) and desired final configuration (solid)
when the base flexibility is neglected.

iteration (9) with three iteration steps. The result is compared

with a simpler reference controller in which the base deflection

is ignored. This reference controller can be obtained simply

by setting x̄b in (10-13) to zero. In Fig. 5 one can see that

the transient behavior of the two controllers is similar. But in

steady state the neglect of the base deflection in the reference

controller results in a considerable position error. This error is

eliminated by the proposed controller. Since it is not obvious

from Fig. 5, it should be mentioned that the error does not

go to zero exactly, because x̄b represents an approximation

(via the iteration (9)). In the present simulation with three

iteration steps the remaining translational error was less than

1.8 10−5 m and it could be further reduced by computing a

more accurate approximation of x̄b.
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Fig. 4. Motion in x-direction. The solid line shows the desired motion and
the dashed line the actual motion with the flexible base compliance controller.
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Fig. 5. Translational error et for the flexible base compliance controller
(solid) and the reference controller (dashed).

The same behavior can also be observed for the orientation

error er shown in Fig. 6. The corresponding base deflection

shown in Fig. 7 is similar for both controllers. Evidently,

the main amount of the steady state orientation error for the

reference controller stems from the base deflection. This error

is eliminated by the flexible base controller. Figure 7 shows

the estimate x̄b(θ) of xb. One can see that the three iteration

steps already lead to a very good estimate in steady state.

In addition to the position accuracy, the resulting stiffness

is evaluated in a second simulation. As an initial configuration

the final configuration of the first simulation is chosen. Also

the same stiffness and damping parameters are used. Now an

external torque acts on the end-effector. The torque is chosen

as a step response of a pre-filter with transfer function 1
s2+2s+1

to a steady state value of 5 Nm. Therefore, in steady state the

orientation error er of the end-effector should reach a value of

0.1 rad according to the desired rotational stiffness of Kd,r =
50 Nm/rad while the translational error et should be zero.

The resulting orientation error is shown in Fig. 8. Additionally

Fig. 9 shows the translational error. Here, the simulation was

performed with three as well as with five iteration steps in

the computation of x̄b(θ). One can see that the resulting end-

effector error (in translation), which is already quite small for

three iteration steps, can be further reduced by computing a

more accurate estimation of x̄b(θ).
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Fig. 6. Orientational error er for the flexible base compliance controller
(solid) and the reference controller (dashed).
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Fig. 7. Base deflection xb for the proposed controller (solid) and the reference
controller (dashed). The dotted line shows the estimate x̄b(θ) of xb.

V. SUMMARY

The main contribution of this paper is the formulation of a

Cartesian compliance control law for a manipulator mounted

on a flexible structure. The controller does not need any

measurement of the base motion, but still compensates for

the static effects of the (known) base elasticity. Asymptotic

stability for the case of free motion, as well as a useful

passivity property for interaction tasks were shown. Finally, a

planar simulation example was presented in order to evaluate

the proposed controller.
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[9] A. Albu-Schäffer, Ch. Ott, and G. Hirzinger, “A passivity based cartesian

impedance controller - part II: Full state feedback, impedance design
and experiments,” in IEEE International Conference on Robotics and

Automation, 2004, pp. 2666–2672.
[10] ——, “Passivity based cartesian impedance control for flexible joint

manipulators,” in IFAC Symposium on Nonlinear Control Systems, 2004.
[11] ——, “Constructive energy shaping based impedance control for a

class of underactuated euler-lagrange systems,” in IEEE International

Conference on Robotics and Automation, 2005, pp. 1399–1405.
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