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Abstract— We present a strategy for grasping of real world
objects with two anthropomorphic hands, the three-fingered 9-
DOF hydraulic TUM and the very dextrous 20-DOF pneumatic
Bielefeld Shadow Hand. Our approach to grasping is based on
a reach–pre-grasp–grasp scheme loosely motivated by human
grasping. We comparatively describe the two robot setups,
the control schemes, and the grasp type determination. We
show that the grasp strategy can robustly cope with inaccurate
control and object variation. We demonstrate that it can be
ported among platforms with minor modifications. Grasping
success is evaluated by comparative experiments performing a
benchmark test on 21 everyday objects.

I. INTRODUCTION

It is widely recognized that grasping marks a keystone for

sensorimotor intelligence and will certainly be required for

future service robots. Therefore, recently a number of sophis-

ticated multi-fingered artificial hands have been developed,

which in principle have the necessary mechanical dexterity

to carry out a large variety of everyday tasks [1]–[4]. On

the algorithmic side, however, robust and stable grasping of

a large variety of a priori unknown objects is still a major

challenge even for the best artifical robot hands available.

Traditionally, the robot grasping process is divided into

two stages: at first, suitable grasping points on the object are

determined and, secondly, a robot hand posture is computed

via inverse kinematics to match these points with the finger-

tips [5]. Correspondingly, a grasp has formally been defined

in a solely kinematic fashion as a set of contact points on the

object surface together with friction cone conditions, whereas

being independent of the robot hand under investigation [6].

The computation of a stable or even optimal grasp has led

to many sophisticated algorithms [7], [8], but remains a

computationally demanding task mostly solved by quadratic

optimization [7], [9]–[11]. To apply this strategy, the object

geometry has to be known exactly to find and optimize the

contact points. For real world execution of the grasp, the

object therefore has to be visually (or otherwise) located

and the movement guided with high precision. This grasp

strategy is suitable for industrial robots which are specialized

to highly structured working environments, but it is difficult

to extend to learning and grasping of real world objects under

uncertain visual localization.

The challenge for the realization of service robots working

in everyday life domains, however, is to achieve the ability

to handle a broad range of tasks in hardly structured en-

vironments, to adapt to new situations, and to grasp new

objects which are not exactly known beforehand. To realize

such flexibility and robustness, several authors have proposed

to organize grasping in a more holistic fashion loosely

motivated by the way humans grasp, who select an object-

specific pre-grasp posture as one of a few prehensile hand

postures [12]. Afterwards, the grasp itself is carried out

by comprehensively closing the fingers and evaluating the

tactile feedback. Though differing in detail, such strategies

do not compute explicit contact points and inverse kinematics

solutions.

In [13], objects are modeled as a set shape primitives, such

that one of four distinct pre-grasps for the Barret Hand can be

selected. Using the grasp simulator ”GraspIt” [14] the posi-

tion of the hand relative to the object is systematically varied

and grasp success is evaluated using a standard stability

measure. This method optimizes the grasp position, but does

not learn or optimize the pre-grasp postures themselves and

an exhaustive search in the space of pre-grasp postures would

be infeasible for hands with higher degrees of freedom. [15]

and [16] combine controller primitives to achieve a reach-

grasp behavior. In coordination with two different reach

controllers, one grasp controller realizes a three finger grasp,

while a second one combines two physical contacts into a

”virtual finger”. The correct instantiations of the controllers

can autonomously be learned, by associating general visual

features such as blob height and width in a reinforcement

framework [17]. Though this framework provides impressive

results, it seems that autonomous exploration for learning to

grasp a larger number of objects will be too time consuming

to be executed on the real robot hardware.

To reduce the need to explore very large search spaces, an

interactive imitation based learning approach is appealing.

Consequently, we have previously proposed to enable imi-

tation grasping [18] in the context of a long-term research

project [19] aiming at the realization of a robot system that

is instructable by speech and gesture, has visual capabilities,

attentive behavior, and can execute grasping actions [20],

[21] (see Fig. 1). In this framework, we use a universal,

biologically motivated grasp strategy, which relies on a 3D

localization of the object, executes a reaching movement,

and finally grasps an object employing appropriate pre-

grasp and target grasp postures. In [18], we have proposed

an object-specific grasp selection based on the observation

of a human instructor’s hand to reduce complexity of the

selection process and enhance grasp success. The present
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Fig. 1. Interaction with the robot system using speech and gesture. On the
left the modified three-fingered TUM Hand is shown.

paper focuses on comparative results obtained with a new,

much more dextrous anthropomorphic hand containing 24

joints actuated by pneumatic muscles. We describe the new

robot hand and the different control concepts, report on the

migration process, and compare grasping results on both

platforms showing that with minor adaptations our strategy

is portable across significantly differing hardware platforms.

II. BIELEFELD TUM AND SHADOW HAND SETUPS

A. GRAVIS Robot System and TUM Hand

The GRAVIS robot system [20] combines visual atten-

tion and gestural instruction with an intelligent interface

for speech recognition and linguistic interpretation to al-

low multi-modal task-oriented instructions. For manipulation

tasks this setup employs a standard 6-DOF PUMA manip-

ulator operated with the real-time RCCL-command library

together with a 9-DOF dextrous robot hand developed at the

Technical University of Munich (TUM). The hand consists of

three identical, approximately human-sized fingers driven by

a hydraulics system. To improve on the original symmetrical

arrangement of the fingers, we reconfigured the hand to be

more human-like. It now features a palm, a thumb, and two

opposing fingers in order to allow a larger variety of two- and

three-finger grasps (see Fig. 1). The fingertips are equipped

with custom built force sensors to provide force feedback for

control and evaluation of grasps.

Because the hand does not provide joint angle sensors,

posture control has to be realized indirectly relying on

piston potentiometers and pressure sensors, both located at

the base station of the hydraulics system. To this end, we

convert joint angles to piston potentiometer values applying

a fixed transform which was determined experimentally and

independently for each joint. These computed potentiometer

values serve as targets for PID controllers actuating the finger

joints to the desired posture. Additionally, we have to cope

with hysteresis and non-linearities due to the long distance

of 2.5m between the base station and the finger pistons, and

we face sticking and sliding effects caused by return springs

integrated in the finger pistons. Nevertheless, we achieve

Fig. 2. The newly developed robotics setup comprises the 20-DOF Shadow
Dextrous Hand, a 7-DOF robot arm and a 4-DOF stereo camera head.

an accuracy of about 2 degrees in every joint, which is

not enough for a reliable inverse kinematics based position

control, but allows for a sufficient positioning of the fingers

to realize suitable grasp postures.

B. Bielefeld Shadow Dextrous Hand

We currently reinstantiate the described imitation learning

setup based on a new platform consisting of a redundant

7-DOF Mitsubishi PA-10 robot arm, the 20-DOF Shadow

Dextrous Hand, and a 4-DOF active stereo camera head

based on Helpmate hardware (Fig. 2). The robot arm is

actuated by a robot server incorporating a security concept

based on an internal model of the whole setup, and a real-

time path planning algorithm based on neural networks [22].

The Bielefeld Shadow Hand is a product of the Shadow

Robot Company [1] and is available as a prototype since

end of 2004. Fig. 3 summarizes the finger kinematics. It

shows a photograph of the human-like sized real hand and its

kinematical model. Joint axes are visualized as black arrows

within the transparent links of the model. The distal joints

of the four fingers are coupled passively to the middle joint,

such that the angle of the middle joint is always greater than

or equal to the angle of the distal joint. Hence, the finger

joints allow almost human-like movements as described in

[23]. To endow the thumb with a similar dexterity and

to allow the opposition of the thumb to all fingers, five

independently controllable joints are supplied, two of them

combined in the metacarpophalangeal joint and two others

combined to approximate the trapeziometacarpal saddle joint

of the human thumb. The little finger has an extra joint

located in the palm. The hand is also equipped with 2

DOF in the wrist (not shown in Fig. 3), which allow a

flexion/extension as well as abduction/adduction movement

of the whole hand. Altogether, the hand comprises 24 joints,

20 of them actively controllable.

Each joint is actuated by an antagonistic pair of McKibben

style pneumatic muscles, which have a high force-to-mass

ratio. All muscles are packed densely in the lower forearm

(shown in Fig. 2) and the joints are actuated by means of

tendons routed through the wrist and hand. The air flow in
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Fig. 3. Real Shadow Hand (left) compared to its kinematic model (right).
Joint axes are visualized as black arrows.

and out of the muscles is controlled by 80 miniature solenoid

on-off valves – one inlet and outlet valve for each muscle.

An important advantage of artifical muscles is their inherent

and variable compliance allowing safe operation, especially

in direct contact and in interaction with humans.

On their palmar side, the phalanges are covered by a layer

of formable polyurethane ”flesh” which is slightly elastic

and has a high friction coefficient providing good adhesion.

To facilitate grasping of small objects, like matches and

needles, the fingers include thin polycarbonate fingernails.

The most innovative feature of the Shadow Hand, however,

is the provision of a total of 186 force sensors. 34 of these

are distributed on each fingertip giving a touch resolution

of approx. seven sensors per cm2. Additionally, two texels

(touch pixels) cover the palmar side of the middle and

proximal phalanges of each finger. The tactile sensors are

build from a three-dimensionally curved electrode covered by

a thin layer of Quantum Tunneling Composite (QTC), which

changes its resistance as a function of applied pressure. QTC

has an exponential response characteristic, combining a high

initial sensitivity with a wide dynamical range that only

saturates at considerably stronger forces.

The hand is also equipped with a complete set of internal

sensors measuring current joint angle position as well as

muscle air pressure.

C. Joint Control for Shadow Dextrous Hand

While pneumatic actuators are well known and their con-

trol has been studied mainly for single McKibben muscles

[24], the simultaneous control of a large number of cooper-

ating finger actuators poses new challenges. The inevitably

complex tendon routing in the hand contributes friction and

tends to amplify the well known nonlinear and hysteresis

effects, so that a modeling scheme like that proposed in [25]

becomes difficult to apply and would have to be carefully

adapted to each muscle.

In order to move a single joint, the controller has to

provide two control outputs to drive the valves of the antag-

onistic muscle pair. Hence most standard control approaches

that focus on a single control variable cannot be applied

directly. The key idea of our controller is the combination of

two control variables, joint position and joint stiffness, which

is motivated by the observation that the pressure difference

Fig. 4. Schematic view of the mixing controller allowing simultaneous
stiffness and position control.

correlates with the joint position while the pressure sum

correlates with the stiffness of the joint [26]. This means

that both joint position and joint stiffness can be adjusted

independently. To this end, we use a suitable mixing matrix

to compute the two control outputs from both a joint position

error ∆θ and a stiffness error ∆S:

(

tflex

text

)

=

(

Kθ KS

−Kθ KS

) (

∆θ

∆S

)

(1)

As a stiffness measure S, we use the sum of the pressures

in both muscles. The control outputs tflex and text are the time

periods used to open the valves of the flexor and extensor,

respectively. Positive periods open the inlet valves, negative

periods open the outlet valves. Currently, the frequency of

the resulting pulse-width-modulation is set to 50 Hz. In order

to reduce valve chatter near the targets, we use a dead zone

of 0.6◦ and 0.2bar, respectively. For grasping, this accuracy

is sufficient, and the audible noise of the solenoid valves and

the air flow is reduced considerably. The working principle

of the mixing controller is summarized in Fig. 4.

The controller parameters have to be determined separately

for each antagonistic muscle pair due to differing friction

along the various tendon routes. Furthermore, the movability

of a joint is affected by valve and muscle properties, and the

diameters of the tendon pulleys actuating the joint, which

in some cases differ for the antagonistic muscles. Although

the muscles react quite slowly, we can successfully track

a square wave at 0.5 Hz, which is nearly half the speed

of typical human hand movements. Due to conservative

parameter tuning we do not observe significant overshooting,

while reaching the target quickly. The results are encouraging

and sufficient to provide the quality of control needed to

implement our grasp strategy.

III. PORTABLE GRASP STRATEGY

We employ a biologically motivated grasp strategy which

can cope both with the limited positioning accuracy of the

finger joints and the variability of a-priori unknown real

world objects. Before the grasp process can be executed, one

of the four grasp types (see Fig. 5) of the grasp taxonomy we

propose has to be chosen. In contrast to detailed taxonomies,

like [12] or [27], all of these grasp types are realizable

with most robot hands possessing at least three fingers.

With our grasp classification, major hand potentials can be

utilized (precision, power, pinch), where we further subdivide
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two finger pinch grasp two finger precision grasp all finger precision grasp power grasp

Fig. 5. The Shadow Dextrous Hand showing the four basic grasp prototypes used for both hardware setups. These prototypes represent major potentials
of human grasping (precision, power, pinch) while being realizable with most robot hands possessing at least three fingers.

precision grasps according to the number of involved fingers

(two, all).

Each of these grasp types is realized in both robot hand

setups by a grasp g. A grasp g comprises a pre-grasp

and a target-grasp which are hand-dependent joint angle

configurations. To apply a pre-grasp or target grasp means

that the respective joint angles are actuated by the robot hand

controller. When these joint angles are reached, the hand

adopts the pre-grasp posture or the target grasp posture,

respectively.

With each grasp g, additional parameterizations of the

following characteristics are associated: a relative position ~p

(3 DOF) and orientation ~o (3 DOF) of the hand to the target

object and an approach distance d (1 DOF) distinguishing

the pre-grasp position from the grasp position.

Based upon these definitions, the grasp strategy com-

prises the following steps which are illustrated in Figure 6:

0) Select a grasp g.

1) Approach/Pre-grasp phase: Move hand to pre-grasp

position and apply the pre-grasp.

2) Placing phase: Move hand to grasp position.

3) Grasp closure phase: Apply the target grasp.

4) Stabilization phase: Wait until fingers exert sufficient

forces on the object.

5) Lift-off phase: Move hand to pre-grasp position.

For selecting the grasp g to be applied (step 0), we use a

vision module permitting observation and 3D identification

of a human hand posture which is subsequently mapped

to one of the grasp types realized as described in [18].

The implementations of step 1 of our grasp strategy differ

between the two robot hand setups in use. The TUM Hand

setup allows the human instructor to identify an object to

be grasped by speech, pointing gestures, or a combination

(a) Pre-grasp pos.

(after step 1)

(b) Grasp position.

(after step 2)

(c) Object grasped.

(after step 3 and 4)

(d) Object lifted.

(after step 5)

Fig. 6. The light bulb is grasped with the Shadow Hand by utilizing our
grasp strategy.

thereof [20]. The 3D position of the referred object is

resolved by a stereo vision system to an accuracy of about

3 cm. In the Approach/Pre-grasp phase, the end effector is

located at the visually obtained but still inaccurate object

position. A visually guided fine positioning based on a hand

camera improves the error to about 1 mm and orientates

the hand along the main axis of the object. Because this

visual feedback is currently available only for the TUM Hand

setup, we mimic this process for the Shadow Hand setup

by freehand positioning of the object at a fixed location on

the table with roughly predefined orientation, such that there

is a considerable variance in object position and orientation

relative to the pre-grasp position (defined by ~p and ~o) similar

to the TUM Hand setup.

In step 2, the robot hand is moved towards the object

by the approach distance d, whereas the relative orientation

between hand and object remains unchanged. During steps

3 and 4 we recommend the use of tactile feedback provided

by fingertip sensors to stop further finger motion when stable

object contact is sensed. This ensures that the object is not

squeezed out of the grasp by closing the fingers too far inside.

If finger compliance is large enough, as it is the case for

our hands, grasping can even be successful without tactile

feedback.

In order to port this strategy across platforms, actually only

the pre-grasp posture of each grasp g has to be adapted to

the different hands, while the target grasp posture is easily

derived from the pre-grasp. For realizing each of the four

grasp types (see Fig. 5), the relative position ~p and orientation

~o between the grasping hand and the object, as well as

the angle values of all finger joints, have to be determined

carefully to enable grasping of as many objects as possible

with this grasp g.

While we have determined the grasps manually in prelim-

inary experiments, some general rules largely facilitating this

process can be formulated from our experience. The position

~p and the orientation ~o have to be adjusted such that the

center point of the grasping fingers is close to the object’s

center of mass. In pre-grasp posture, the fingers have to be

opened as much as possible such that even large objects can

be enclosed. For the corresponding target grasp posture the

fingers have to be close to each other, but must not touch.

This allows the detection of a successful grasp as well as

2954



Fig. 7. Set of benchmark objects and their 3D-models in simulation used
to evaluate the grasp strategy and the grasps before and after optimization.

a failure by simply reading a binary contact value from the

fingertip sensors. To cope with flat and small objects, it is

essential that the fingers close directly above the desktop

surface while avoiding to stick into it. Relating to the target

grasp posture, that means that the fingertips reach a position

close to the surface. In pre-grasp posture, the fingers have

to be bent far enough that sticking of the fingers is avoided

during grasp closure. Based on these quite natural and simple

constraints, it is fairly easy to develop suitable realizations

of the grasp types. From our experience, cumbersome fine

tuning is neither necessary nor useful because of the high

variance in object properties and visual localization as well

as the lack of highly accurate position control.

IV. COMPARATIVE GRASPING EXPERIMENTS

To evaluate the viability of our strategy and the success of

the grasp types realized, we conducted quantitative grasping

experiments with both hands/setups described above for the

real world objects shown in Fig. 7. The same set of objects

was already used in preliminary experiments evaluating the

most suited grasp prototype for each object in the imitation

grasping scenario [18]. In the present experiment we draw

on these results and choose for each object the best grasp

prototype available.

Following the ideas of the EURON (EUropean RObotics

Network) for specifying a benchmark test [28], we propose

a “grasp and re-grasp test”. The rules for determination of

the grasp success are:

• Each benchmark object is grasped in ten trials.

• Each grasp trial starts from a home position which is

different from the grasp position.

• A grasp strategy (like that proposed above) is applied

in which the manipulator approaches, grasps, and lifts

the target object.

• A grasp is successful if the object is picked up and is not

lost during a lift-off phase lasting at least five seconds.

Three constraints are associated with this test:

• The benchmark object is placed motionless and

unattached on a flat desktop.

• The object has to be grasped from the surface of the

flat desktop (not over an edge).

• The object is within reach of the robot arm and its

position and orientation are (approximately) known to

the robot system.

With this test, the capabilities of different robot hands,

different grasps, and different grasping strategies can be

evaluated. Summing up, an overall number of 210 grasp

trials were executed by each of the two hands. The grasping

success is shown by the columns “before optimization” of

Table I, in which the objects are ordered with respect to the

success rate evaluated with the TUM Hand.

Apparently, for quite regular shaped objects (no. 1-6) both

hands grasp very reliable. For smaller, more longish, or less

regular objects the TUM Hand performs considerably worse

than the Shadow Hand. This is due to the better dexterity of

the Shadow Hand allowing more versatile posture selection,

and its larger, flesh-covered fingertips providing high friction

and good grip to the object. Another advantage is the higher

number of five fingers, compared to the three fingers of

the TUM Hand, resulting in much better object-enclosing

pre-grasp and target grasp postures. Therefore, it is possible

e.g. to successfully grasp the ”toy propeller” (no. 2) with

an all finger precision grasp, whereas for the TUM Hand

a specialized three finger grasp has to be employed. This

grasp type mainly differs in a larger spread of the fingers

according to the complex shape of the object. But even the

Shadow Hand performs badly in grasping the bunch of keys

(no. 20), which is a form-variable compound of flat objects,

or the pencil, which is too thin to be grasped with one of

the provided grasp types.

Because many objects could not be grasped in all trials

we also employed an internal simulation loop to optimize

the grasps for each particular benchmark object. While a

related approach by [13] optimizes the relative position of a

pre-grasp posture to the object, we assume a fixed relative

position of the object and the hand (up to the accuracy of the

visual system providing the position and orientation of the

object on the table) and rather optimize the pre-grasp posture

and the thumb position in the target grasp posture. Based

on preliminary experiments evaluating which parameters are

most relevant for the success or failure of a grasp, the

optimization first uses the simulation to adjust in a one-shot

learning the object-specific closing distance of the fingers

in pre-grasp posture to achieve approximately simultaneous

contact of the fingertips with the object. Secondly, the best

opposition of the thumb to the other fingers in target grasp

posture is learned by an evolutionary algorithm because

exhaustive search in the enormous posture parameter space

is impossible. Details of the transfer from hardware to

simulation and the optimization process itself are beyond the

scope of this paper, but the performance gain for grasping

success due to this optimization is shown for illustration in

columns “after optimization” in Table I. Note that now, even

for the much more difficult objects, optimized pre-grasp and

target grasp postures lead to a reliable grasp strategy.
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TABLE I

GRASP RESULTS ON THE SET OF BENCHMARK OBJECTS OF FIG. 7.

SHOWN IS THE NUMBER OF SUCCESSFUL GRASPS OUT OF TEN TRIALS

BEFORE AND AFTER OPTIMIZING BOTH THE PRE-GRASP AND THE

TARGET GRASP POSTURES.

no. name grasp TUM Hand Shadow Hand
type before & after before & after

optimization optimization

1 adhesive tape power 10 10 10 10

2 toy propeller 3F spec 10 10 10 10

3 toy cube 2F pinch 10 10 10 10

4 can power 10 10 10 10

5 tissue pack power 10 10 10 10

6 tennis ball power 10 10 7 10

7 paper ball power 9 10 10 10

8 sharpener AF prec 8 10 10 10

9 remote control power 8 10 10 10

10 cup power 9 10 10 10

11 board marker 2F prec 7 10 10 10

12 tea light AF prec 6 10 8 10

13 golf ball power 7 10 6 9

14 matchbox AF prec 7 9 6 10

15 light bulb power 6 10 8 10

16 chocolate bar AF prec 5 10 10 10

17 folding rule 2F prec 4 10 10 10

18 voltage tester 2F prec 3 9 8 9

19 eraser 2F prec 4 10 9 10

20 bunch of keys AF prec 0 0 1 2

21 pencil 2F prec 0 0 0 8

V. DISCUSSION

The encouraging results obtained in this paper show that

it is possible to dispense with computation and optimization

of grasping points when adopting a more human-inspired

grasp strategy based on a small set of prehensile pre-grasp

and target grasp postures and autonomous execution of a

closing movement. This strategy is portable among platforms

and – as the comparison of our hands shows – profits a

lot from dexterity and compliance on the hardware level. It

is independent of a sophisticated and accurate joint control

scheme, however, naturally needs hand-specific adaptation

of the small number of preset pre-grasp and target grasp

postures. Note that all results are based on assuming a

preliminary stage of best grasp type selection, which we

base on an observation of human hand postures described

in our previous work. On the other hand, the results show

that not all problems can be solved at this level: there are

objects which cannot be grasped without further optimization

of the grasp strategy. For illustration we also have presented

results for optimized pre-grasp and target grasp postures,

which show further improvement based on an internal model

simulating the grasp process before its execution in real

world. This optimization routine also is independent of the

platform and – together with the grasp strategy – can be

used with all kind of robot hands (if they have at least a

thumb and two fingers, for which joint angle control can be

realized).
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