
A Space Decomposition Method for Path Planning of Loop Linkages

Josep M. Porta, Juan Cortés, Lluı́s Ros, and Federico Thomas

Abstract— This paper introduces box approximations as a
new tool for path planning of closed-loop linkages. Box ap-
proximations are finite collections of rectangloids that tightly
envelop the robot’s free space at a desired resolution. They
play a similar role to that of approximate cell decompositions
for open-chain robots—they capture the free-space connectivity
in a multi-resolutive fashion and yield rectangloid channels
enclosing collision-free paths—but have the additional property
of enforcing the satisfaction of loop closure constraints fre-
quently arising in articulated linkages. We present an efficient
technique to compute such approximations and show how
resolution-complete path planners can be devised using them.
To the authors’ knowledge, this is the first space-decomposition
approach to closed-loop linkage path planning proposed in the
literature.

I. INTRODUCTION

Despite the maturity of robot path planning, the compu-

tation of collision-free paths for closed-loop linkages has

been scarcely addressed in the literature. A growing diversity

of applications in and beyond robotics, though, justifies the

quest for efficient techniques to this end. The problem is

encountered, for example, when planning the motion of

parallel or reconfigurable robots, when coordinating multiple

arms grasping an object, or when simulating conformational

changes of protein loops. In all cases, a closed-loop linkage

arises for which collision-free paths between given configu-

rations must be sought. Such linkages are ensembles of rigid

links, articulated by lower-pair joints, forming interconnected

kinematic loops (Fig. 1).

Kinematic loop closure constraints pose additional diffi-

culties to the standard path planning problem. Such con-

straints relate configuration parameters by non-linear equa-

tions, which usually induce a complex topological struc-

ture on the configuration-space (C-space). In general, this

space is not even a parameterizable manifold; it forms an

algebraic variety with possibly many connected components

and lower-dimensional singularity sets [1]. Although such

varieties can in principle be characterized using silhouette

roadmaps [2], [3] or Collins decompositions [4], path plan-

ners based on such tools are rarely devised due to their

intricate implementation and high computational cost.

Some path planners have already been proposed for

closed-loop linkages. On the one hand, exact approaches

like [6], [7] are complete—they guarantee a solution if one

This work has been partially supported by the Spanish Ministry
of Education and Science through the contract DPI2004-07358, by the
“Comunitat de Treball dels Pirineus” under contract 2006ITT-10004, and
by Ramón y Cajal and I3 programme funds.

Josep M. Porta, Lluı́s Ros, and Federico Thomas are with the Institut
de Robòtica i Informàtica Industrial (CSIC-UPC), Llorens Artigas 4-6,
08028 Barcelona, Spain.

Juan Cortés is with the LAAS-CNRS, Université de Toulouse, 7
avenue du Colonel Roche, 31077 Toulouse, France.

exists and report failure otherwise—but their applicability

is limited to single-loop linkages with spherical joints. On

the other hand, sampling-based approaches can be applied

to quickly solve practical problems in high-dimensional C-

spaces [8], [9], [10], but they only present a weak complete-

ness guarantee—they can find a solution when one exists

if “sufficient” computing time is granted, but they cannot

detect that a problem is unsolvable. Moreover, some of these

planners have troubles crossing singularity loci when this is

required [8], while others require decomposing the linkage

into active and passive sub-chains [9], [10], which is not

always possible. (The linkage in Fig. 1, for example, does

not admit such decomposition.) In sum, previous methods

are either incomplete, or complete for a reduced class of

linkages only.

θ1

θ2

θ3

θ4

θ5

θ6

θ7

γ0

γ1 γ2

η6

a0

l1
l2

l3
l4

l5

b6

l7

b0

b1 b2

c6

Ground link

l7c(θ7) + b2c(θ2 + γ2)− l4c(θ4)− b6c(θ6) + a0c(γ0) = 0

l7s(θ7) + b2s(θ2 + γ2)− l4s(θ4)− b6s(θ6)− a0s(γ0) = 0

l7c(θ7) + a2c(θ2) + a1c(θ1)− l5c(θ5) + b0 = 0

l7s(θ7) + a2s(θ2) + a1s(θ1)− l5s(θ5) = 0

l7c(θ7) + a2c(θ2) + b1c(θ1 + γ1)− . . .

· · · − l3c(θ3)− c6c(θ6 + γ6) + a0c(γ0) = 0

l7s(θ7) + a2s(θ2) + b1s(θ1 + γ1)− . . .

. . .− l3s(θ3)− c6s(θ6 + γ6)− a0s(γ0) = 0

Fig. 1. Top: The Double Butterfly, a closed-loop linkage with three
kinematic loops [5]. If one of the links is fixed to the ground, the linkage has
a one-dimensional configuration space. Bottom: Its loop equations, derived
according to Section II. We use c(·) and s(·) to indicate the sine and cosine
functions.

Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems
San Diego, CA, USA, Oct 29 - Nov 2, 2007

WeB4.4

1-4244-0912-8/07/$25.00 ©2007 IEEE. 1882

Fig. 2. Box approximations enclosing the C-space of the Double Butterfly linkage, computed at three different resolutions. The approximations are here
projected onto the plane defined by cos(θ2) and cos(θ4), in the ranges [−1, 1]. The boxes bound the valid configurations in the plane of these variables.

A main obstacle in deriving a simultaneosly general and

complete closed-chain path planner has been the lack of

efficient methods to completely map out the self-motion

set of arbitrary linkages. This problem has been extensively

studied for over a decade within Robot Kinematics, where

explored strategies include interval Newton [11], [12], Bern-

stein subdivision [13] and homotopy techniques [14], but it

has not been until recently that a relatively fast and simple

technique has been given to this end [15], [16]. The aim of

this paper is to extend this technique to derive resolution-

complete path planners for arbitrary closed-loop linkages.

The presented approach is based on box approximations.

These are finite collections of rectangloid sets that tightly

envelop the linkage free C-space at a desired resolution

(Fig. 2). Actually, box approximations play a role similar to

that of cell decompositions for free-flying robots [17], [18],

[19], [20] or open-chain linkages [21]. Like cell decomposi-

tions, box approximations capture the free-space connectivity

in a multi-resolutive fashion and yield rectangloid channels

enclosing collision-free paths. They are also exhaustive rep-

resentations enclosing the entire C-space. Unlike cells, how-

ever, not all points in a box are valid linkage configurations.

They are only bounded-error approximations of them. Thus,

once a channel of boxes is found between two configurations,

an arbitrary trajectory in its interior will in general violate the

linkage kinematic constraints. Nevertheless, the paper will

show that one can refine such channels until this violation

becomes negligible.

For ease of explanation, we present box approximations

and their related algorithms for planar linkages with revolute

joints only, with no open chains present. As explained

in Section VII, however, the underlying principles remain

valid for general planar and spatial linkages. Loop equations

defining a linkage C-space are derived in Section II, showing

they always reduce to a system of linear and circle equations.

Subsequently, Section III exploits the structure of this system

and presents an algorithm for efficiently computing box

approximations of its solution set. Section IV shows how

to globally check a box for collisions and extends the

algorithm to avoid approximating the obstacle space. Since

the cost of obtaining exhaustive box approximations of the

free space is prohibitive for robots with many degrees-of-

freedom, Section V shows how to alleviate this problem

by focusing the approximation effort on low-cost channels.

Section VI presents some test cases run on a prototype

implementation and, finally, Section VII concludes the work

and discusses some points deserving further attention.

II. LOOP CLOSURE EQUATIONS

In order to derive the loop equations of a planar linkage,

we first reference the rotation angles of all links to a fixed,

ground coordinate system. With this, every angle θi assigned

to a link Li defines a unit vector ui = (cos(θi), sin(θi)) that

gives the absolute orientation of the link. We then consider

the connectivity graph of the linkage, containing a node for

each link, and an edge connecting two links if they share a

joint. By traversing a cycle c of this graph, it must be
∑

Li∈c

λ(i, c) · li · ui = 0, (1)

where the sum spans all links Li in c, li is the length of the

i-th link, and λ(i, c) is +1 or −1 depending on whether ui

has the same or opposite orientation of the cycle. This vector

sum yields two scalar equations of the form
∑

Li∈c

λ(i, c) · li · cos(θi) = 0, (2)

∑

Li∈c

λ(i, c) · li · sin(θi) = 0. (3)

By collecting all these equations for a cycle basis of the

connectivity graph, we get a set of necessary and sufficient

conditions describing the valid linkage configurations.

As an example, Fig. 1 provides the equations for the Dou-

ble Butterfly linkage, obtained from the three independent

cycles that leave the ground via link 7, and return via links 4,

5, and 3. It is important to remark here that, as a consequence

of choosing absolute orientation angles, these equations are

linear in the sines and cosines of the unknown angles, which

is exploited by the C-space approximation strategy described

below.

We may now algebraize these equations by applying the

change of variables xi = cos(θi), yi = sin(θi), adding one

1883

yi

xi

B

xl
i xu

i

yl
i

yu
i

L(v) = 0
yi

xi

B

xl
i xu

i

yl
i

yu
i

yi

xi

B

xl
i

xu
i

yl
i

yu
i

L(v) = 0

(a) (b) (c)

Fig. 3. (a) Shrinking B to fit the linear variety L(v) = 0. (b) Half-planes approximating the circular arc inside B. (c) Smallest box enclosing the
intersection of L(v) = 0 with the half-planes in (b).

circle equation x2

i + y2

i = 1 for each angle. Doing this, we

get a polynomial system of the form

L(v) = 0, C(v) = 0, (4)

where v = (x1, y1, . . . , xv, yv) are the newly defined

variables, L(v) = (l1(v), . . . , lm(v)) is a block of linear

functions, and C(v) = (c1(v), . . . , cv(v)) is a block of

quadratic functions with ci(v) = x2

i + y2

i − 1, i = 1, . . . , v.

The configuration space C of the linkage is thus given

by the set of all points v ∈ R
2v satisfying Eqs. (4) above.

Since all involved variables are sines or cosines of angles,

the ambient space in which C is embedded is

A = [−1, 1] × . . . × [−1, 1] ⊂ R
2v.

In the text below, any rectangloid region B ⊆ A will be

referred to as a box, and we will write [xl
i, x

u
i] to denote

B’s interval along dimension xi. Also, the standard symbols

Cfree and Cobs will be used to refer to the configuration free

and obstacle spaces, respectively.

III. BOX APPROXIMATIONS OF C

This section provides an algorithm to compute C-space

box approximations. We start showing how to shrink a box B

to a sub-box containing all configurations in B∩C and, then,

we explain how to embed this process into a shrink-and-split

strategy that approximates C to a given resolution.

Note that, since any configuration in B must lie in the

linear variety L(v) = 0, we may shrink B to the smallest

box bounding the portion of this variety inside B. The limits

of this new box along a dimension, say xi, can be found by

solving the two linear programs

LP1: Minimize xi, subject to: L(v) = 0,v ∈ B,

LP2: Maximize xi, subject to: L(v) = 0,v ∈ B,

which give, respectively, the new lower and upper bounds

for xi. Fig. 3-(a) illustrates the process in the xi-yi plane,

assuming L(v) = 0 is a straight line.

Observe however that B can be further shrunk, as the

circle equations C(v) = 0 must also be satisfied. They are

taken into account as illustrated in Fig. 3-(b). In short,

for each angle θi, one only needs to consider the grey

area bounding the portion of x2

i + y2

i = 1 contained in

[xl
i, x

u
i] × [yl

i, y
u
i]. This area is the intersection of two half-

planes defined by two inequalities, which can be added

to the previous linear programs. The effect of using these

inequalities in conjunction with L(v) = 0 is usually a much

larger reduction of B, as illustrated in Fig. 3-(c). Note also

that, altogether, these constraints define a convex polytope

bounding the solution space of System (4) inside B, i.e., the

intersection of the line and the circle in Fig. 3. The smaller

B, the tighter this polytope approximates the solution space,

or, in other words, the smaller the error introduced by the

circle approximations [15], [16].

Let us now define two procedures, SHRINK-BOX and

SPLIT-BOX. The former takes a box as input and repeatedly

shrunks this box by solving the linear programs above for

each dimension, until no significant reduction is obtained.

The latter simply bisects a box into two sub-boxes by divid-

ing its largest interval at its midpoint. Using these procedures

we can readily define an algorithm able to provide suitable

approximations of C. The algorithm, hereafter referred to as

APPROXIMATE-C, starts setting an initial box B = A, and

uses SHRINK-BOX to eliminate portions of B containing no

solution. SHRINK-BOX stops in one of three cases:

1) When the box gets reduced to an empty set, in which

case it contains no q ∈ C and is labelled as INFEASI-

BLE.

2) When the box is “sufficiently” small, in which case it

is considered a SOLUTION box.

3) When the box cannot be “significantly” reduced, in

which case it is bisected into two sub-boxes using

SPLIT-BOX.

To converge to all q ∈ C, SHRINK-BOX is recursively

applied to the newly created sub-boxes, until one ends up

with a collection of SOLUTION boxes whose longest edges

are shorter than a specified threshold σ. On termination, this

process will have explored a binary tree of boxes whose

internal nodes are boxes being split at some time, and

whose leaves are either SOLUTION or INFEASIBLE boxes.

SOLUTION boxes are collected into a set S and returned

as output. S forms the sought box approximation, since it

envelops C and the resolution of the approximation can be

1884

increased using lower σ values.

The previous algorithm is complete, in the sense that there

is a guarantee that every q ∈ C will be contained in at least

one box of S. Our empirical tests show it is also correct,

in the sense that all SOLUTION boxes contain at least one

q ∈ C, meaning the output is free of the cluster effects of

other bisection approaches [22], [23]. The tests also show the

algorithm converges quadratically to all q ∈ C, if these are

isolated points, and thus exhibits a similar efficiency to that

of fast single-root finding procedures like Newton-Raphson.

Moreover, to deal with arbitrary linkages (either planar or

spatial), only slight modifications must be introduced in its

structure, maintaining these properties in all cases [15], [16].

Having a box approximation S, we can associate an

adjacency graph GS to it, and use it to compute robot

trajectories in C. If we let GS contain a node for each

B ∈ S, and an edge connecting two nodes if their boxes

intersect, a trajectory between configurations qini and qend

may be derived from a path in GS connecting boxes Bini and

Bend containing them. Such paths are sequences of pairwise

adjacent boxes enclosing an infinite number of trajectories.

In analogy to cell decomposition approaches, we call them

channels. Any curve from qini to qend through a channel

provides a robot trajectory satisfying loop closure constraints

with a bounded error. This bound can be reduced by choosing

a smaller value for σ, or by applying the channel refinement

process given in Section V.

IV. BOX APPROXIMATIONS OF Cfree

Our next goal is to conveniently modify APPROXIMATE-C

to account for collision-avoidance constraints. Collision

checking will be introduced after SHRINK-BOX completes its

(a) (b)

(c) (d)

Li

V1

V1

V1 V1

V2

V2

V2

V2

V3

V3

V3 V3

V4V4

V4
V4

Ĩi,B

Ĩi,B

Õi,B

Õi,B

Fig. 4. (a) Bounding rectangles for the vertices of a link Li, for a box
of ambient space. (b) Inner and outer polygons of Li for such box. (c) An
outer polygon overestimating Oi,B . (d) An inner polygon underestimating
Ii,B . Black regions indicate the over- and under-estimation, respectively.

task on a given box. At that point, we proceed to label the box

as FULL, if all its configurations yield some link-link or link-

obstacle collision, EMPTY if none of them yields collisions,

or MIXED otherwise. The result will be a modified algorithm,

called APPROXIMATE-Cfree, producing a box approximation

of the free configuration space formed by MIXED and EMPTY

boxes, with all box edges shorter than σ. We note that,

although such labelling is common to all cell decomposition

approaches, all existing methods concentrate on the case of

single-body or open-chain articulated robots [21], [24], [20].

The method we give next, contrarily, is specially tailored

to closed-loop linkages, as it takes all loop constraints into

account to bound the kinematically-feasible configurations.

We will assume all links and obstacles to be convex

polygons, but the same process can be applied to general

polygons if they are previously decomposed into convex

parts. Let Li(q) ⊂ R
2 be the set of points in link Li, for a

given q ∈ C. For a box B, we define Oi,B and Ii,B as the

union and intersection, respectively, of all sets Li(q), as q

varies inside B. Oi,B and Ii,B will be called the outer and

inner regions of Li for box B. Clearly, if for all robot links

the outer region does not intersect any obstacle nor the outer

region of another link, we can mark B as EMPTY. Similarly,

if the inner region of some link intersects an obstacle, or the

inner region of any other link, we can mark B as FULL. Boxes

are marked MIXED if they cannot be marked FULL or EMPTY.

Note that once a box is marked FULL there is no need to

search further in its sub-boxes, since all its configurations

are in collision. Also, if the box is marked EMPTY, collision

detection on its sub-boxes will become unnecessary.

Instead of computing Oi,B and Ii,B exactly, we use two

simpler approximations, denoted Õi,B and Ĩi,B. To define

them, assume that we can derive a rectangle bounding the

possible locations of any vertex of Li, for all configurations

q ∈ B (Fig. 4-(a)). Then, we define Õi,B as the convex

hull of the bounding rectangles of Li’s vertices, and Ĩi,B

as the intersection of the “inner half-planes” of all link

edges (Fig. 4-(b)). If Vi and Vj are rectangles bounding

the end-points of a link edge, the inner half-plane of this

edge is the one defined by the unique line through Vi and

Vj leaving these rectangles on its right-hand side, as we

follow the contour of the link counterclockwise. Although in

some occasions Õi,B and Ĩi,B might over- or under-estimate

Oi,B and Ii,B (Figs. 4-(c) and (d)), the fact that the link is

convex guarantees that when B gets reduced, they will tend

to coincide.

Finally, to derive the bounding rectangles needed above,

note that the absolute coordinates of any vertex V of Li can

be expressed as

(xV , yV) = w +
∑

Lj∈p

λ(i, p) · li · ui (5)

where w is the vector from V to any joint J of Li, and the

sum is taken over all links Lj found on a path p connecting

the origin of the absolute frame to J . Since Eq. (5) is linear

in the sines and cosines of the involved angles, we can add

it to System (4) and employ SHRINK-BOX to derive ranges

for xV and yV , and hence the desired rectangle for V .

1885

(a)

(b)

(c)

(d)

Q

θ1 θ1

θ2

θ2

θ4

θ4

Fig. 5. Sample output of APPROXIMATE-C and APPROXIMATE-Cfree. See the text for details.

V. CHANNEL REFINEMENT

A box approximation returned by APPROXIMATE-Cfree

may readily be used to compute collision-free paths between

qini and qend. We just need to find boxes in the approxima-

tion containing qini and qend, and find a channel of EMPTY

boxes connecting them. The approach is resolution-complete,

since we will always find a path whenever one exists at the

given resolution σ. However, the cost of computing such

approximation grows rapidly with C’s dimension. We next

see how, by guiding the search tree towards low-cost chan-

nels, we can find proper paths in substantially shorter times,

all without loosing resolution-completeness. Algorithm 1

implements such guiding by adapting the usual channel

refinement process [24] to cope with loop constraints.

CONNECT receives the following inputs: qini, qend, σ,

an initial box approximation S, and its adjacency graph

GS . S and GS may be initialized either with the initial

box B = A, or with a coarse approximation computed

by APPROXIMATE-Cfree. As output the algorithm returns a

collision-free channel connecting qini and qend with all of its

box edges shorter than σ. CONNECT starts by computing the

best channel P in GS connecting qini and qend (according

to some cost function) and then, while P is too coarse (with

some box edge larger than σ) it iteratively refines P ’s boxes

in S, updates GS , and searches again for a new channel

between qini and qend.

REFINECHANNEL’s task is to better approximate the

Algorithm 1: CONNECT

input : configurations qini and qend,
a box approximation S, its adjacency graph GS ,
and the kinematic tolerance σ

output : a channel connecting qini and qend

begin
P ← FINDBESTCHANNEL(qini,qend,S,GS);
while P 6= ∅ and TOOCOARSE(P) do

P ← REFINECHANNEL(P ,S ,GS);
P ← FINDBESTCHANNEL(qini,qend,S,GS);

RETURN(P);

end

portion of Cfree enclosed in P . This is accomplished by

visiting all boxes in P once and, for each box larger than σ,

(1) bisecting it into two sub-boxes, (2) reducing these sub-

boxes using SHRINK-BOX, and (3) labelling these as FULL,

MIXED or EMPTY. All changes are updated in S and GS . The

process continues until the channel gets fully refined, or it

becomes disconnected by some box becoming INFEASIBLE

or FULL. To ensure that the returned channel only involves

EMPTY boxes, INFEASIBLE boxes, FULL boxes, and MIXED

boxes smaller than σ are removed from S along the way.

FINDBESTCHANNEL is implemented using Dijkstra’s al-

gorithm on GS . To promote shorter paths between qini and

qend, the cost of an edge connecting two boxes is set to the

1886

A B C

InitialInitialInitial

GoalGoalGoal

Fig. 6. Three problems for two 3R manipulators grasping a same object
simultaneously. A collision-free trajectory between configurations “Initial”
and “Goal” must be found.

distance between these boxes’ centers. With this, the overall

cost of a channel gets measured as the sum of center-to-

center distances of neighboring boxes, thus biasing the search

towards paths exhibiting the fewest possible configuration

changes. Doing this though, we also promote trajectories

approaching the border of Cobs in many cases, which usually

reduces path clearances. In order to palliate this effect, we

may weigh edge costs by a higher factor if the edge connects

MIXED boxes, or by a lower one if it connects EMPTY ones.

Tuning of these weights leads to a compromise between

channel length and collision risk.

For single-query path planners CONNECT is already a suit-

able algorithm. If the planner has to respond multiple queries

however, it may be better to pre-compute an exhaustive box

approximation of Cfree, in low-dimensional C-spaces, or to

construct a “roadmap” of channels, in high-dimensional ones.

Roadmap construction can be implemented by adapting the

classic sampling approach [25] to this paper’s setup, which,

using CONNECT, is straightforward.

VI. EXPERIMENTS

To validate the approach empirically, the proposed algo-

rithms have been implemented in C and run on a PC with a

Pentium Xeon processor at 3 GHz under Linux. The current

prototype employs the Simplex method implemented in the

GLPK package [26] to solve all linear programs involved.

We next illustrate its performance on planning trajectories

for two planar 3R manipulators grasping a same object

simultaneously.

Figures 5-(a) and 5-(b) illustrate the output of

APPROXIMATE-C, assuming the object is transported

with fixed orientation. This algorithm is able to return a

fine discretization of the corresponding (two-dimensional)

C-space in a few minutes of CPU time. This space is shown

here projected both on the robots’ workspace for point Q

of the object (Fig. 5-(a)), and on three of the robots’ link

angles (Fig. 5-(b)). To better appreciate the surfaces, boxes

are drawn with semi-transparent walls in the figures.

In order to compare the previous output with the one of

APPROXIMATE-Cfree, we introduce the three gray obstacles

shown in Fig. 5-(c). If we only check the collisions of the

object with the obstacles, this algorithm returns the box

approximation shown un Fig. 5-(d), where the difference with

Fig. 5-(b) corresponds to the obstacle region, now left out of

the approximation. As expected, if for each box in Fig. 5-(d)

we draw its inclusion rectangle for point Q, we visualize the

Minkowski sum of the object with the obstacles (Fig. 5-(c)).

Fig. 6 shows three variants of a path planning problem for

the considered manipulators. Problem A is relatively simple

and can be solved in less than one second using randomized

planners like [10]. Problem B requires the reconfiguration

of the two robot arms along their paths, crossing singularity

points. Connecting the initial and final configurations with

such planners may be difficult or even impossible as, being

zero-measure sets, singularities get never sampled. Prob-

lem C has no solution, a situation that randomized planners

cannot detect. Using CONNECT we obtained solutions for

problems A and B in two and four minutes respectively, and

we detected problem C has no solution in seven minutes.

The trajectory computed for problem B is shown in Fig. 7.

Overall, the experiments indicate that CONNECT is rel-

atively slow on easy problems, but may be faster than

randomized planners if the traversal of narrow corridors

and singularity sets is required. Furthermore, the presented

technique is able to determine in reasonable computing time

if a problem is unsolvable, while randomized planners are

unable to do so.

Fig. 7. The solution computed by CONNECT, for problem B. Note the arms
cross several singularities along their trajectory. The bottom-right picture
displays all trajectory frames overlaid.

1887

VII. CONCLUSIONS

This paper has shown how a recent method for computing

C-space box approximations of closed-loop linkages can

be properly extended to devise closed-loop path planners.

Strengths of the presented approach include its generality (it

is applicable to arbitrary loop topologies) and its resolution

completeness (it always finds a solution whenever one exists

for the given approximation level). Its major limitation is

the rapid growth of computational cost for high-dimensional

C-spaces, a common drawback of all space decomposition

approaches [24]. For facing this limitation, an interesting

line to explore would be the combination of the presented

method with some sampling-based approach. Possibilities in

this sense include the computation of RRT roadmaps [27]

confined to coarse box approximations or, as mentioned

in Section V, the construction of channel roadmaps using

CONNECT.

To simplify the exposition, the approach has been pre-

sented for linkages with closed loops only, but it can be

applied to linkages containing both open and closed chains

too, with almost no modification. In that case, the C-space

would be defined by a product of constrained angles (those

of links within a closed loop) and unconstrained ones (those

of links within open chains). Only the ranges of the former

would intervene in the SHRINK-BOX procedure, and those

of the latter would only be made small via SPLIT-BOX.

Linkages with a free-flying ground link can also be dealt with

similarly. In sum, for the unconstrained dimensions of C-

space, the algorithms would generate a standard approximate

cell-decomposition, and thus, in such sense, we can regard

box approximations as generalized cell-decompositions.

It is worth mentioning that the path planning algorithms

we give could be based on other box approximation strate-

gies. One could use, for example, interval Newton or Bern-

stein subdivision methods. However, our experience indicates

that using the presented method, box approximations are de-

rived one order of magnitude faster than employing Bernstein

subdivision. Moreover, its implementation is substantially

simpler than these alternative methods, while maintaining

their quadratic convergence.

Work is being carried out to extend the current implemen-

tation to deal also with spatial linkages. A major step towards

this goal has already been taken by extending the shrink-and-

split strategy of Section III to cope with arbitrary spatial loop

constraints [15]. Whereas the adaptation of the planning al-

gorithms will not require significant changes, work is needed

on the generalization of the collision detection method to the

3D case.

VIII. ACKNOWLEDGEMENTS

The authors wish to thank Tom Creemers for helping to

prepare several experiments of this paper.

REFERENCES

[1] J. Burdick, “Kinematics and design of redundant robot manipulators,”
Ph.D. dissertation, Stanford University, July 1988.

[2] J. F. Canny, The Complexity of Robot Motion Planning. MIT Press,
Cambridge, 1988.

[3] S. Basu, R. Pollack, and M.-F. Roy, “Computing roadmaps of semi-
algebraic sets on a variety,” J. Am. Math. Soc., vol. 13, no. 1, pp.
55–82, 2000.

[4] J. T. Schwartz and M. Sharir, “On the piano movers’ problem
ii: General techniques for computing topological properties of real
algebraic manifolds.” Adv. Appl. Math., vol. 4, pp. 298–351, 1983.

[5] K. J. Waldron and S. V. Sreenivasen, “A study of the position problem
for multi-circuit mechanisms by way of example of the Double
Butterfly linkage,” ASME Journal of Mechanical Design, vol. 118,
pp. 390–395, 1996.

[6] L. Han and L. Rudolph, “Inverse kinematics for a serial chain with
joints under distance constraints,” in Proc. of Robotics, Science, and
Systems, 2006.

[7] J. C. Trinkle and R. J. Milgram, “Complete path planning for closed
kinematic chains with spherical joints,” Int. J. Rob. Res., vol. 21, no. 9,
pp. 773–789, 2002.

[8] S. M. LaValle, J. H. Yakey, and L. E. Kavraki, “A probabilistic
roadmap approach for systems with closed kinematic chains,” in Proc.
IEEE Int. Conf. Rob. & Autom., 1999, pp. 473–479.

[9] L. Han and N. M. Amato, Algorithmic and Computational Robotics:
New Directions (WAFR2000). A.K. Peters, Boston, 2000, ch. A
Kinematics-Based Probabilistic Roadmap Method for Closed Kine-
matic Chains, pp. 233–245.

[10] J. Cortés and T. Siméon, Algorithmic Foundations of Robotics VI
(WAFR2004). Springer-Verlag, Berlin, 2004, ch. Sampling-Based
Motion Planning under Kinematic Loop-Closure Constraints, pp. 75–
90.

[11] A. Castellet and F. Thomas, “An algorithm for the solution of inverse
kinematics problems based on an interval method,” in Advances in
Robot Kinematics, M. Husty and J. Lenarcic, Eds. Kluwer Academic
Publishers, 1998, pp. 393–403.

[12] J.-P. Merlet, “Solving the forward kinmematics of a gough-type
parallel manipulator with interval analysis,” Int. J. of Rob. Res., vol. 23,
no. 3, pp. 221–235, March 2004.

[13] C. Bombı́n, L. Ros, and F. Thomas, “A concise Bı̈¿ 1

2
ier clipping

technique for solving inverse kinematics problems,” in Advances
in Robot Kinematics, J. Lenarcic and M. Stanisic, Eds. Kluwer
Academic Publishers, 2000, pp. 53–61.

[14] A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems
of Polynomials. World Scientific, 2005.

[15] J. M. Porta, L. Ros, and F. Thomas, “Multi-loop position analysis
via iterative linear programming,” in Proc. of Robotics, Science, and
Systems, 2006.

[16] J. M. Porta, L. Ros, T. Creemers, and F. Thomas, “Box approximations
of planar linkage configuration spaces,” ASME Journal of Mechanical
Design, To appear in April 2007.

[17] R. A. Brooks and T. Lozano-Pérez, “A subdivision algorithm in
configuration space for findpath with rotation,” IEEE Systems, Man
and Cybernetics, no. SMC-15, pp. 224–233, March/April 1985.

[18] D. Zhu and J.-C. Latombe, “New heuristic algorithms for efficient
hierarchical path planning,” IEEE Trans. Rob. & Autom., vol. 7, no. 1,
pp. 9–20, 1991.

[19] L. Jaulin, “Path planning using intervals and graphs,” Reliable Com-
puting, vol. 7, no. 1, pp. 1–15, 2001.

[20] L. Zhang, Y. J. Kim, and D. Manocha, Algorithmic Foundations of
Robotics 2006 (WAFR 2006). Springer-Verlag, Berlin, 2006, ch. A
Simple Path Non-Existence Algorithm using C-obstacle Query.

[21] T. Lozano-Pérez, “A simple motion planning algorithm for general
robot manipulators,” IEEE J. Rob. & Autom., vol. 3, no. 3, pp. 224–
238, 1987.

[22] A. Morgan and V. Shapiro, “Box-bisection for solving second-degree
systems and the problem of clustering,” ACM Transactions on Math-
ematical Software, vol. 13, no. 2, pp. 152–167, 1987.

[23] J. M. Porta, L. Ros, F. Thomas, and C. Torras, “A branch-and-prune
solver for distance constraints,” IEEE Trans. on Robotics, vol. 21,
no. 2, pp. 176–187, April 2005.

[24] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
1991.

[25] L. E. Kavraki, P. Svestka, J.-C. L. J.-C., and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Rob. & Autom., vol. 12, no. 4, pp. 566–580,
1996.

[26] A. Makhorin, “GLPK - the GNU linear programming toolkit,” http:
//www.gnu.org/software/glpk.

[27] J. Cortés, “Motion planning algorithms for general closed-chain
mechanisms,” Ph.D. dissertation, Institut National Polytechnique de
Toulouse, 2003.

1888

