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Abstract—In this paper we present CASTRO, a new ap-
proach for achieving robust planned trajectories for nonlin-
ear systems in the presence of modelling uncertainty. With
CASTRO, we simultaneously optimize trajectories for multiple
copies of the same system model, each using different estimates
for the system parameters. The systems are constrained to
use the same policy. With an appropriate sampling of system
parameters in the optimization problem, the trajectory will
be robust when run on the real system, compared to a
trajectory optimized with just one model. We present results
on a simulated double-link pendulum swing-up problem.

I. INTRODUCTION

Optimization is a powerful tool for finding trajectories

that maximize a particular performance criteria, but it is

prone to creating plans that are narrowly tuned to model

parameter values. We are interested in computing optimal

trajectories for nonlinear systems, with a particular focus

on robot walking. The chosen trajectory should be robust

to modelling errors in the system dynamics and to dis-

turbances from the environment. We propose a planning

formulation called CASTRO (Control-Augmented System

for Trajectories, Robust and Optimal) to increase robustness

in trajectory optimization. Major sources of uncertainty that

affect planning and control in general include

• Parametric uncertainty. For example, an uncertainty in

system mass results in correlated errors.

• Unmodelled dynamics. For example, unmodelled vibra-

tional modes. These can be modelled as random noise,

or by augmenting the model structure.

• Random disturbances, which can be modelled as ran-

dom noise.

Random, uncorrelated (a.k.a. white) process and sensor noise

can be handled with state estimation techniques such as

Kalman filters. Parametric error, however, is more difficult

for robot controllers to handle, since errors are correlated

with previous states and actions. In the present work, we

are interested in planning with representations of parametric

uncertainty.

We would like to overcome several sources of modelling

error with our Sarcos Primus System, a hydraulic humanoid.

We have unknown hydraulic actuator dynamics which can

result in errors in commanded joint torques. There are
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unknown, and difficult to estimate inertial parameters due

to hoses and other flexible elements on the robot.

With CASTRO, several realizations of the system model

are constructed using sampled values from the distribution of

the unknown system parameters, and composed into a single

large dynamic system. All of the component models are

constrained to use the same policy, and a trajectory optimizer

is used to find a trajectory that minimizes the expected cost

for all of the component models to follow the trajectory.

CASTRO does not require that modelling errors be treated as

white noise. We validate CASTRO using a simulated double-

link pendulum swing-up problem and compare results to

a problem formulation that treats modelling error as white

noise in the joint actuation.

The remainder of this paper is organized as follows. In

Section II we discuss related work in planning and control

under uncertainty. In Section III we describe CASTRO in

more detail. In Section IV we present experiments with

CASTRO. Sections V and VI finish with discussion and

conclusions.

II. RELATED WORK

The literature on biped gait planning and robust planning

and control is extensive. We provide a limited number of

references here.

Robustness can be approached as a minimax problem,

where one attempts to find a trajectory that minimizes the

maximum cost for any model to follow the trajectory. For

robust minimax optimization of linear systems, Boltyanski

and Poznyak [2] prove conditions under which a control

trajectory for a family of models can be found that minimizes

the maximum time taken by any single model to reach a

goal. Unfortunately, the results only apply to linear systems

that are guaranteed to eventually reach the goal when the

control input is equal to zero. Further, for many applications

a minimum time trajectory is not what is desired.

Uncertainty in the model can be approximated by uncer-

tainty in the state or its derivatives. Morimoto and Atke-

son [9] [10] employed Differential Dynamic Programming

(DDP), a trajectory optimization technique [7], using a

minimax criterion to generate robust walking gaits for a five-

link planar biped. In their approach, a single robot model is

used, and an adversary is assumed to be applying unknown

friction at the joints and an unknown disturbance torque at

the ankle.

Thrun [19] provides an overview of particle filters, a

popular and effective method for representing uncertainty in

belief about a system’s state. Typical applications use particle
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filters to construct a belief state about the system based

on previous observations and actions but do not use them

explicitly in the planning process. Thrun [18] uses particle

filters in a Monte Carlo method to plan for POMDPs with

real-valued state and action spaces. The result is Q-learning

over belief states represented as particles. Copies of a system

can be represented and propagated through time under the

action of a single policy, and the robustness of the policy can

be evaluated by the number of copies that reach the goal. Fu

et al. [4] demonstrated a particle filter method that can select

actions that reduce uncertainty in the system state.

Ng and Jordan [12] describe PEGASUS, which uses a gra-

dient descent search in the parameter space of a parametric

policy to find a policy that scores well on many randomized

trials of a problem. The gradient of the collective score of

the randomized trials is made continuous by providing the

same sequence of random numbers to the system simulator

for each set of trials. The present work is related, but

while PEGASUS models uncertainty as uncorrelated noise,

CASTRO uses parametric uncertainty. The many randomized

trials of PEGASUS are replaced by the smaller number of

models used in the trajectory optimization of CASTRO, and

CASTRO policies are formulated as a trajectory with a linear

controller in the neighbourhood of the trajectory.

Optimization based on maximizing a value function can

tend to push the plan towards states with greater uncertainty.

Bagnell et al. [1] describe Policy Search by Dynamic Pro-

gramming (PSDP), which avoids this problem by backing up

policies rather than values in the recursion.

There is work in the controls literature on the use of

multiple model techniques to tackle complex control prob-

lems. The main thrust of these techniques is to compose

simple controllers applicable in limited operating ranges of

a plant into a single global controller usable over the whole

operating range of the plant. An overview of the field can

be found in [11].

We are using the trajectory optimizer DIRCOL [16] to

create robot trajectories. There is previous work in using

DIRCOL to create biped gait trajectories. Hardt [6] derived a

cyclic gait for a five-link planar biped. Denk and Schmidt [3]

precomputed a library of stepping trajectories for the robot

Johnnie [8] and reported initial results on the robot.

III. ROBUST TRAJECTORY OPTIMIZATION USING A

CONTROLLER

A. Two-link pendulum swing-up trajectories

We explore CASTRO using the two-link pendulum model

(Fig. 1). The dynamics are

τ = M(q, q̇)q̈ + C(q, q̇)q̇ + G(q),

where

q =

[

θ1

θ2

]

,

and M , C, G are state-dependent matrices. Links are mod-

elled as thin rods of uniform density. We used the Lagrange

method to derive the equations of motion. We assume a

massless torque source positioned at each joint.

θ1

θ2σ2

σ1

Fig. 1. The two-link pendulum.

TABLE I

VARIABLES IN THE SWING-UP PROBLEM FORMULATION

Symbol Role

t0 = 0 The initial time of the trajectory.
tf ≤ 6s The time by which the swing-up trajectory

must be complete.
θ1(t), θ2(t) Angular coordinates of the pendulum links.

θ̇1(t), θ̇2(t) Angular velocities of links

θ̈1(t), θ̈2(t) Angular accelerations of links.
τ1, τ2 The motor torques applied to the first and

second links.
v Viscous friction applied at each joint. v =

0.1θ̇ unless specified otherwise.
g Gravitational acceleration. g = 10 in all

experiments.

We use a version of the well known swing-up problem.

Table I describes the system variables and Table II describes

the boundary conditions on the variables at the start and end

of the trajectory.

We define an optimal trajectory as one minimizing

∫ tf

0

τ1(t)
2 + τ2(t)

2 + 0.01(θ1(t)
2 + θ2(t)

2)dt. (1)

We denote the state of the system by x, the control inputs

(commanded motor torques) by u, the time by t, and the

model parameters by p. They are defined as

x =

[

q

q̇

]

=









θ1

θ2

θ̇1

θ̇2









,

u =
[

τ
]

=

[

τ1

τ2

]

,

and

ẋ =

[

q̇

q̈

]

=









θ̇1

θ̇2

θ̈1

θ̈2









= f(x, u, p, t).

TABLE II

BOUNDARY CONDITIONS IN THE SWING-UP PROBLEM FORMULATION

θ1(0) = π

θ2(0) = θ̇1(0) = θ̇2(0) = 0

θ1(tf ) = θ2(tf ) = θ̇1(tf ) = θ̇2(tf ) = 0
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The cost function is written

min

∫

xT Qx + uT Ru,

where Q and R are symmetric positive definite, in this case

Q = 0.01I and R = I . I is the identity matrix.

A plan returned by a trajectory optimizer is a set of state

and control histories xd, ud that satisfy the system dynamics

ẋd(t) = f(xd, ud, p, t) and any other constraints.
For our exploration, we are interested in plans where the

link parameters are uncertain. Our links are thin rods with a

single parameter σ describing the shape as

mass(m) = σ,

length(l) = σ,

and inertia = 1
12ml2.

For the two-link pendulum, the links are described by

shape parameters σ1, σ2, and we constrain

1 = σ1 + σ2

so that we have a single shape parameter describing the two-

link pendulum

s = σ1 − σ2,−1 < s < 1.

B. Method

A reasonable planning method for robot motions when

system parameters are uncertain is to choose nominal values

for the unknown parameters, create a plan based on those

values, and then apply feedback control when running the

plan on the robot. That is, the control law applied to the

robot is

u(t) = ud(t) + K(xd(t) − x(t)),

where K is a matrix of gains. The question that arises

is whether the plan is reasonable when the parameters of

the actual robot differ from the model used in planning.

With CASTRO, the system state vector is augmented with

additional copies of the model state, using alternate approx-

imations of the system parameters. For the case of two

models, the overall state becomes

x =

[

x1

x2

]

,

where

x1 =

[

q1

q̇1

]

=
[

θ11 θ21 θ̇11 θ̇21

]T
,

and x2 =

[

q2

q̇2

]

=
[

θ12 θ22 θ̇12 θ̇22

]T
,

and the system dynamics are

f(x, u1, p, t) =

[

f1(x1, u1, s1, t)
f1(x2, u1 + K(x1 − x2), s2, t)

]

,

with f1 equal to the dynamics of the double-link pendulum,

s1 and s2 the shape parameters of the first and second

pendulum models,

u1 =

[

τ1

τ2

]

,

TABLE III

LIST OF EXPERIMENTS

Name Description

S0 Single-model plan with shape s = 0.
Sp2 Single-model plan with shape s = 0.2.
Sm2 Single-model plan with shape s = −0.2.
C22 CASTRO plan using two models with shapes

s = −0.2 and s = 0.2.
SCAL5 CASTRO scalability test with five models.
SCAL9 CASTRO scalability test with nine models.
SCAL20 CASTRO scalability test with twenty mod-

els, all s = 0
NOISE5 Uncorrelated noise test with five models.

and K is as described below. Note that the control input

vector has not been augmented – only u1(t), the feedforward
torque vector for the first model is provided. The cost

function to be minimized is

min

∫ tf

0

xT Qx + U(x, u)T RU(x, u)

with Q = 0.01I , R = I , and

U(x, u) =

[

u1

u1 + K(x1 − x2)

]

.

We use the LQR method [15] to design a controller

K . A and B of the LQR design process are formed by

linearizing the dynamics of a pendulum with s = 0 about the
goal(upright) position. We select Q and R matrices to pro-

duce gains stiff enough to regulate pendulums with any shape

value in the range −0.6 ≤ s ≤ 0.6 from the starting state
(hanging straight down) to the goal state. For Q and R we

used diagonal matrices with diag(Q) =
[

1 1 0 0
]T

and diag(R) =
[

0.1 0.1 0 0
]T
resulting in a 2 × 4

matrix of gains,

K =

[

11.0 2.2 2.6 0.8
1.9 4.8 0.7 0.4

]

.

IV. EXPERIMENTS

All experiments were run on a quad-processor 3GHz Intel

Xeon with 2GB of system RAM. We used DIRCOL[16]

with SNOPT[5] as a back-end nonlinear minimization solver

using the sparse Jacobian.

A. Single-Model Plans

As a baseline, we derived an optimal trajectory for a two-

link pendulum with shape parameter s = 0 and the cost
function and conditions specified in the previous section

(Experiment S0, see Table III). Fig. 2 shows an animation

illustrating the trajectory of the pendulum. It makes a small

pump bringing the elbow left, then pumps hard to lift the

proximal link above the shoulder, finally swinging the distal

link straight up.

The trajectory was applied in simulation using this con-

troller to fifteen pendulums with shape parameters in the

range −0.6 ≤ s ≤ 0.6. Integration along the trajectory
was done with the ode15s function of MATLAB[17]. We

measured the cost for each pendulum to follow the trajectory

from Equation 1. The costs are shown in Fig. 3.
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Fig. 2. Single-model plan for a two-link pendulum with shape parameter 0 (Experiment S0).
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Fig. 3. Costs of trajectories S0, Sp2, Sm2, and the CASTRO trajectory
C22
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Fig. 4. Kinematics of trajectories planned in Experiments S0, Sp2, and
Sm2.

We also derived trajectories for s = 0.2 (Experiment
Sp2) and s = −0.2 (Experiment Sm2). They had a similar
character to S0. Traces of the θ1 and θ2 are compared in

Fig. 4. Trajectories S0 and Sm2 are very similar in overall

shape, while Sp2 has an extra pump.

These trajectories were applied using the same controller

to the same range of pendulum shapes as above. The costs

are compared in Fig. 3. Notice that each of the trajectories,

while of comparable cost to each other at their respective

nominal s-values, are not low even over the full range of

−0.2 ≤ s ≤ 0.2, and can increase quite dramatically as the
shape parameter goes outside that range. We were surprised

TABLE IV

PARAMETERS OF NINE MODELS IN SCALABILITY TEST

s (shape) v (friction)

0 0.1
0.1 0.1
0.2 0.1
0.2 0.2
0.3 0.1
-0.3 0.1
-0.2 0.2
-0.1 0.1

to see that the minima of the cost curves are not at the shape

values used to create the plans. The time required to compute

each trajectory was a few minutes.

B. Experiments with CASTRO

We put the two-link pendulum problem into a CASTRO

formulation using a total of two models. The first (reference)

model with s = −0.2, and the second, controlled model with
s = 0.2. We used the same matrix K of gains as with the

experiments of the previous section. An animation of the

trajectory found by the planner (Experiment C22) can be

seen in Fig. 5. The pendulum first pumps the elbow left,

then right. It lifts the distal link, pumps once with the distal

link lifted up and the proximal link still hanging down, then

swings the proximal link up, followed by the distal link.

It is interesting to compare the cost of the CASTRO

trajectory C22 to the costs of the trajectories S0, Sp2, and

Sm2 that were planned using a single pendulum model.

Fig. 3 shows that C22 has a cost comparable to the minima

of all three of those trajectories. Note that the CASTRO

trajectory is cheaper for s = 0 than was S0. This indicates
that the planner was stuck in a local rather than global

minimum, a common problem. C22 required a few minutes

of CPU time to compute.

C. Scalability

DIRCOL is able to solve problems of high dimensionality.

We have successfully run a CASTRO formulation of the

two-link pendulum swing-up problem using nine component

models (Experiment SCAL9), requiring a total of 37 state

variables. There are four state variables required for each

of the nine copies, plus one for cost. The model parameters

chosen for each model are shown in Table IV. The values

were not chosen to reflect any particular underlying distribu-

tion. A good initial guess was taken from trajectory C22. The

maximum memory usage was approximately 100 megabytes

and the time required was 1.5 hours. In practice, it is likely

not possible for the planner to converge on a solution for a

large CASTRO system such as this without the use of a good
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Fig. 5. Plan for CASTRO system with s = 0.2,−0.2 (Experiment C22).
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Fig. 6. Kinematics of trajectories C22 vs. SCAL9

initial guess obtained from a single-model system. Fig. 6

shows the resulting trajectory as similar in overall form to

C22, with three pumps rather than four in θ1, and one fewer

pump in θ2. Fig. 9 shows the cost of this trajectory when

run on pendulums of various shapes, compared to those of

Fig. 3.

D. Uncorrelated noise

CASTRO approximates the effects of correlated noise

caused by uncertainty in system parameters by creating

representative models. One can also use CASTRO to approx-

imate uncertainty using uncorrelated (white) noise. PEGA-

SUS is an example of this approach. To compare the effects

of modelling uncorrelated versus correlated noise on the

plan, we formulated a CASTRO problem using five identical

models, all with s = 0 (Experiment NOISE5). The motor
torque applied to each joint of each model was corrupted

with a unique sequence of random noise. The whole system

dynamics are

f(x, u1, p, t) =













f1(x1, u1, p, t)
f1(x2, ǫ2(t) + u1 + K(x1 − x2), p, t)
f1(x3, ǫ3(t) + u1 + K(x1 − x3), p, t)
f1(x4, ǫ4(t) + u1 + K(x1 − x4), p, t)
f1(x5, ǫ5(t) + u1 + K(x1 − x5), p, t)













,

where each ǫi(t) is a function composed of Gaussian kernel
functions smoothing over N random numbers sampled at

evenly-spaced times

ǫi(t) =

[

η
∑N−1

j=0 dij1 exp(−(jσ−t)2

σ2 )

η
∑N−1

j=0 dij2 exp(−(jσ−t)2

σ2 )

]

,
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Fig. 7. Shape and magnitude of noise signal ǫ compared to the noise-free
feedforward torque from trajectory C22.
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Fig. 8. Comparison of trajectory NOISE5 with C22

where η is an overall scaling factor, dijk ∼ N (0, 1) are
precomputed random numbers drawn from a Gaussian dis-

tribution with mean 0 and variance 1, and σ is the spacing

in time between the noise samples dijk . For this experiment,

we chose η = 0.1, N = 60, and σ = 0.1. Fig. 7 shows as
an example the noise sequence for θ2 of ǫ2(t) compared to
the feedforward torque signals in the trajectory of C22.

The run took four hours and converged to a locally optimal

result. Fig. 8 shows the trajectory of Experiment NOISE5.

Compared to trajectory C22, it has additional pumps at the

beginning and completes in a shorter time. Fig. 9 compares

the costs of this plan when run on pendulums with a range
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Fig. 9. Costs of SCAL9 and NOISE5 run on various pendulums compared
to S0 and C22

of shapes to the costs of a plan made using a single model.

The NOISE5 trajectory is the same cost as SCAL9 when

s = 0, but the cost rises rapidly at values of s increasingly

far from 0.

V. DISCUSSION

Our experiments in the scalability of CASTRO showed

that it continues to be effective up through nine component

models. The planner was unable to converge to a solution

using twenty component models. However, it is not certain

that this shows a hard limit on the problem size addressable

by CASTRO. Further tuning of the optimization parameters

or the initial guess could result in success. CASTRO’s

reach will also increase with progress in the underlying

constrained nonlinear minimization. CASTRO shows the

benefits of using correlated noise, that is, planning with

explicit representations of parametric uncertainty, compared

to the alternative of approximating model uncertainty as

uncorrelated, or “white” noise. We have also seen that we

can benefit from integrating the controller directly into the

planner. We can effectively plan for uncertainty in system

model parameters using multiple representative copies of the

model with different estimates of the parameter values.

VI. CONCLUSIONS

We have shown CASTRO to be an effective method for

planning under uncertainty in model parameters with a fully

actuated continuous system of modest dimensionality. Future

work will include extending CASTRO to problems with

discontinuities in system dynamics, walking in particular.

We will experiment with underactuated systems such as the

Acrobot[14] and Pendubot[13]. We will compare the effects

of using alternate cost function structures, such as minimax

cost functions. We are also interested in exploring the reach

of CASTRO to a broad range of problems in optimal steering,

such as UAVs and autonomous rovers. Future work will

also include experiments with other methods of optimization,

such as genetic algorithms.
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