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Abstract— We propose a novel scheme for fusion between two
types of modalities to support function-based classification. While
the first modality targets functional classification from sounds
registered at impact, the second one aims classification of objects
in 3D images. Using audio one can answer functional questions
such as what is the material the analyzed objects are built
of, if the objects are full or hollow, if they are heavy, and if
they are rigidly linked to their supports. Audio based signatures
are used to label parts of the object under analysis. Different
parts of any object can be partitioned in generic multi-level
hierarchical descriptions of functional components. Functionality,
in the visual modality reasoning scheme, is derived from a large
set of geometric attributes and relationships between object parts.
These geometric properties represent labeling signatures to the
primitive and functional parts of the analyzed classes. The fusion
between both of the modalities relies on a shared cooperation
among audio and visual signatures of the functional and primitive
parts. The scheme does not require a-priori knowledge about any
class. We tested the proposed scheme on a database of about one
thousand different 3D objects. The results show high accuracy
in classification.

I. INTRODUCTION

The outside world emits plenty of signals that human being
must filtrate in order to extract information. Human recog-
nition is based on multiple sensors fusion: hearing, seeing,
smelling, touching etc. (see [30]) . Following this idea, we
designed a multi-modal approach to classify environments
in a functional based framework. We employ a new fusion
scheme for audio and visual modalities in a functional based
framework. An audio sensor allows to recognize functionalities
otherwise unrecognizable by visual sensor such as: material,
emptiness, etc.

In most works, (see [1], [15], [16], [29]) , analyzes of the
sound properties of an object are made through a single
collision of the studied object. In general, audio systems
register produced sounds, create databases of their signatures,
and include some testing schemes.

The audio signatures that have been most often used in
databases are: the Fourier transform ([6], [16]), the spectro-
gram ([17]), and the decay rate ([1], [15], [16], [17], [29]). The
next step after creating the database is choosing a classifier
[18], [28]. According to [6], a minimum distance classifier is
efficient to recognize material by colliding sound.

In [1], the authors have tested their system by trying

to differentiate four different materials: rubber, wood, glass,
and steel. They show that decay rate is a convenient tool
to classify these four types of material. [9] tests an audio
system to recognize plastic, wood, glass, and steel. The author
separates the four tested materials into two macro-categories:
wood/plastic and glass/steel.

Concerning vision,the first systems using function-based
classification were [5] and [32]. An impressive number of
results in the function-based classification field were demon-
strated with the GRUFF and OMLET systems [25], [26], [33].

Recalling [30], fusion of different sensors is at high interest
in environmental classification. In [27], the authors employ
fusion in order to proceed to audiovisual speech recognition.
Audio and video fusion is also used in tracking [3]. [21] pro-
poses to combine computer hardware (mouse and keyboard)
in order to model human activities. Interestingly enough,
applications of fusion between audio and video modalities are
used in lipreading [8], [19].

We propose a novel scheme for a functional based classifier
employing fusion of audio and visual modalities. While the
first modality targets functional properties recognizable from
audio information, the second one aims classification of ob-
jects captured in 3D images (see [23]) .

The audio modality is employed to label parts of the
analyzed objects with the audio signatures of sounds resulting
from the impact between primitive parts and the end effector
of a robotic arm. Although extensively used techniques such as
FFT, spectrogram, and decay rate are employed in computing
the signatures, it is the first time functionalities are inferred
from sounds. Following and generalizing [23], where a vi-
sual functional based classification scheme is proposed, our
classification process calls for constructing a generic multi-
level hierarchical description of object classes in terms of
functional components. The construction of the generic multi-
level hierarchy can be thought of as a learning phase. Our
scheme is able to automatically build the description of any
new object class from labeled examples.

During classification, a search through a finite graph using
a probabilistic matching measure is performed to find the best
assignment of parts of an object to the functional structures
of each class. An object is assigned to a class providing the
highest matching value.
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We tested the proposed scheme on a database of about one
thousand different 3D objects. In so far as we know, this is
the first scheme that performs function-based classification
that involves a learning phase and does not require a-priori
knowledge about any class. Nevertheless, it is the first scheme
that performs functional based classification fusing audio
and video information. Bearing in mind that today’s range
capturing devices are largely available at relative low prices,
the use of these sensors as well as their fusion with other
modalities provides the basis for a large range of classification
applications.

II. FUNCTIONAL BASED CLASSIFICATION USING AUDIO

We focused on two main aspects: material and emptiness
recognition. We target classification of ceramic, wood, plastic,
empty and full glass sounds registered when they are struck.
We also studied the stability of an object on its support, weight,
and hardness (see [9]) .

A. Building a Database of Sounds

The database comprises the sounds generated when striking
objects built from ceramic, wood, empty glass, full glass,
plastic which is rigidly-linked to its support, not rigidly-linked
plastic, full plastic, hollow ceramic, and more. For each one
of the first five classes we registered eighty sounds.

In order to create a database we used a robot arm pro-
grammed to strike each analyzed material. When registering
sounds, a constant force was used and constant delays were
detected from the beginning of the registration frame and up
to the entrance of the signal.

B. Audio Based Classifier

We have implemented three signatures: FFT, spectrogram,
and decay rate. These signatures are the most common used
one (see Section I) . At classification, a grade of matching is
established. The object is associated with the class with which
the highest level of matching is detected.

The first signature we have used is FFT [6]. In the period
domain, the Fourier transform of the signal presents peaks at
defined positions. Different classes of sounds (glass, ceramic,
etc.) have different peaks in the Fourier domain. The location
of these peaks represent the first signature. The spectrogram
[17] also outlines a maximum that is characteristic of func-
tions. This signature varies the less over the different samples
that were registered for the database. Each registered sound
amplitude decreases as a function of a constant, which is
the angle of internal friction. The internal friction parameter
depends of the material and causes higher frequencies to decay
more rapidly. Studying the decay rate [15] of the signal gives
us information about its functions.

III. FUNCTION BASED FUSING OF AUDIO AND VISUAL
CLASSIFIERS

In [23], we proposed a functional based classification
scheme on visual data. Here, we show a generalization of this
classifier towards fusion with audio data. The proposed scheme

consists of two phases: a learning phase and a classification
phase. Each of these phases receives as input segmented
images (see [12]) . We do not elaborate on the details of the
implemented segmentation technique due to space limitations.

The objects are segmented into constituents: primitive
and functional parts, together with several visual signatures.
The primitive parts (also known in the literature as geons
[2], [4]) that we consider are sticks, plates, and blobs. A
functional part is defined as an object part that could provide
a certain function, and usually comprises several primitive
parts. In addition, each part is labeled with audio signatures
as computed by the audio classifiers.

In the learning phase, several instances (objects) of a class
are input. The learning phase computes the values of the visual
signatures of the constituents, the relationships between them,
as well as the values of the audio signatures.

A. Multi-Level Hierarchy Functional Structure

The classification process comprises an analysis both of
the detected primitive parts and the relationships that exist
among them. We call the relationships between primitive
parts primitive-to-primitive connections. Each primitive part
or group of primitive parts and the primitive-to-primitive
connections among them that can fulfil a certain functional
task are classified as a functional part. Further, several func-
tional parts and the relationships among them can define a
functional task and can form a higher level functional part.
The proposed hierarchy can be as complex as one wishes. This
approach is known in the literature as recognition/classification
by functional parts. A relationship between a pair of functional
parts is called a functional-to-functional connection. Each level
in the functional hierarchy has a clique structure and each
pair of functional parts (in the clique) are characterized by a
relationship expressed in terms of visual or audio signatures.
For example, in Fig. 1, each pair of functional parts ”Back
Support”, ”Sittable”, and ”Ground Support” are connected,
thus forming a clique. Note that these three nodes have the
common ancestor ”Chair”.

For any functional part f, define P (f) and F (f) the set of
immediate primitive or functional constituents of f and C (f)
the set of connections between the elements of P (f)

⋃
F (f) ;

see Fig. 1. Note that only one of P (f) or F (f) is not empty
for any functionality f.

For any symbolic primitive part, functional part, or connec-
tion a, we associate AV S (a) , a set of audio and visual signa-
tures. If a is a primitive or a functional part then AV S (a) in-
cludes, among other properties, inertia moments, material, and
emptiness. If a is a connection, AV S (a) includes, for example
ratio of volumes. The full description of the visual signatures
we have considered is relatively large and can be found at
www.cs.technion.ac.il/∼mpechuk/ProjectOCLS/index.html.

Each signature, either audio or visual, is associated with
a histogram of measured values. The histograms are built
employing B-spline functions [7].

Consider a multi-level hierarchy and let P and F
be the set of all the symbolic primitives and func-



Fig. 1. The multi-level hierarchy functional structure.
F (Arm-chair) = {Arm Support, Chair} . The arms represent
a simple functional part with the functionality of supporting the
arms, while the chair is a high level functional part due to the fact
that it describes a more complex functionality.
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Fig. 2. Learning and classification flows.

tional parts, respectively, the hierarchy includes. De-
fine A = {(a, s) | a ∈ F

⋃
P, s ∈ AV S (a)} and B =⋃

f∈F {(c, s) | c ∈ C (f) , s ∈ AV S (c)} . Then, the multi-
level hierarchy of a functionality f induces a function Hf :
A

⋃
B → H, where H = {h | h : R → [0..1]} is the set of all

(normalized) histograms that can be implemented as B-spline
functions (see next section) .

B. Learning Functionalities

Fig. 2 (upper part) shows the flow of the learning phase
of our scheme. The input of the learning phase is a set of
functional labeled objects. Each functional and primitive part
is labeled with a symbol or a generic name. For each input
object, the proposed scheme calculates the values for all the
pre-defined visual and audio signatures. Further, these signa-
tures values are subject to an RBF-like (radial-based function)
learning [20].

In the learning phase, the scheme builds histograms for
signatures of the functional parts as well as for the connections
between the functional parts. For each functional part, the set
of histograms of its constituents, functional (sub)-parts and
connections, represents the signature of the functional part.

C. Classification

Fig. 2 (lower part) shows the flow of the classification phase
of our scheme. In the classification mode, the input consists
of a set of primitive parts, the connections between them, and

the multi-level hierarchy provided by the learning phase. The
classification phase computes a vector of grades that describes
how an object offers class functionalities. Each element of the
vector represents a grade relative to one class. The class with
the highest matching grade is chosen as the best match found
by our scheme.

1) Matching Grades Computation: Assume we want to
evaluate the matching grade for functionality f and FH is
a multi-level hierarchy computed for f. Let Pin an input set
of primitive parts which are to be partitioned in the functional
parts of FH in order to recover f. Let P be the set of all
hypothetic partitions of Pin in a FH structure and for any
r ∈ F (f)

⋃
P (f) let p (r) be the sub-set of the partition p

relative to r. Define

grade (f, p)

=
∑

s∈AV S(f)

Hf (f, s) (p)
∏

r∈
(

F (f)
⋃

C(f)
) grade (r, p (r))

if P (f) is empty and

grade (f, p) =


 ∑

s∈AV S(f)

Hf (f, s) (p)







∑

r∈
(

P (f)
⋃

C(f)
)w (r, s) grade (r, p (r))




otherwise. Here, w (r, s) is a weight function that is
proportional with the standard deviation [14] of the
histogram function itself corresponding to r and s
(not the histogram’s range) and Hf (r, s) (p) means the value
of the signatures histogram for r implemented following
partition p. If p is a primitive part then the matching grade
grade (p, p (p)) =

∑
s∈AV S(p)Hf (f, s) (p (p)) . If c is a

connection, then

grade (c, p) =
∑

s∈AV S(c)

w (c, s)Hf (c, s) (p) .

Moreover, for any functionality f, the matching grade is
defined as

grade (f) = max
p∈P

grade (f, p) .

The classification phase is a search and validation like algo-
rithm over a finite graph of partitions.

2) Matching Partitions to Functionalities: We define the
matching of partitions to functionalities as a search in a finite
graph problem. The search space is a graph with (m + 1)n

nodes. The first state of the graph is always the ”empty” state,
i.e., all the primitive parts are located in the ”non-partitioned”
section. The children’s generation function takes a state of
level k−1 in the graph and generates all possible realizations
for the k-th functional part from the ”non-partitioned” primi-
tive parts set. It assumes that the previous k−1 functional parts
are already realized. Thus, the last level contains all possible



partitions of the object. The goal is to find the state with the
highest matching grade.

We used a heuristic search with a pruning branch-and-bound
approach. Define the partial matching grade of a primitive part,
a functional part, or connection a relative to partition p be

partial (f, n) =
{

grade (f, p) if f is assigned
1 otherwise , (1)

where n is a node in the search graph. For searching purposes
we use partial matching grades. From (1) , it follows that when
the search reaches a leaf, the partial grade equals the matching
grade. Following [11], the algorithm searches for the partition
that has the highest matching grade.

IV. EXPERIMENTS

We tested our scheme on a database comprising synthetic
models of 200 forks, 216 spoons, 200 stools, and 200 spec-
tacles. We also tested our scheme on a database comprising
100 forks, 100 spoons, 97 chairs, 100 spectacles, 118 airplane
models, 30 cupboards, 20 mugs and cups, and 15 tables of real
range images. The objects are built from wood, plastic, metal,
ceramic, glass, and combinations of them. Partial sets of the
forks, spoons, chairs, the spectacles, and cups and mugs that
we used in experiments, are shown in Fig. 8. The objects in
the range images were captured with a Cyberware range scan-
ner (http://www.cyberware.com) . The sounds registration was
done using a robotic arm (see Figure 4 and [22]) equipped
with a uni-directional condensers microphone with frequency
range of 300-10000 Hz. We also considered reconstruction of
3D objects from stereo images (see Figure 3) .

Fig. 3. On each row, left and right images as taken from the robotic arm in
Figure 4. The middle images are their range reconstruction.

A. Experiments on Audio Classification

We tested the performance of the audio classifier for de-
ciding if glass objects are full or empty. In addition, we
tested the quality of classification of four different studied
materials: plastic, ceramic, wood, and glass. The classifier was
designed to decide that the analyzed object is built from a
certain material (glasses being allowed to be full or empty)
considering the maximum detected grade. The average of

Fig. 4. Image of a robotic arm equipped with a stereo vision system and a
microphone.

success of the classifier is 71.43%. Note that we built the
audio based classifier for testing the quality of classification
the audio signatures provide; for fusion purposes, we use the
audio modalities as signatures.

1) Receiver Operator Characteristic - ROC: We have used
a training set of fifty samples: ten samples of each one of
the classes (wood, plastic, ceramic, glass, and full glass). In
this case we have a multi-category classifier and the decisions
are based on a unique threshold over all the five classes, that
varies from 0 to 1 for ROC constructing purposes of course.
For example, if a wood object is given a grade of 0.8 as wood
and 0.2 as a ceramic object, it is both a hit and a false alarm
for the threshold of 0.1. Unlike 0.1, for the threshold of 0.5
it is only a hit. The results of our classifier can be seen in
Figure 5.

Fig. 5. A receiver operator characteristic for sounds on fifty samples.

2) Cross Validation: A material is recognized when the
classifier recognizes it with the highest percentage from all
other classes. We have tested fifty new samples. The results
are represented in Figure 6.

B. Classifying 3D Data

We outline two types of experiments aiming to check model
strength, and ROC and accuracy. In all the tests, the learning
phase was performed on images that contain only one object.
In model strength checking, and ROC and accuracy tests, we
used the proposed scheme to classify objects from 3D images
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Fig. 7. Experiments: (a) Learning and classifying real spoons. (b) A ROC
on the whole data base for stools (the uppermost curve), forks, and spectacles
(the lowest curve). (c) The accuracy of stools versus the rest of the data base.
(d) Overall accuracy.

that contain only one object. These tests show that a relative
small set of learnt objects suffices for a good classification
performance.

1) Model Strength Checking: In the model strength check-
ing experiment, two sets of objects were used: a learning
set and a test set. The graph in Fig. 7 (a) shows the test
set average grades as a function of the size of the training
set. Here, the lowest curve represents the average of the
grades of the classified objects and the higher curve shows the
percentage of the test set’s average grade from the maximal
grades in the test set. In the experiment shown in Fig. 7 (a) the
learning sets consisted of real scanned objects. The set used
for classification is constant per experiment and comprised all
the scanned objects.

2) ROC and Accuracy: Consider classifications that work
on components of the vector matching grades (the classifiers
do not perform maximum on components) . In Fig. 7 (b) ,
we show the ROC superimposed curves of stools, forks, and
spoons. In Fig. 7 (c) , we show the accuracy of the classifier of
stools versus the data base. In Fig. 7 (d) , unlike in Fig. 7 (b)
and (c) , we show the accuracy of the classifier that performs
maximum on vector grades, targeting all five tested classes
and the whole data base.

Fig. 8. Images of some objects used in our experiments.

C. Experiments on Fusion Between the 3D and Audio Clas-
sifiers

Our database include 20 cups and mugs where 16 of them
are ceramic objects, two are plastic objects, and two are
glasses. In addition, we have used a wood bowl. Here, we
only present two experiments due to lack of space.

1) Refined Cross Validation: After learning all the cups and
mugs in the database we provided to the visual and to the
combined visual and audio classifier the wood bowl in Figure
9. Although the visual classifier recognized it as a cup, the
combined one provided a very low grade, due to the fact that
all our cups and mugs are from ceramic, plastic, and glass.

Fig. 9. A wood bowl recognizable as a cup in 3D.

2) Empty and Full Cups and Mugs Classification: We have
learnt all the cups and mugs. We report that all of the 20
mugs and cups were correctly classified by the 3D scheme.
In addition, we report that both of the empty and full glass
were recognized. We repeated the classification process by
stroking the full and empty glass mugs in several locations.
As expected, the results followed the percentage of recognition
provided by the cross validation scheme in Figure 6.

V. CONCLUSIONS

In this work, we have presented a novel scheme for a
functional based classifier employing fusion of audio and
visual modalities. While the first modality performs classi-
fication of functionalities from sounds registered at impact,



the second one targets classification of objects in 3D images.
The input objects are full 3D descriptions of objects also
including sound produced when struck. The proposed scheme
employs an object functional structure, consisting of a multi-
level hierarchy of functional parts. The multi-level approach
offers a higher degree of freedom for real object modelling as
compared to classical systems and can be seen as a learning
phase.

Our approach was tested on a database of about one
thousand different 3D objects employing several algorithms for
searching and pruning. To the best of our knowledge, no other
classification (or recognition) scheme was tested on hundreds
of range images of real objects captured in range images.
Moreover, no fusion for functional based classifiers designed
for different sensors was proposed. The graphs show that
our scheme represents a reliable classification method. They
also provide an insight into the dimensions of the learning
sets that are required so as to reach a certain degree of
classification accuracy. Our work appears to be the first scheme
that performs function-based classification that involves a
learning phase and does not require a-priori knowledge about
any class.

Part of our future work consists of introducing more modal-
ities such as temperature or feedback force sensors. Moreover,
we intend to text mobile robots equipped with arms in more
complex scenes.
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