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Abstract— While underactuated robotic systems are capable
of energy efficient and rapid dynamic behavior, we still do
not fully understand how body dynamics can be actively used
for adaptive behavior in complex unstructured environment.
In particular, we can expect that the robotic systems could
achieve high maneuverability by flexibly storing and releasing
energy through the motor control of the physical interaction
between the body and the environment. This paper presents a
minimalistic optimization strategy of motor control policy for
underactuated legged robotic systems. Based on a reinforcement
learning algorithm, we propose an optimization scheme, with
which the robot can exploit passive elasticity for hopping
forward while maintaining the stability of locomotion process
in the environment with a series of large changes of ground
surface. We show a case study of a simple one-legged robot
which consists of a servomotor and a passive elastic joint. The
dynamics and learning performance of the robot model are
tested in simulation, and then transferred the results to the
real-world robot.

I. INTRODUCTION

There has been an increasing interest in the use of passive

dynamics to achieve energy efficient and rapid movement

of robotic systems. It was shown, for example, that bipedal

walking can be very efficient when robots exploit physical

body dynamics [1]. While most of the underactuated legged

robots are functional only in relatively simple environment

(e.g. a flat terrain or ones with small steps), it is a highly

challenging problem to control them in rough environment.

Previously, there have been a few approaches proposed

for adaptive control architectures of underactuated legged

robots that work in rough terrains. The most successful

legged robot model is the series of robots called RHex

[2], [3]. The unique morphological design of elastic rimless

wheels makes these robots capable of maintaining the loco-

motion process in many extreme ground conditions without

any strict and complex control architectures. More careful

foot placement of legged robots was also investigated in

the past. The pioneering work of one-leg hopping robot

demonstrated locomotion over a large obstacle by using a

simple feedback control [4]. A series of investigations on

the adaptive motor controller (e.g. a simple sensory feedback

exploiting dynamics [5], [6], the studies of central pattern

generator models [7], [8], [9], [10], and a reinforcement

learning approach [11]) also demonstrated adaptive responses

in uneven terrains. These approaches, however, still suffer

from the stability in complex environment, and they are
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Fig. 1. (a) A photograph of the robot platform and (b) a schematic of
the simulation model. The open circle denotes a passive joint and the circle
with a cross inside denotes a joint controlled by the servomotor.

still not able to deal with a series of large changes on the

ground. More specifically, these approaches require some

stabilization periods in the locomotion process after dealing

with a large change. In general, the body dynamics was so

far exploited only to stabilize the locomotion process, and we

still do not fully understand how to configure the dynamics

such that it can achieve a series of good foot placement in

complex environment.

In general, it is a highly challenging problem to achieve

a series of good foot placement because every leg step

in underactuated legged robots is dependent on the other

preceding leg steps. The goal of this paper is to propose a

simple optimization strategy of motor control in underactu-

ated legged robots. This approach considers how to optimize

motor control parameters in order to achieve reasonable foot

placement in complex environment with a series of large

changes of the ground condition. An underactuated one-

legged robot is used in simulation and in the real world in

order to evaluate the performance of the proposed approach.

In the next sections, we first introduce a model of legged

robot, and the dynamics of this model will be analyzed. The

learning architecture and its performance evaluation will then

be shown, together with a real-world robot experiment.

II. ONE-LEG ROBOT MODEL

Complex anatomical structure is a fertile basis of animals’

adaptive behavior. Likewise, ”good” mechanical structures

and material properties are an important prerequisite for

adaptive behavior of autonomous robotic systems. In this

section, we explain the mechanical design of a single-

legged robot that exploits passive dynamics and elasticity

for forward hopping locomotion. The model of a single-
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TABLE I

SPECIFICATIONS OF THE ROBOT’S MECHANICAL DESIGN

Parameter Description Value

l0 length of lower leg segment 150 mm

l1 spring attachment 30 mm

l2 spring attachment 30 mm

l3 length of upper leg segment 120 mm

l4 length of body 110 mm

M mass of the robot 0.80 kg

θ2rest rest angle of the leg segments 120 deg

Ksp spring constant 60 kg/m

Fig. 2. Analysis of dynamics during one cycle of motor oscillation.

legged robot investigated in this paper is inspired from the

previous biomechanics studies [12], [13], [14], and it has

been previously shown that it requires very simple motor

control for rapid locomotion behavior [15]. This control

scheme can also be extended for the other types of loco-

motion including walking, hopping, and running in two- and

four-legged locomotion [6], [15], [16], [17].

Figure 1 shows one of the simplest legged robot models.

This single-leg robot consists of one position-controlled

motor at the hip joint and two limb segments connected

through an elastic passive joint. The behavior of this robot

can be described as:

Mq̈ = V(q̇) + E(q, q̇) + G + T (1)

where q =
[

x y θ1 θ2

]T
. V, E and G are velocity

and elasticity dependent forces, and gravitational force, re-

spectively. T is the motor torque provided by the motor con-

trol explained below. The velocity and elasticity dependent

forces include damping and elasticity elements in the spring

and ground reaction force. In the simulation experiments

shown in the next sections, the force generated in these

tension springs are calculated as:

Fsp = Ksp(d2 − d2rest) − Dspḋ2 (2)

where Ksp and Dsp are the spring and damping constants,

and d2 and d2rest represent the length and the rest length of

the spring that can be determined by θ2 and θ2rest.

The ground reaction forces are calculated based on a

spring-damper ground interaction model studied in biome-

chanics [18].
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Fig. 3. Single step dynamics of the simulation model. (a) the hopping
heights at the second apex (y1) are plotted with respect to the initial heights
(y0), and (b) shows the stable range of hip joint oscillation frequency.

Gy = a|yc|
3(1 − bẏc) (3)

Gx =

{

µslideGy
ẋc

|ẋc|
µslideGy

ẋc

|ẋc|
> µstickGy

Fxc µslideGy
ẋc

|ẋc|
≤ µstickGy

(4)

where xc and yc denote horizontal and vertical distances

of the foot contact point on the ground surface, respectively.

Fxc represents the force required to prevent the contact point

sliding. There is only one ground contact point defined at an

end of the lower segment in this model.

This system requires only a simple motor oscillation with

no sensory feedback to stabilize itself into a periodic hopping

behavior. Therefore the T term in equation (1) is calculated

to achieve PD control of the following sinusoidal oscillation.

θ1(t) = A sin(2πωt) + B (5)

In the following simulation and robot experiments, we con-

sider the control parameter of frequency ω only, and the

amplitude and offset parameters are fixed at A = 35 and

B = 40 degrees.

For the sake of real-world implementation and experi-

ments, the dimension of this model is scaled down as shown

in Table I. And to facilitate the analysis, this model is

restricted to the motion within a plane, and no rotational

movement (roll or pitch) of the body segment is considered.

In the following simulation experiments, we implemented
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Fig. 4. Simulated behavior of the robot (a) in a flat terrain and (b) in a rough terrain. The sequence of motor frequencies are optimized by the proposed
algorithm explained in the text.

this model to MathWorks Matlab together with the SimMe-

chanics toolbox.

III. ANALYSIS OF BODY DYNAMICS

Although this robot model is simple, it exhibits relatively

complex behavior patterns through the compliant-viscous

interactions of the passive joint and the ground surface. In

this section, we explain the body dynamics of the robot

model to understand the basic characteristics and capabilities

of the system. This analysis will be used to determine the

parameter space for the optimization process later.

The following analysis was conducted in simulation, and

we focus on the behavior during one leg step of this robot

model as shown in Figure 2. Although this model has eight

state variables (i.e. q and q̇), we approximate the basic

dynamics by examining three state variables [ y ẋ θ1 ].
More specifically, by considering the dynamic interaction

from one apex of flight phase to the subsequent apex, we

assume that x can be arbitrary, θ2 = θ2rest and θ̇2 = 0
as the passive joint stays at the rest length of the spring.

Therefore, in this experiment, we conducted the simulation

of one motor oscillation cycle with various initial heights y0,

horizontal velocity ẋ, and motor control frequency ω.

Figure 3 shows the single step dynamics of the simulation

model, and the plots indicate the initial condition of hopping

height with which the system successfully reached to the next

apex height. During this simulation, the behavior patterns

resulting in more than one contact points touching the ground

surface, and/or the passive joint exceeding large threshold

angles were regarded as an unstable locomotion process,

thus they were ignored. As shown in Figure 3(a), this model

is able to achieve stable bounding with a relatively broad

range of initial heights y0. Namely, it is able to maintain the

hopping gait when the apex height is between 0.02 and 0.06

m in particular, because the plots are around the solid line in

the figure. Even with the high initial height, the subsequent

apexes result in lower heights which makes the system

capable of maintaining locomotion processes eventually.

Note that there are two large clusters of plots in Figure 3(a)

and (c), which indicates two different kinds of gait patterns.

The cluster at the smaller initial heights and frequency

corresponds to the gait, in which the foot touches down the

ground while the leg is swinging back. The other cluster at

the larger initial heights and frequency corresponds to the

gait pattern of the foot touchdown while the leg is swinging

forward. For the sake of nomenclature, we call the former

pattern “Gait 1” and the latter one “Gait 2”.

From this analysis, we can conclude that the proposed

system is theoretically capable of maintain the locomotion

process with any values of state variables examined in

this experiment. Considering the real-world implementation,

however, we decided to employ the motor frequency parame-

ter between 1.5 and 3.5 Hz, because Gait 2 generally induces

undesirable large impact force of touch down at the joints.

IV. OPTIMIZATION OF CONTROL POLICY

As shown in the previous section, the dynamics of the pro-

posed model can be used for maintaining locomotion process

in relatively broad range of state variables. It is, however,

necessary to adjust the motor control parameter to deal

with rough terrains. This section explains an optimization

algorithm and its performance.

A. Optimization Algorithm

In order to minimize the dimension of controller opti-

mization, the following scheme considers only one control

parameter, i.e. motor frequency ω. Moreover, we consider the

optimization process can explore the frequency parameter at

every leg step, and it is not allowed to change it during

the cycle. The target control policy of the learning process,

therefore, is π = π(ω1, ω2, · · · , ωn).
In the learning process, we utilized a stochastic search

method by using a two-dimensional probability matrix
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Fig. 5. A typical optimization process of the proposed algorithm during
running on a flat terrain (in simulation). (a) An increasing travelling distance
during the learning process and (b) the number of leg steps.
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Fig. 6. A learning process of motor control policy. The color in each tile
indicates the oscillation frequency of motor at the leg step N.

Q(N, a) with which the learning process determines a oscil-

lation frequency ωN at leg step N . Based on the dynamics

analysis in the previous section, we defined a discrete set

of 10 actions as ai=1,···,10 = [1.5, 1.7, · · · , 3.3] Hz. Note

that, unlike a standard reinforcement learning, we do not

use sensory states as a reference of this probability matrix,

but the number of leg step cycle N is used instead.

At the beginning of learning episode t, the learning process

determines a control policy πt based on the Q matrix by

using a roulette rule function Froulette.

πt = Froulette(Q
t(i, a), ǫ) (6)

i = 1, · · · , N

where the parameter ǫ determines the degree of stochastic

search: with a higher ǫ value, for example, the process selects

more random actions based on the Q values.

After running an episode with the control policy πt, a

reward value of the leg step N is evaluated as follows:

Rt(i) =

{

−5.0 : i = FailedStep
F inalDistance : i �= FailedStep

(7)

In the reward evaluation, the action at the leg step N which

results in a failure locomotion process receives a negative

reward. Namely, the probability to select ωN in the next

episode will be decreased.

These rewards are then used to update the Q matrix as

follows:

Qt+1(i, ai) = (1.0 − α) · Qt(i, ai) + α · (Rt(i)

+γ · mean(Qt(i + 1, a))) (8)

where α and γ represent learning and discount rates, re-

spectively. Note that the discount term in this equation

also evaluates the preceding leg steps from the leg step i.
Because the instability of locomotion process often caused by

multiple inappropriate leg steps earlier than the actual failed

one, this discount term improves the learning performance

significantly.

B. Simulation Result in Flat Terrain

We first explain a series of simulation experiments of the

learning algorithm in a flat terrain. We conducted 100

episodes of optimization processes, and repeated this process

with 100 different random seeds.

Figure 4 illustrates the kinematic trajectories of body

segments in simulation experiments. A locomotion behavior

with an optimized control policy is shown in Figure 4(a),

where the optimization process mostly find control policies

to maintain forward hopping behavior in a flat terrain. It

is interesting, however, that the optimized control policies

are generally a set of unsteady values of motor frequencies

even in the locomotion on a flat terrain. Namely, the system

changes the motor frequency almost every step, which results

in unsteady behavior patterns. As shown in Figure 4(a),

for example, it slows down sometimes after a few forward

movement. The optimized control policy showed, however, a

better performance (0.48 m/sec) than a steady control policy

running at a fixed motor oscillation frequency 0.27 Hz (0.18

m/sec).

Figure 5 shows a detailed process of optimization. In

this example, the learning process was able to optimize the

locomotion behavior for 26 leg steps after 100 episodes,

with which the system could travel approximately 2.5 m.

It is important to note that this learning process optimizes

both maximum travelling distance and locomotion stability:
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Fig. 7. The environmental conditions with steps for the simulation analysis.
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Fig. 8. Optimization of locomotion in different heights of steps. (a)
Maximum travelling distance (dashed lines) and mean distance (solid lines)
over 50 optimization processes, and (b) the maximum and mean leg steps.

by comparing Figure 5(a) with (b), the number of leg

steps increasing while the travelling distance does not (for

example, around the learning steps 15 - 20).

The exploration of control policy can be more clearly

shown in Figure 6. At the learning steps 15 - 20, for

example, the process is optimizing the leg step 11 and 12.

The stochastic optimization process optimized for about 50

learning steps, it found a solution to maintain the locomotion

process further.

C. Simulation Result in Rough Terrain

The same optimization process can also be applied in rough

terrains. One of the optimized results is shown in Figure

4(b), in which the simulated robot successfully climbed up

three steps and jumping down a large gap while maintaining

the stable locomotion process. This figure illustrates how the

system deals with the changes of environment with multiple

leg steps: after climbing up the first and second steps, the

simulated robot exhibits multiple leg steps to maintain the

stability by hardly moving forward.

The optimization performance in rough terrains was also

evaluated in the simulation experiments. As shown in Figure

7, we have conducted the optimization processes in the

environment of three steps with various heights. This figure

shows the maximum distance and number of leg steps after

the simulation of 50 episodes of 100 learning steps. It clearly

shows that the system is able to deal with relatively high

decreasing steps, although it is not able to cope with the

increasing steps more than 0.03 m high.

V. ROBOT EXPERIMENT

The proposed optimization scheme was then tested in the

real-world robot. The optimization process was first con-

ducted in simulation and transferred to the controller of the

real-world robot. To minimize the difference between the

simulation model and the real world environment, we set up

the environment with a few rubber sheets as shown in Figure

9. The ground surface contains three steps (20 mm, 25 mm,

and 27 mm high, respectively).

Although there are some differences between simulation

and the real-world environment especially in the ground

interactions, the resultant behavior of the robot is more or

less comparable with that of simulation as long as it is a

few leg steps. The robot exhibits two leg steps after the first

step (i.e. the pictures 4-8 in Figure 9), and then stepping two

more steps.

VI. DISCUSSION AND CONCLUSION

This paper presented a motor control optimization scheme

of underactuated one-legged robot system. By using an

optimization method similar to reinforcement learning algo-

rithm, the proposed approach optimizes a sequence of motor

commands of dynamic locomotion, which exploits the body

dynamics to deal with a series of large steps on the ground.

The method was evaluated both in simulation and the real-

world robot and it was demonstrated that the locomotion

process can be optimized in relatively short time steps. There

are, however, a few points that need to be discussed further.

Although the typical reinforcement learning generally uti-

lizes a complete set of state information in the optimiza-

tion process which guarantees optimal control policies, the

proposed method does not consider any sensory information

except for the number of leg steps. Because of the absence of

sensory feedback (i.e. the feedback of body state variables

and the information about the rough terrain), the learning

system does not need to explore the vast state space of

the system. While the advantages of this approach lies

in the fact that the system is capable of finding dynamic

behavioral patterns in relatively short period of learning

process, a drawback of this approach is that it requires

learning processes whenever the system encounters different
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Fig. 9. Behavior of the robot over three steps. The intervals between the
pictures are approximately 30 ms.

initial conditions and rough terrains. In order to account for

this problem, we are currently working on extending the

proposed learning scheme such that the control policy could

take the sensory information into account, based on the motor

control optimization in this paper.

Alternatively, there are a few additional related work that

could be combined with the proposed approach toward more

plausible real-world implementation. For example, we still

do not know how to implement the optimization process in

the real-world robot. In addition, the robot model used in this

paper is very simple and it still has many constraints (e.g. the

pitch, roll and yaw rotations are fixed), which also needs to

be considered further in the future. We expect that a similar

optimization scheme can be used for the other related robot

models such as biped and quadruped robots [16], [17], [19].

APPENDIX

In the simulation experiments presented in this paper, we

used the following parameter values: Ksp = 600(N/m),
Dsp = 10(N ·s/m), a = −2.5e5, b = 3.3, µslide = 0.5, and

µstick = 0.6. The gain parameters of the PD controller are:

Kp = 15 and Kd = 0.01.
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