
SwisTrack: A Tracking Tool for Multi-Unit Robotic
and Biological Systems

Nikolaus Correll∗, Gregory Sempo†, Yuri Lopez de Meneses‡, José Halloy†,
Jean-Louis Deneubourg†, and Alcherio Martinoli∗

∗Swarm-Intelligent Systems Group (SWIS), École Polytechnique Fédérale Lausanne
†Unit of Social Ecology (USE), Université Libre de Bruxelles

‡Laboratoire de Production Microtechnique (LPM), École Polytechnique Fédérale Lausanne

Abstract— Tracking of miniature robotic platforms involves
major challenges in image recognition and data associa-
tion. We present our 3-year effort into developing the
platform-independent, easy-to-use, and robust tracking software
SwisTrack, which is tailored to research in swarm robotics and
behavioral biology. We demonstrate the software and algorithms
abilities using two case studies, tracking of a swarm of cock-
roaches, and a swarm-robotic inspection task, while outlining
hard problems in tracking and data-association of marker-less
objects.
Tracking accuracy of a moving robot with respect to camera
noise and the calibration model are calculated experimentally.
Its open, platform-independent architecture, and easy-to-use in-
terfaces (MatlabTM, JavaTM, and C++), allowing for (distributed)
post-processing of trajectory data online, make the software
highly adaptive to particular research projects without changes to
the source code. SwisTrack is publicly available on Sourceforge.net
under the OSI Adaptive License and contributions from the
robotics and biology community are encouraged.

I. INTRODUCTION

Swarm robotics research has seen substantial growth in
recent years, and research involving 20 or more miniature
robots on a desktop table becomes more and more feasible (see
for instance [1], [2]). At the same time, behavioral biologists
are better understanding principles of self-organization in
social insects [3], often by analysis of a tremendous amount
of insect trajectories, and manual event counting.
The European project LEURRE [4] is a project on building and
controlling mixed societies composed of animals and artificial
embedded agents. As a preliminary case study towards a gen-
eral methodology for controlling mixed animal/robot societies,
a team of Insbots [5] has been successfully introduced into a
swarm of cockroaches, and allowed for modification of the
natural behavior of the swarm. This self-organized process is
highly probabilistic, and thus conclusions can only be drawn
after analyzing a large number of experiments (typically 10
to several hundred of 3h duration each) involving up to 30
individuals, a work currently in progress using SwisTrack,
the software tool described in this paper. Similarly, for the
understanding of emergence of collective intelligence from
individual behavior in self-organized robotic systems, process-
ing of entire batches of experimental data is necessary, and
SwisTrack has been successfully applied in such framework
as well (for instance in [2] or [6]).
We note that Swistrack allows for tracking unmarked objects.

Marker-less techniques are of paramount importance in behav-
ioral studies, especially on insects, in order to avoid biased
behavior through tagging. On the other hand, markers are not
always applicable on robotic platforms either, in particular
when the pixel-per-object ratio is low (as it is the case in
arenas that are much larger than the individual robots).

A. Related Work

While miniaturization of robotic platforms [1], [5], is only
recently promoting swarm-robotics research, and hence makes
development of tracking systems necessary, demand for track-
ing living societies, such as social insects [7]–[9], mammals
[10], and pedestrians [11], [12], is much older, and research
from these areas might find its application also for swarm
robotics tasks.
Due to the difficulties involved and due to the specialization of
the task, there are only few tracking packages commercially
available, and all that are known to the authors are not ap-
plicable to tracking of large numbers of untagged individuals,
and do not provide access to their source code.

II. SOFTWARE ARCHITECTURE

SwisTrack is written in C++, and uses the freely available
WxWidgets [13] API for platform independent Graphical User
Interface (GUI) and networking (via TCP/IP) functionalities.
The tracking core, and image and video processing, as well
as access to a suite of USB Webcams is provided by the
Open Source toolbox OpenCV [14] from Intel Inc. Cameras
using the IEEE 1394 “Firewire” standard are supported by the
1394 Camera Toolkit [15] (MS Windows only) developed at
Carnegie Mellon University, Pittsburgh, USA.
Besides storing trajectory information to disk, SwisTrack is
able to serve data and to receive commands via a TCP/IP
networking connection, making the separation between track-
ing and post-processing code simple (either by post-processing
trajectory information stored to the hard-disk, or online by
interacting with the SwisTrack TCP/IP interface). As a side-
effect, the computational load for post-processing can be
distributed on other computers. SwisTrack is distributed with
skeleton clients for Matlab, C++, and Java that allow for
fetching tracking data (blobs as well as trajectory information)
and remote controlling SwisTrack.

Fig. 1. Block-Diagram showing the object-oriented structure of SwisTrack,
and its functionality. Typically, data processing is implemented by the user.

Fig. 2. Tracking of mixed animal/robot societies. Illustration of panels
allowing for adjusting of segmenting and tracking parameters. The arena is
populated with cockroaches and one Insbot.

The object-oriented architecture and the different, well iso-
lated, function blocks are depicted in the block-diagram in
Figure 1. The segmenting and tracking processes are detailed
in Section III and IV respectively. A screen-shot of SwisTrack
engaged in tracking of a swarm of cockroaches and an Insbot,
as well as the segmenting and tracking panels are shown in
Figure 2.

III. IMAGE SEGMENTATION

Segmenting the image into potential tracking targets (blobs)
and background information is a preliminary step for all
further operation. There is a broad range of techniques for
this purpose, ranging from simple background subtraction,
to color segmentation (as used in [7], for instance), to us-
ing probabilistic appearance models of the tracking targets
(e.g., [9]). However, with increasing complexity, generality
is however as the characteristics of tracking objects need
to be known in advance (ranging from color-profiles up to
probabilistic appearance models), while the computational cost
is increased. Parameter-based segmentation gets increasingly
difficult for heterogeneous swarms as in the LEURRE project,
where the segmentation process would need to distinguish
between cockroaches and Insbots. Also, we note that every
conceivable parametrization is strongly dependent on envi-
ronmental conditions (e.g., lighting conditions), rendering the
calibration/adaptation process difficult.
For these reasons, and because it appeared to be sufficient
for most tasks, only simple background subtraction is imple-
mented in SwisTrack. Every frame of the video feed is sub-

Fig. 3. Poor resolution and contrast, as well as overlapping objects complicate
image segmentation and data-association. Video feed (top row), and contours
after segmentation (bottom row). The number of cockroaches in the middle
column is difficult to estimate even by the human eye.

tracted from a background image which is either supplied by
the user or can be estimated and updated online. Using a user
supplied threshold value (only one color plane is considered
for background subtraction, typically the brightness channel in
a CMYK video), objects having a sufficiently different color
from the background can be distinguished. For scenarios where
lighting conditions are unstable (for instance when the arena
cannot be completely shielded), or the background is changing,
SwisTrack can estimate the background by calculating the
running average, which serves as finite impulse response filter
(FIR). This algorithm clearly reaches its limitations, when the
objects move only little, which is the case for aggregating
cockroaches. Then, targets merge with the background, and
the tracking algorithm will most likely pick-up objects that
are passing by, and lose the original, resting target.

A. Contour Retrieving

The background subtraction process leads to a binary image,
highlighting regions that contain potential objects. Using stan-
dard methods (see the OpenCV reference manual for further
information [14]), the contours of those connected components
can be retrieved. If appropriate, contours can be filtered using
different criteria (for instance minimal and maximal size, or
morphological features). SwisTrack allows for specifying the
minimal and maximal sizes of potential targets. However,
this needs to be used with caution as the size of contours
might vary drastically if objects are too close together or
even overlapping. The process is illustrated in Figure 3 for
cockroach tracking. Note the different sizes and shapes of the
different cockroaches, as well as objects being overlapped or
very close together, making data association solely based on
the video feed impossible even for the human observer.

B. Accuracy and Repeatability

An object’s position is calculated as the geometrical center
of gravity of the object’s contour, and thus leads to sub-pixel
measurements. Due to the sub-pixel resolution and noise of the
camera’s CCD, objects seem to be moving, even if they are
static with respect to the camera. For quantifying this effect,
we recorded the position of two Alice robots [1] that were
positioned off-center in an arena of 0.98m diameter. The mean

Fig. 4. Trajectory of a single target (left) vs. individual trajectory in a multi-
target environment leading to data-association mismatch (right).

error calculates to 0.1777 pixels (standard deviation 0.1240
pixels).

IV. DATA ASSOCIATION

We consider the data association step as the most difficult
part of the tracking process. Having the information from
image segmentation of consecutive frames, the problem is
to associate potential targets (blobs) with a potential trajec-
tory. Here, we outline a number of pitfalls that make data
association a hard problem, and how they are tackled in
SwisTrack. If two objects are for instance colliding, it is not
clear afterwards which trajectory needs to be associated with
which object (see for instance Figure 4). Such problems cannot
be resolved with a simple nearest neighbor approach, and a
threshold for the maximal allowed distance that an object can
move per time-step (“distance gate” [16]). Note, that some
of the scenarios detailed below do not apply when robots
are equipped with markers, and none of them apply when
robots are equipped with unique markers (geometry or color
encoded). Also, note that data association becomes even more
complicated if agents are allowed to leave or join the arena
during tracking as in [7], [9], [11], which is not considered
here. The most prominent problem in the literature ([16] and
references therein) is to avoid non-optimal solutions, which
arise from a greedy implementation of the nearest neighbor
approach. Such a situation is depicted in Figure 5, a. Assuming
Object1 chooses first, selection of the nearest neighbor will
lead to wrong association. This can be resolved by solving
a quadratic assignment problem that would minimize the sum
over the cost (distance) of all assignments [16]. This approach
however does not help for solving the problem depicted in
Figure 5, b. There, both trajectories pick the closest object,
which minimizes the distance for both, but might lead to the
(wrong) conclusion that both objects are performing a U-turn
(see Figure 4, right, for an exemplar trajectory).
Data association becomes even harder when objects are miss-
ing in the scene due to noise, reflections, lighting conditions,
etc. Such a situation is depicted in Figure 5, c. There, Object1
is invisible for some reasons in one time-step, and thus
trajectory one and two share Object2 (which might well be
if the two objects are close together). On re-appearance of
Object1, Object1 is considered too far away (due to the
distance gate), and both objects stick to Object2.
Finally, when two objects merge (partial overlap or being

Fig. 5. Potential problems when associating trajectories with targets. Targets
are indicated by circles, whereas trajectories are given by arrows. The
apostrophe indicates frame indices (time-steps). See main text for comments.

Fig. 6. Shared trajectories can split at the wrong time, leading to data-
association mismatch.

too close together) as trajectory one and three do in Figure
6, it might happen that those trajectories split prematurely
due to another object (here Object2) passing by. In this case,
trajectory one might go with contour 2, which represents in
fact only a single target, while trajectory 3 continues tracking
Object1 and Object3. Upon physical split of Object1 and
Object3, Object1 remains un-associated. In SwisTrack, the
problems outlined above are resolved as follows. We assume
the number of objects to be known and not changing during
the entire process (which is reasonable for swarm robotics and
insect experiments for which SwisTrack was designed). Every
trajectory chooses the contour closest to it, even if this contour
is already associated with another trajectory. In a second step,
every un-associated contour chooses the closest trajectory that
is in competition with another trajectory, i.e. shares a contour,
and is within range. By this, a maximum number of trajectories
and contours will be associated. In order to resolve the problem
depicted in Figure 6, SwisTrack continuously checks for “free”
contours (as 1”’ in this example) that fulfill certain criteria that
are atypical for noise, such as moving in one direction for
more than one second, and associates them with the closest
trajectory that shares a contour. Additionally, SwisTrack allows
the user to manually intervene at any time for re-associating

100 200 300 400 500 600

100

200

300

400

X−coordinates [m]

Y
−

co
or

di
na

te
s

[m
]

Trajectory of the Alice during wall−following

Fig. 7. Experimental setup showing the circular arena and the calibration
pattern. The trajectory along the stick (not shown), is superimposed.

trajectories using the GUI.

V. CALIBRATION

SwisTrack comes with a built-in calibration routine, which
requires a 2D dimensional calibration target of known dimen-
sion. The pattern can be either rectangular or round with an
arbitrary number of points. A round pattern (Figure 7) which
can be printed on A0 paper (96cm diameter) is distributed
with SwisTrack, and is an exemplar in this paper for giving
an estimate of the accuracy that can be achieved using simple
off-the-shelf hardware and SwisTrack without modification.

A. Camera Model
Most camera calibration routines were developed for 3D

calibration, and are numerically unstable if the calibration
target is coplanar with the image plane. Therefore, a 3D object
needs to be presented under different angles of view. For
our applications however, where objects move in a 2D arena
that is usually (approximately) co-planar with an overhead
camera, simpler models are applicable. Assuming the image
coordinates of N points on a calibration target being ui, and
vi, and the real world coordinates are given as xi, and yi. A
suitable representation is then for instance

0
@

xi
yi
1

1
A =

0
BBBB@

u2

v2

u
v

uv

1
CCCCA

T 0
BBBB@

a1 a6 0
a2 a7 0
a3 a8 0
a4 a9 0
a5 a10 0

1
CCCCA

0
@

cos α − sin α 0
sin α − cos α 0

0 0 1

1
A +

0
@

dx
dy
1

1
A

(1)

where a1...a10 are parameters that can be estimated by a least-
squares fit of a suitable number of world-image coordinate
pairs (at least 10), and dx, dy, and α are the parameters for
simple linear translation and rotation respectively.
SwisTrack is able to recognize a presented calibration pattern,
and hence calculates the transformation matrix by solving a
least-squares problem.
For testing the performance of the system, we designed a
simple experiment. An Alice robot [1] was programmed in
wall-following mode in an arena of approximately 98cm
diameter, which was cut in half by a straight stick (Figure
7). The scenario was recorded by a Unibrain Fire-I 400
camera (industrial case, resolution of 640x480, frame rate of
30Hz for monochrome images), with a focal length of 2.5cm,
mounted approximately 1m above the arena. The experiment
lasted 1h, which allowed the Alice to follow the outline of
the stick 45 times on its entire length. We first calculated
the static calibration error by marking 9 equidistant points

−0.5

0

0.5

−0.4−0.200.20.4

X
−

co
or

di
na

te
s

[m
]

Y−coordinates [m]

Fig. 8. Mean trajectory along the stick in world coordinates (after calibration)

(11.5cm) along a line cutting the arena into half (similar to
the stick), and recording 750 measurements (50s at 15Hz).
Hereby, the points were placed in between the calibration
points, so that the calibration error can be assumed to be
maximal. The average measurement error due to camera noise
calculates to 0.17mm (standard deviation 0.03mm), whereas
the average absolute calibration error calculates to 2.3mm
(standard deviation 1.4mm), measured from the centre of each
point. For testing the dynamic calibration error, we discarded
all data points, where the Alice was following the arena wall,
as the arena is not exactly circular (±1cm), and therefore
not suitable as reference. The effect discussed in Section
III-B (camera noise) seems now to be more prominent for
moving objects (mean error and standard deviation are roughly
larger by a factor of two than in the static case), which is
due to the fact that PD-controller used for wall-following
might oscillate slightly (sensor noise and transient behavior
of the controller). The data points were transformed in world
coordinates using (1), and are depicted in Figure 8. The data
was fitted by a straight line parameterized as y = mx + c,
which is superimposed in the Figure.
We now calculated the distance from each calibrated trajectory
point to the average line, which we consider to be the
calibration error. The mean error along the straight part of
the Alice trajectory is plotted in Figure 9, and ranges from
0.5mm to 2.5mm (standard deviation around 0.5mm). The
actual calibration error (Figure 9) increases for objects farther
than around 20cm from the center. This is an artifact of the
chosen calibration pattern as well as due to the fact that the
calibration points are in a plane that is around 2cm lower
than the Alice. With increasing distance from the camera axis
that is orthogonal to the arena, the perspective changes and
the geometrical center of gravity of the Alice contour drifts
towards the arena center, yielding a slightly higher error for
these regions.

VI. CASE STUDIES

Both case studies are using the same camera (Unibrain Fire-
I 400, see Section V-A), however using a focal length of

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3 Average error over the length of the stick

Y−Coordinate in absolute coordinates [m]

A
ve

ra
ge

 d
is

ta
nc

e
fr

om
 th

e
st

ic
k

[m
]

Fig. 9. Average calibration error over the length of the straight part of the
Alice trajectory.

Fig. 10. Experimental setup for the inspection task.

f = 4mm. Increasing the focal length decreases the field of
view, whereas the distortion will be reduced, and hence the
calibration error decreased.
We notice that both case studies presented here do not make
use of the calibration routine as the applied metrics (area
coverage and presence of individuals in certain areas) can
be applied in image space, which is best practice whenever
possible, as uncertainties introduced by the calibration process
can be avoided.

A. Swarm Robotic Inspection

The swarm robotic inspection scenario has been presented
in [2]. The aim of this case study is to contribute to the
development of a general methodology for designing and
modeling swarm robotics systems. In [2], a swarm of up to
20 miniature robots inspects blades in an abstracted model
of a jet turbine engine (see Figure 10 for the experimental
setup). As the case study is only concerned with the analysis
of the interactions within the swarm and its general motion,
inspection is assumed to be successful after every blade has
been circumnavigated at least once by at least one robot.
The camera has been adjusted such that the CCD fits the
rectangular arena as well as possible (Figure 11), leading to an
approximate rate of 480 pixels / 1m. By this the Alice robots
in use were represented by approximately 10x10 pixel squares.

Fig. 11. Experimental setup as seen by the camera (640x480, f = 4mm).

Fig. 12. Mean inspection progress over 20 experiments with 20 miniature
robots inspecting a scenario with 16 objects.

The maximum speed of the robots is around 4cm/s, yielding
around 1.33 mm displacement per frame at a frame rate of
30Hz, corresponding to roughly 0.5 pixels/frame. SwisTrack
was used to record the robots’ trajectories that were analyzed
for determining task completion. In Figure 12, we summarize
the mean inspection progress over 20 experiments involving
20 Alice robots each. The mean duration of an experiment
was around 250s.

B. Tracking of Insect Societies

The experimental setup (see [17] for a similar scenario)
is depicted in Figure 13 and shows an arena of 0.98m
diameter. The arena is populated with a swarm of cockroaches.
Within the arena, two shelters of 10cm diameter are hovering
at a height of 5cm, being supported from invisible wires.
Cockroaches have a size of up to 4cm (1cm width), which
leads to approximately 25 × 5 pixel squares for the area
in image space. Unlike a miniature robot, cockroaches can
reach speeds up to 1m/s, leading to displacements of up to
16 pixels per frame. An exemplar view through the camera
for an experiment involving 10 cockroaches and 2 shelters
is provided in Figure 14. The shelters are translucent red,
and thus allow the cockroaches still to be visible (although at
reduced contrast) for the experimenter and the camera, while

Fig. 13. Experimental setup (drawing S. Portha).

Fig. 14. Experimental setup as seen by the camera (640x480, f = 4mm).
10 cockroaches and 2 shelters.

providing a “dark” resting spot to the cockroaches that are
less sensitive to red light. SwisTrack is used in this experiment
for counting the evolution of the number of individuals under
each shelter. In SwisTrack, an arbitrary number of regions
of interest (for instance the shelters) can be specified using
a binary bitmap (BMP format), and the number of objects
within this area is displayed and stored to disc (see also
Figure 2). The experimental error introduced by the vision
system for an experiment of 180min length involving 10
cockroaches and 2 shelters has been recorded in Figure 15,
by comparing the numbers provided by the software with a
manual count that was performed every 5 minutes during 180
minutes total (72 data points, numbers are normalized with
the total number of objects). Results for the same experiment,
but involving a swarm of 30 individuals, are depicted in
Figure 16. In both Figures, the Y-axis represents the ratio of
individuals under a shelter to the whole swarm counted by a
human experimenter and serves as ground-truth data (notice
however that manual counting might also show a certain error).
The X-axis represents the SwisTrack estimate for the same
measure. The observed error is mainly due to data association
problems, which become more difficult for occluded as well

Fig. 15. Estimate of the fraction of individuals (x-axis) under shelter vs.
manual counting (y-axis). Experiment duration 180min, 10 individuals.

Fig. 16. Estimate of individuals under shelter vs. manual counting (experi-
ment duration 180min, 30 individuals).

as overlapped targets, conditions which arise under the shelter,
which makes the detection of targets more cumbersome due
to reduced contrast. Note that the error seems to be maximal
when roughly half of the cockroaches are under the shelter.
This can be explained by the fact that the activity under the
shelter is maximal for these numbers, as aggregates of higher
density lead to reduced activity of the animals (the probability
to move is decreasing with increasing number of cockroaches
under the shelter [17]), whereas small numbers of individuals
are less likely to yield data association problems.

VII. DISCUSSION

Whereas quantifiying the tracking error is difficult for the
inspection case study where ground truth data is difficult
to obtain, we identify common sources of errors in multi-
target tracking in the social insect case study. As described
above, uncertainties are already introduced in the segmentation
routine, which gets increasingly difficult for higher density of
individuals in the environment as this increases the likelihood

for collisions and overlap of objects’ contours. Errors during
segmentation are indeed responsible for the increasing relative
error when tracking 30 individuals (Figure 16) as opposed to
10 individuals (Figure 15), as the density of individuals under
a shelter is much lower then. We conjecture that increasing
the camera resolution might help to increase the accuracy of
segmentation, however at cost of an increasing computational
time and a more expansive hardware setup.
Uncertainties arising during the segmentation process need to
be resolved by the data association algorithm, which becomes
increasingly difficult with increasing speed of the agents (see
Section IV for an example) or decreasing framerate. This effect
has however not been observed in the specific experiments
conducted in this paper. In the inspection case study, the ratio
of robot speed (4cm/s) and frame rate (30Hz) is sufficiently
low, whereas in the social insect case study, cockroaches tend
to move at a similar low speed when under or close to the
shelter.
Generally speaking, segmentation and data-association can
be improved, but only at cost of reduced generality and
additional computation. For instance, it could make sense
to use a kinematic model of the object to track. In case of
the cockroach experiments, this will translate into taking into
account the angle of preferential movement instead of just
the simple max-speed criterion. Such a specific model would
however need adaptation to a robotic scenario, and vice versa.
We note that the data association problem will be relaxed
as soon as the robots’ contours can no longer merge. This
can be achieved for instance by using “hats” equipped with
high-contrast markers. This will work, if the robot’s speed
is slow with respect to the cameras frame rate, so that two
robots cannot swap positions within one frame, and if the
arena is never occluded due to non-transparent shelters or the
experimenter’s hand for instance.
In further work, we are interested in better understanding
and improving the reliability of the employed data association
algorithms, which have so far been only developed empirically.
Also, we are interested in making the background subtraction
method more robust to changing lighting conditions, which
should be feasible without loss of generality.
Finally, we notice that implementation of improved algorithms
(image segementation or data association) is straightforward in
the framework of SwisTrack, either by exploiting the object
oriented architecture, which facilitates the replacement of
singular functional blocks, or by using the TCP/IP interface
together with a high-level programming language.

VIII. CONCLUSION

Using two case studies, one chosen from swarm robotics
research, and the other from behavioral biology, we have
outlined hard problems that arise in tracking multiple, mobile,
marker-less, miniature objects. We also show that Swistrack is
an essential tool for studying individual characteristics and
capabilities of agents in a swarm. This is the baseline for
understanding the transition from individual to collective ca-
pabilities, and will eventually be a key tool for optimizing the

design of the individuals according to the expected emergent
properties at the collective level.
We also showed how to achieve useful tracking results using
off-the-shelf components, and considerably simple algorithms,
wrapped up in a ready-to-use software package, which enables
future research with considerably low overhead.

ACKNOWLEDGMENTS

This project was partially sponsored by the European
Project Leurre, sponsored by the Future and Emerging Tech-
nologies program of the European Community (IST-2001-
35506). N. Correll and A. Martinoli are also sponsored by
the Swiss National Science Foundation (contract Nr. PP002-
68647). The authors would like to thank Christopher Cianci,
Julien Nembrini, and Pierre Roduit for their contributions to
the SwisTrack core.

REFERENCES

[1] G. Caprari and R. Siegwart, “Mobile micro-robots ready to use: Alice,”
in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2005,
pp. 3295–3300.

[2] N. Correll and A. Martinoli, “Collective inspection of regular structures
using a swarm of miniature robots,” in Proc. of the Int. Symp. on
Experimental Robotics 2004, Springer Tracts in Advanced Robotics,
vol. 21, 2006, pp. 375–385.

[3] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz,
and E. Bonabeau, Self-Organization in Biological Systems, ser. Princeton
Studies in Complexity. Princeton University Press, 2001.

[4] (2006) European project leurre. [Online]. Available:
http://leurre.ulb.ac.be

[5] G. Caprari, A. Colot, R. Siegwart, J. Halloy, and J.-L. Deneubourg,
“Building mixed societies of animals and robots,” IEEE Robotics &
Automation Magazine, vol. 12, no. 2, pp. 58–65, 2005.

[6] V. Trianni and M. Dorigo, “Self-organisation and communication in
groups of simulated and physical robots,” Biological Cybernetics, 2006,
in press.

[7] T. Balch, Z. Khan, and M. Veloso, “Automatically tracking and analyzing
the behavior of live insect colonies,” in Proc. of the 5th Int. Conf. on
Autonomous Agents, 2001, pp. 521–528.

[8] D. Reynolds and J. Riley, “Remote-sensing, telemetric and computer-
based technologies for investigating insect movement: a survey of exist-
ing and potential techniques,” Computers and Electronics in Agriculture,
vol. 35, pp. 271–307, 2002.

[9] Z. Khan, T. Balch, and F. Dellaert, “Mcmc-based particle filtering for
tracking a variable number of interacting targets,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2005.

[10] L. Noldus, A. Spink, and R. Tegelenbosch, “Computerised video
tracking, movement analysis and behaviour recognition in insects,”
Computers and Electronics in Agriculture, vol. 35, pp. 201–227, 2002.

[11] K. Teknomo, Y. Takeyama, and H. Inamura, “Frame-based tracking of
multiple objects,” in IEEE Workshop on Multi-object Tracking, 2001,
pp. 11–18.

[12] A. Bulpitt, R. Boyle, and J. Forbes, “Monitoring behavior of individuals
in crowded scenes,” in Proc. of Measuring Behavior, 3rd Int. Conf. on
Methods and Techniques in Behavioral Research, 2000, pp. 28–30.

[13] J. Smart, K. Hock, and S. Csomor, Cross-Platform GUI Programming
with wxWidgets. Prentice Hall, 2005.

[14] (2006) Opencv library. [Online]. Available:
http://sourceforge.net/projects/opencvlibrary/”

[15] (2006) 1394 camera driver. [Online]. Available:
http://www.cs.cmu.edu/ iwan/1394/

[16] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking
Systems. Artech House Publishers, 1999.

[17] J.-M. Amé, J. Halloy, C. Rivault, C. Detrain, and J. L. Deneubourg,
“Collegial decision making based on social amplification leads to
optimal group formation,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 103, no. 15, pp. 5835–
5840, 2006.

