Developing a non-intrusive biometric environment
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Abstract— The development of large scale biometric systems
requires experiments to be performed on large amounts of data.
Existing capture systems are designed for fixed experiments and
are not easily scalable. In this scenario even the addition of extra
data is difficult. We developed a prototype biometric tunnel for
the capture of non-contact biometrics. It is self contained and
autonomous. Such a configuration is ideal for building access or
deployment in secure environments. The tunnel captures cropped
images of the subject’s face and performs a 3D reconstruction
of the person’s motion which is used to extract gait information.
Interaction between the various parts of the system is performed
via the use of an agent framework. The design of this system is
a trade-off between parallel and serial processing due to various
hardware bottlenecks. When tested on a small population the
extracted features have been shown to be potent for recognition.
We currently achieve a moderate throughput of approximate 15
subjects an hour and hope to improve this in the future as the
prototype becomes more complete.

I. INTRODUCTION

Deployment of large scale biometric systems is already
upon us. They are increasingly being adopted by border entry
points and workplaces. Whilst they have been shown to be
efficacious on small samples, they have yet to be demonstrated
on large populations. One of the key challenges that needs to
be solved in this scalability issue is to significantly increase the
throughput of individuals. This can be achieved in two main
fashions : faster biometric capture or less human intervention.
One obvious way of increasing the capture rate of biometric
information is to use non-contact methods such as face or
gait. Face is a well known biometric that has been shown
to be a rich discriminator of individuals [1], [2]. Gait is a
new biometric that has shown promising results whilst being
detectable from a distance [3], [4]. By making the system
autonomous the requirement for a human operator can also be
removed. Autonomous or smart rooms have been previously
studied [5]. They are typically concerned with tracking of
individuals to customise their interaction with the environment.

This paper aims to extend the smart room concept to bio-
metric capture. However, instead of performing tracking, the
environment will return biometric features. The environment,
hereafter known as the biometric tunnel, will perform on-
line capture of face and gait. Face will be found directly
from images and gait information will be extracted via a 3D
reconstruction. When the tunnel is fully automated, we shall
develop identification results. Here we describe the underlying
design and operation, especially with a view to a smart room
or access control scenario. In biometric applications it is
imperative that no information is lost as this may result in
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Fig. 1. An overview of the biometric tunnel.

erroneous identification. For this reason the biometric tunnel
is designed to capture full video rate (30 fps) information from
both modalities. This requirement will place a large burden on
the system and underlying architecture. The paper is organised
as follows. Section II provides an overview of the biometric
tunnel. It focuses on the hardware and software as well as the
major algorithms tying them together. Results and performance
measures of the tunnel are presented in section III. Finally,
section V provides conclusions from this work.

II. THE BIOMETRIC TUNNEL

The main features of our biometric tunnel are 1) self-
containment, 2) autonomous capture and feature extraction,
and 3) scalability. These three features will allow us to capture
large data sets as required for real world biometric systems.
A system overview is shown in figure 1. Before biometric
capture is performed, the system must first be calibrated. This
is followed by the various processes that make up the biometric
capture system. Our architecture also makes a further distinc-
tions on the basis of processing requirements. Local processes
are carried out on a single computer and require no extra
information. In contrast, global processes require distributed
processing and gathering of information from multiple sources.
Due to the distributed nature of processing within the system
an agent framework was developed to mediate the interactions
[6]. In this framework, agents are both clients of and service
providers for other agents. Inter-agent communications are
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Fig. 2. The current tunnel prototype (a) synthetic (b) actual

mediated by a common middleware. Additionally, locking
mechanisms are provided to prevent multiple access to hard-
ware devices such as cameras. The figure explicitly labels the
various agents developed for the tunnel. Figure 2 shows the
current tunnel prototype. It consists of a distributed array of
cameras, which are connected in pairs to local computers for
efficient processing. Additional computers are used to control
the entry and exit detection system and to coordinate the
tunnel’s activities. The remainder of this section explains the
various components of the tunnel.

A. Camera Calibration

As the tunnel will be performing 3D reconstruction upon
the image data, camera calibration is essential. Calibration
is the process of finding the camera model (K), pose (R),
and position (t) of a camera. This information is used to
project points in the world space, X = (X,Y, Z,1)T, to image
coordinates, x = (x,y,1)7, as follows:

x = PX = K[RJt]X (1)

Additionally, real camera lenses have imperfections which
distort the image coordinates. The largest of these are due to
radial distortion effects. Radial distortion is due to curvature
of the lens as you move from the focal centre. After radial
distortion the image coordinates become :

Xg=Xe + (14 myr + kor® 4+ - )x )

Here x. is the lenses optical centre, r is the distance from
the optical centre and k; are the radial distortion parameters.
The camera is fully calibrated when K, R, K, and «; are
known. Typically these parameters are found via the use of a
target with known geometric properties. The biometric tunnel,
illustrated in figure 2(b), is used as the target for our calibration
process. There are 4 steps to our calibration procedure :
find radial distortion, find intrinsic parameters, find extrinsic
parameters, and optimise over all cameras. These will now be
briefly discussed.

Figure 3(a) shows an image of the tunnel from one of the
cameras. The edge information (figure 3(b)) computed via a
Canny edge detector is then used to find the values of the
radial distortion parameters. Specifically, it can be computed
by finding the correction required to straighten long curves
in the image. This is an ideal application for the Hough

Transform [7] which is an efficient line finder. For a given
edge image the image is radially corrected for different radial
distortion parameters. Within each corrected image a score is
assigned on the basis of the number of straight lines. These
are accumulated for different sets of x; and the maximum is
chosen. Apart from very short focal length lenses it has been
found that a single term, x1, is sufficient to correct the image.

Starting with a radially corrected image the vanishing lines
are used to estimate the intrinsic parameters of the camera.
This method is similar to that of Cipolla [8] however we use
an automated procedure to compute the vanishing lines. The
Hough transform is employed to find the line segments in
the edge image. By extending the segments to infinity the
intersections of the lines can be found. These intersections are
clustered into the 3 vanishing points using a weighted mean
to ameliorate the effect of outliers. The orthocentre of the
of the triangle created by linking the 3 vanishing points is
then found. This is the centre of focus of the camera. From
the orthocentre the focal scale factors can also be found. The
orthocentre and focal scale factors together are the intrinsic
parameters of the camera. These are illustrated in figure 3(d).
Knowing that the top vanishing point corresponds to the z-axis
and that the y-axis is aligned with the track the pose of the
camera can be found. This leaves an ambiguity in the sign of
x and y for the pose due to the fact that the camera could be
inward or ourward facing. To solve this some knowledge about
the environment is employed. It known that camera positions
are are on the walls and looking towards the tunnels centre.
By forming P from equation 1 using the possible values of t
(the corners or centre of the walls) the sign ambiguity in R
can be found along with t. Thus, the extrinsic parameters have
been found from the geometric properties of the environment.

The final step of the calibration process is to globally
optimise the results. As the pattern in the environment is
spatially unique the locations of the corner points of the
pattern can be defined by assigning world point coordinates
to them. These can also be located in the camera images. A
simplex optimisation is then used to minimise the difference
between the projected world points and the image points by
manipulating K, R, t, and x;. When multiple cameras are
being examined a final simplex optimisation is performed to
minimise the errors of all the cameras.

To implement the algorithm the gait camera agents were
used to grab images and perform all the local calibration
processes. The resulting parameters and the image data is then
passed to another computer where the global optimisation is
performed. Due to the distributed nature of this process it is
very fast.

B. Person Detection

In order to detect an individual entering the tunnel, a simple
detection system based upon break-beam detectors has been
developed (see figure 4). One detector is mounted at the entry
and another at the exit of the tunnel as illustrated in figure 2(a).
This is interfaced to the parallel port as it conveniently
provides inputs and outputs on the same connector. To activate
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Fig. 4. Schematic for the person detector

the detector the data line, D, is set to high causing the laser
to activate. A laser was employed as the signal needs to travel
approximately 6 m. The laser is reflected off a mirror on the
opposite side of the tunnel to the photodiode located near the
laser. So long as the photodiode receives an input from the
laser the ACK line is held high. When the beam is broken
ACK drops to low.

A simple break beam detection agent was written to control
the person detector. Internally it has two states. The first is
the laser is off and the second is the system is primed and is
actively monitoring the laser. The state is toggled by setting
the appropriate value on D. If in the second state and the beam
is broken a notification is sent to a controlling agent.

C. Background Subtraction

Removal of a subject from their background is a common
computer vision process. The methodology used here is a
small modification of a commonly employed technique [9].
While not as robust as other techniques [10] it is significantly
faster. As a first step, an estimate of the background is needed.
Normally the mean image is employed. However we use a
median image as it is more robust to slight variations in
lighting. Furthermore, it can be computed in the presence of
moving objects. This image is computed in the RGB colour
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Steps in the calibration procedure (a) original image (b) edge detected image (c) radially corrected image (d) vanishing lines (e) world coordinates

space. Once a background estimate is computed, removing
the subject is a two step process: image differencing and
shadow suppression. Image differencing allows most of the
background pixels to be removed in a single pass leaving only
the pixels that have changed from the background estimate.
These remaining pixels are either the subject or artifacts due
to lighting variations. In HSV space a shadow can be seen as a
darkening of the value and a consequent decrease in saturation.
This property is used to reclassify the candidate subject pixels
as either background or foreground.

Implementation of background subtraction is carried out
completely locally. However, it is mediated via control signals
from an external agent. Background subtraction is performed
on a frame by frame basis on the individual gait camera
agents. To improve performance and reduce computation we
exploit the fact that the cameras are calibrated. In the target
application, the subject will only walk on the track in the
central region of the tunnel. Thus, we can project a volume
about this track into the cameras viewpoint. This can be
used as a Boolean mask which will define regions where the
background subtraction will be performed. In this fashion we
can reduce the search space by roughly one third. Additional
operations are also required. Firstly, the background estimate
needs to be able to be recomputed on demand. This is due to
small variations in lighting occurring over time. Secondly, the
resulting background subtracted data needs to be transmitted
for further processing. The data transmitted is full RGB data.
To reduce the load on the network this is reduced to a
bounding box about the subject. However, note that despite
these reductions the volume of transmitted data can still be
large which can cause network congestion problems.



D. Gait Reconstruction

As the cameras completely surround the subject 3D recon-
struction can be performed. Reconstruction is achieved using
a methodology known as voxel-based shape from silhouette
[11]. The silhouette refers to the image of the person in the
environment after background subtraction has been performed.
Simply put the algorithm is a restatement of equation (1).
For each camera view a 3D point or voxel, X, is projected
to the camera coordinate system (x = PX). If X is found
to be inside the silhouette in a sufficiently large (normally
all) number of views then the voxel is a valid point in the
original object. Whilst conceptually simple this algorithm is
complex to perform in an efficient manner. This is due to the
fact that for each voxel the projection needs to be performed
for each of the cameras. For N voxels and C' cameras
this involves a maximum of NC' matrix multiplications. The
burden of computation can thus be reduced by precomputing
image coordinates for each of the voxels. To further increase
computation speed we perform two hierarchical passes of the
voxel data. A low resolution pass to roughly localise the
subject within a bounding volume and a high resolution pass
performed within this volume. Whilst there is benefit to be had
from a fully hierarchical approach such as octrees we found
this two pass approach to be sufficient for this application.

As evidenced in the system overview (figure 1) the recon-
struction process requires data from the gait camera agents.
Specifically the subject silhouette from each of the cameras is
required. This information is sent via the network to a central
reconstruction agent. A point to note here is that even for
small amounts of video data sent from each camera it becomes
very easy to saturate the network card on the reconstruction
computer. As an example 8 cameras working at 30fps with
each supplying roughly one third of a 640 x 480 RGB image
will result in 70 Mb/s of data sent to the network card. Thus it
is impossible to reconstruct the data in real time with this sort
of data rate. Instead we concentrate on servicing the incoming
data so as not to saturate the card and then when all data is
received perform the reconstruction. This results in a small
delay of approximately the time the subject spends in the
tunnel (3s) before the reconstruction can be completed. For
biometrics applications this is acceptable.

E. Face Detection

To detect the individual’s face in the tunnel, the end camera
is employed (see figure 2(a)). This camera looks down the
length of the tunnel and thus can capture clear views of the
face for most of the tunnel. To help in this procedure a zoom
lens is employed. This is adjusted to capture faces over a wide
range of subject heights. The detection algorithm employs
a multipass approach with several simple algorithms passed
upon the incoming images. Firstly, background subtraction is
performed. As there will only be one subject at a time in the
tunnel the largest moving region corresponds to the subject. By
employing the resulting silhouette as a mask the search space
can thus be reduced for subsequent algorithms. Finding the
face is then relatively straightforward and employs a number

of empirical algorithms. Firstly, the width of the silhouette
is computed for the entire height. For an individual walking
toward the camera there will be a large step change in the
width at the point of the shoulders. Implementing this notion
yields a revised estimate for the silhouette of just the head.
The head is rejected if it doesn’t match known anatomical
proportions for a head, or the size is incorrect (too small or
too large), or the head is not in roughly the centre of the
environment.

Implementation of this step is completely local and was
implemented in a face camera agent. Potentially it could be a
global process where the data from a background subtraction
agent could be employed. However, the delay induced by
transmission was considered wasteful. Thus, the agent per-
forms the processing steps outlined above in a hierarchical
fashion to yield a face image.

III. RESULTS

While no large scale collection of data has yet been
performed upon the biometric tunnel, we have performed
sufficient experiments to demonstrate the tunnel’s capability.
The test system consists of 4 cameras (640 x 480 at 30 fps) for
gait capture and a single high resolution camera (1024 x 768
at 30 fps) for face capture. The tunnel is a Sm x 3 m purpose
built enclosure inside our laboratory.

The first set of experiments test the functionality of the
individual system components. The results for system cali-
bration are shown in figures 3(e) and 3(f). The rectangular
prism illustrates the common viewable area for all cameras.
The world coordinate axes and origin as applied to the tunnel
are also illustrated. Figure 5(a) shows a single frame upon
which background subtraction has been performed. Full 3D
reconstruction of the subject from all 4 cameras is illustrated
for a single frame in figure 5(b). The physical size of the
voxels in the person corresponds to 1cm?®. The person is
reconstructed inside a volume which corresponds to the prism
in figure 3(f). Finally, figure 5(c) is the result from the face
detection system.

In order to evaluate the performance of the system, timings
were performed on the system’s bottlenecks. By doing this
we can estimate the overall system performance and thus the
physical throughput of the system. The results for each of the
critical components to collect a single frame of data are:

component time (ms)

capture 33
background subtraction 270
transmission 12
reconstruction 250
face finding 385
save image 60
save voxel data 1300

total 2310

In all cases these figures are aggregate statistics gathered
from approximately 100 trials. Clearly, it is not possible to
perform real time processing of people using the current
system. However, it will be possible to run close to real time.
Assuming that a typical sequence consists of approximately
90 frames (3 seconds in tunnel) then further analysis can be
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performed. If processing is restricted to face alone the tunnel
can process 52 people in an hour. Using gait alone, we can
process 21 people an hour. Combined face and gait yields a
throughput of 15 people an hour.

As the target application is measuring biometrics, we ex-
tracted several features and examined their performance on
a small database of 6 people. This may seem small but is
sufficient for the application of biometrics within a restricted
environment such as a smart room or household. The features
we extracted were from both face and 3D reconstruction of
gait. Let the voxels representing a person be V = {v;}. As
the location of each voxel, v; = (z;, y;, 2;), is known we can
compute the centroid of the volume as :

1N—l 1N*1 1N*1
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Also, the height of the individual can be extracted :
h = max z; “4)

Using the precomputed centroid we can also compute the
centroid of the motion of the legs. Due to the fact that the leg
motions are half a cycle apart only one of the two legs need
be considered. For the legs only voxels below the centroid are
counted. Due to calibration of the cameras a frontal view of
the subject will have the x axis running horizontal across the
body. Thus the left leg will always lie to the left of ¢, and
conversely for the right leg. After applying these constraints
and choosing an arbitrary leg we have a voxel set L with
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Example data available from biometric tunnel (a) background subtraction (b) 3D reconstruction (c) facial capture
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From the face image we can compute some simple measures.
Firstly we can measure the inter-eye separation (Se.) and
secondly we can find the distance between the eyes and mouth
(sem). However, as we are dealing with a sequence of face
images with the subject approaching the camera the features
need to be normalised by the face height, H, and width, W.
Thus :

s s

e ©
Figure 6(a) shows the volume derived metrics for an individual
walking through the tunnel. The motion of the centroids
and top of the head conform closely to that measured from
anatomical data [12]. Figure 6(b) shows the values of the face
measures from an individual in the tunnel. Notice that they
are relatively linear and so should be sufficient for a simple
recognition experiment.

As the population is small it is necessary to reduce the
feature spaces for a biometric test. Since all our features are
computed across a sequence, mean features are derived. We
analyse the potency of the features by forming a confusion
matrix. A confusion matrix plots the subjects on the x and y
axes and computes their proximity in feature space. Figure 7(a)
shows the result looking at each feature in turn and figure 7(b)
shows the result using two of the features (one gait and one
face). Highly correlated features result in darker regions in the
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Fig. 7. Confusion matrix selecting (a) one feature (left to right : centroid,
height, leg centroid, eye to eye distance, eye to mouth distance) (b) two
features (left to right : centroid-eye to eye distance, height-eye to eye distance,
leg centroid-eye to eye distance, centroid-eye to mouth distance, height-eye
to mouth distance, leg centroid-eye to mouth distance).

figure. Note that none of the single features are good enough
to uniquely identify the individuals but when used in pairs the
population can easily be identified.

IV. DISCUSSION

The previous section demonstrated our biometric tunnel
working on a variety of problems from background subtraction
and 3D reconstruction to a simple biometric database. While
the data is cropped and reduced in size in as many places
as possible it is impossible to reduce the data any more
without compromising the information. The framerate cannot
be reduced because this can result in blurring of gait and face
which will result in erroneous features being extracted. For
these reasons we have sacrificed system throughput in order to
guarantee correctness of the information. This is an important
distinction from tracking applications. It also demonstrates an
important lesson about hierarchical processing. Now, while it
would be possible to process all the information in a purely
top down fashion there is benefit in not doing so. This is due
to the fact that there are bottlenecks which would hold up the
next processing step. Generally, it seems that the most efficient
processing methodology, assuming complete data, is a mix of
parallel and serial processing.

V. CONCLUSIONS

This paper discussed the development of a prototype bio-
metric tunnel. The purpose being to capture high quality bio-
metric information from an individual as they interact with the
environment. Consequently, the biometric tunnel shares much
in common with tracking problems and smart environments.
The proposed tunnel was designed to be deployed in a secure
environment. Additionally, it potentially could be deployed in
places such as border crossings or airports where biometrics
are already being employed to help speed person authenti-
cation. In the case of the tunnel, non-contact biometrics are
captured to speed the processing of individuals. Specifically
we designed the system to capture face and gait. Additionally,
the tunnel is completely autonomous and requires no user
intervention.

Our face capture system is designed to capture multiple
snaps of the face. This is performed via a frontal face camera
which is running continuously while a subject is in the
environment. Processing is performed to select candidate faces
from each frame. Additionally by extracting many faces the
data is amenable to fusion. To describe gait we capture the
subject from multiple views simultaneously and perform 3D
reconstruction upon the resulting data. The resulting data is
explicitly corrected for camera distortion and will provide a
rich dataset for subsequent feature extraction.

The correctness of the system was demonstrated in the
results section via the example outputs and the biometric
example. The biometric example showed that the data gen-
erated is sufficient to distinguish a small population such as a
household. The current maximum throughput is approximately
15 people an hour. Roughly 50% of the time is currently
spent writing the data onto the hard drive. This is an obvious
area for improvement and is actively being explored currently.
Currently, the data is stored with little or no contextual
information. We are currently working on using semantic
web technologies to provide this context via metadata and an
ontology. Finally we are planning to extend the system to 8
side cameras to increase the reconstruction quality.
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