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Abstract— In this article, the authors examine the problem
of designing nominal manipulator Jacobians that are optimally
fault tolerant to one or more joint failures. In this work,
optimality is defined in terms of the worst case relative
manipulability index. While this approach is applicable to both
serial and parallel mechanisms, it is especially applicable to
parallel mechanisms with a limited workspace. It is shown
that a previously derived inequality for the worst case relative
manipulability index is generally not achieved for fully spatial
manipulators and that the concept of optimal fault tolerance
to multiple failures is more subtle than previously indicated.
Lastly, the authors identify the class of eight degree-of-freedom
Gough-Stewart platforms that are optimally fault tolerant for
up to two locked joint failures. Examples of optimally fault-
tolerant seven and eight degree-of-freedom mechanisms are
presented.

Index Terms— kinematic redundancy, fault tolerance, manip-
ulability, parallel manipulators

I. INTRODUCTION

Fault tolerant design of serial or parallel manipulators is
critical for tasks requiring robots to operate in remote and
hazardous environments where repair and maintenance tasks
are extremely difficult [1]-[6]. In such cases, operational
reliability is of prime importance. By adding kinematic
redundancy to the robotic system, the robot may still be able
to perform its task even if one or more joint actuators fail [7].
However, simply adding kinematic redundancy to the system
does not guarantee fault tolerance [8]. One must strategically
plan how the kinematic redundancy should be added to the
system to ensure that fault tolerance is optimized [9].

One approach to the problem of designing fault tolerant
robots is to optimize some measure of fault tolerance. While
a number of measures have been proposed [10], [11], in this
article we focus on the relative manipulability index, which
was first introduced in [8] to quantify the fault tolerance
of kinematically redundant serial manipulators. The relative
manipulability index corresponding to locked joint failures
in joints i1, . . . , if is defined to be

ρi1,··· ,if
=

w(i1···if J)
w(J)

(1)

where J denotes the manipulator Jacobian, i1···if J denotes
the manipulator Jacobian after the columns i1, . . . , if corre-
sponding to the failed joints are removed, and where w(J) =
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√
det(JJT ) is the manipulability index for J [12]. This

quantity is a local measure of the amount of dexterity that
is retained when a manipulator suffers one or more locked
joint failures. The value of a relative manipulability index
ranges from zero to one with a zero value indicating a local
loss of full end-effector control and a value of one indicating
that those joints in question only produce self-motion [8].

Relative manipulability indices have also been used to
study the fault tolerance of redundant Gough-Stewart plat-
forms [13]. A Gough-Stewart platform (GSP) is a parallel
mechanism consisting of a base, a moving platform, and
struts. For a GSP, the inverse Jacobian M maps the gen-
eralized velocity of the payload to the corresponding joint
velocities of the individual struts. The matrix M has the
same form as the transpose of a manipulator Jacobian J . In
other words, the first three components of each row forms a
unit vector that is orthogonal to the vector given by the last
three components of that row. If MT M is a diagonal matrix,
then one says that the mechanism is an orthogonal Gough-
Stewart platform (OGSP) [14]-[15]. OGSPs are a special
class of GSPs that are particularly well-suited to various
precision applications owing to the local kinematic and
dynamic decoupling of the Cartesian directions they provide
[16]. In [13], a class of OGSPs was identified that possess
optimal fault tolerant manipulability for single joint failures
based on maximizing the minimum relative manipulability
index about an operating point.

In this article, the authors determine a family of manip-
ulators that are optimally fault tolerant to multiple failures
at their nominal operating configuration. In the next section,
the relationship between the relative manipulability indices
and the null space of the manipulator Jacobian is established
using the principal minors of the null space projection
operator. Based on this formulation of fault tolerance, it is
easy to establish identities and inequalities for the relative
manipulability indices. Motivated by the observation that the
relative manipulability indices are completely determined by
the null space of the manipulator Jacobian, we then discuss
some of the theoretical limitations of designing manipulator
Jacobians with a prescribed null space. An optimally fault
tolerant seven degree-of-freedom (DOF) manipulator is then
determined in Section III. In Section IV, the authors consider
the concept of equally fault tolerant configurations, i.e., con-
figurations for which any combination of a specified number
of joint failures results in the same local manipulability. It
is shown through a series of results that such configurations
are truly rare. In Section V the authors identify the class
of 8-DOF fully spatial manipulators that have the property
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that in their nominal operating configuration the manipulators
are optimally fault tolerant for up to two joint failures.
Conclusions appear in Section VI.

II. FAULT TOLERANCE AND THE NULL SPACE OF
THE MANIPULATOR JACOBIAN

It turns out that the amount of fault tolerance that a
manipulator possesses is closely related to the null space
of the manipulator Jacobian. This important fact motivates
the problem of designing operating configurations for robotic
mechanisms based on choosing the manipulator Jacobian to
have a prescribed null space. After characterizing the relative
manipulability indices in terms of the null space of the
manipulator Jacobian, we will discuss the amount of freedom
that a designer has in choosing the null space of a nominal
manipulator Jacobian.

A. Relative Manipulability Indices and the Null Space of the
Manipulator Jacobian

We begin by demonstrating that the subdeterminants of the
null space projection operator of the manipulator Jacobian
completely characterize the relative manipulability indices.
Our analysis is applicable to serial and parallel mechanisms
so throughout this work we will use M and JT interchange-
ably. Let J be a full rank m × n matrix with m < n and
let r = n−m. For a manipulator, m denotes the dimension
of the workspace, n denotes the number of joints, and r
denotes the degree of redundancy. We will call an n × r
matrix N a null space matrix of J if the columns of N
form an orthonormal basis for the null space of J . Although
the null space matrix N is not unique for a given J , any
two null space matrices N and N ′ of J are related by an
orthogonal matrix Q in the following way: N ′ = NQ.

In [8], it was shown that the relative manipulability index
is related to the null space matrix by the relationship

ρi1,··· ,if
= w(Ni1···if

) =
√
|Ni1···if

NT
i1···if

| (2)

where Ni1···if
is the f×r matrix consisting of rows i1, . . . , if

of the matrix N . We thus have the interesting observation that
the relative manipulability indices are strictly a function of
the null space of J . We will build on this result to address
the issue of designing manipulators that are optimally fault
tolerant to one or more joint failures.

The relative manipulability index squared, ρ2
i1,··· ,if

=
|Ni1···if

NT
i1···if

|, is perhaps best viewed as a principal minor
of the null space projection operator PN = I − J+J where
J+ denotes the pseudoinverse of J . The n × n matrix PN

represents the orthogonal projection of the joint space onto
the null space of J . Unlike a null space matrix, PN is unique
for a given J ; however, given a corresponding null space
matrix N , we have that PN = NNT . It then follows from
(2) that the relative manipulability index squared is equal
to the determinant of the matrix consisting of the i1, . . . , if
rows and columns of PN .

Recall that a k × k minor of an n × n matrix A = [aij ]
with k < n is a subdeterminant of the form

A

(
i1 · · · ik
j1 · · · jk

)
,

∣∣∣∣∣∣∣∣∣

ai1j1 ai1j2 · · · ai1jk

ai2j1 ai2j2 · · · ai2jk

...
...

. . .
...

aikj1 aikj2 · · · aikjk

∣∣∣∣∣∣∣∣∣
(3)

where 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n.
If (j1, . . . , jk) = (i1, . . . , ik), then this quantity is called a
principal minor of A. Hence, we have that ρ2

i1,··· ,if
is the

(i1, . . . , if ) principal minor of PN = NNT :

ρ2
i1,··· ,if

= PN

(
i1 · · · if
i1 · · · if

)
. (4)

It is well known that the coefficients of the characteristic
polynomial pA(λ) = |λI−A| of A are given in terms of the
sums of the principal minors of A. To be more specific, for
pA(λ) = λn + an−1λ

n−1 + · · ·+ a0, we have that

an−k = (−1)k
∑

1≤i1<···<ik≤n

A

(
i1 · · · ik
i1 · · · ik

)
. (5)

Since PN is a projection, it is idempotent, i.e., P 2
N =

PN , so its only possible distinct eigenvalues are 0 and 1.
Furthermore, because rank(PN ) = r < n where r = n−m,
it follows that the characteristic polynomial of PN is

p(λ) = λm(λ− 1)r =
r∑

k=0

(
r

k

)
(−1)kλn−k. (6)

Equations (4), (5), and (6) then imply that
∑

1≤i1<···<if≤n

ρ2
i1,··· ,if

=
(

r

f

)
. (7)

This result, written as a slightly different but equivalent
expression, was also proven in [13]; however, the proof
provided there was based on repeated application of the
Binet-Cauchy theorem and was less direct than applying
principal minors. It is important to note, however, that the
approach just given is not merely a different proof of the
result in [13]. More importantly, it provides us with an
approach that will be used in Section IV to address multiple
joint failures.

As noted in [13], equation (7) can be used to obtain an
upper bound for the worst case relative manipulability index
by noting that the minimum value of any set of numbers
must be less than or equal to the average so that

min
1≤i1<···<if≤n

ρi1,··· ,if
≤

√√√√
(

r
f

)
(
n
f

) . (8)

B. Designing Nominal Fully Spatial Manipulator Jacobians
with a Prescribed Null Space

Based on the inequality in (8), Ukidve, et al., [13] convinc-
ingly argue the importance of designing for fault tolerance.
This is especially true when there may be multiple faults.
One approach to ensuring local fault tolerance is to design
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the manipulator based on null space properties. This is
particularly applicable when the required workspace is very
small as is the case in [13]. However, there are limitations to
how much redundancy can be used when designing nominal
manipulator Jacobians with a prescribed null space.

These limitations follow from the fact that the manipulator
Jacobian for a fully spatial manipulator must satisfy certain
constraints on its columns. In particular, the vector given by
the first three components of a column must have unit length
and must be orthogonal to the vector given by the last three
components of that column. For a manipulator with n joints,
this results in 2n constraints. If the manipulator Jacobian is
required to have a prescribed null space matrix, then each
of its six rows must be orthogonal to the r rows of NT

where r = n − 6 is the number of degrees of redundancy
of the manipulator. Consequently, the manipulator Jacobian
must satisfy 6r null space constraints. Since the manipulator
Jacobian has 6n parameters, it follows that one has 6n −
2n − 6r = 4(6 + r) − 6r = 24 − 2r degrees of freedom
to satisfy the design constraints. Hence, one cannot expect
to arbitrarily find a manipulator with r > 12 degrees of
redundancy that has a configuration where the manipulator
Jacobian has a prescribed null space matrix.

If the mechanism is required to be an orthogonal Gough-
Stewart platform (OGSP), then there is a further reduction
in the degrees of freedom that one has in choosing a
manipulator Jacobian with a prescribed null space. If JJT is
required to be a diagonal matrix, there would be 15 additional
constraints, decreasing the degrees of freedom to 9 − 2r.
In this case, one should not expect to be able to arbitrarily
specify the null space of a manipulator with r > 4 degrees
of redundancy. These dimension arguments will be exploited
in Section IV to study the likely utility of a newly proposed
fault tolerance concept.

III. DESIGNING OPTIMALLY FAULT TOLERANT
7-DOF SPATIAL MANIPULATOR JACOBIANS

According to equation (8), the maximum worst case
relative manipulability index for a 7-DOF manipulator is
1/
√

7. This optimal value is achieved if and only if the null
vector of the manipulator Jacobian has components of equal
magnitude, i.e., |n̂i| = 1/

√
7 where n̂i is the i-th component

of the unit length null vector n̂J . Hence, we can specify the
null vector to obtain an optimally fault tolerant manipulator
configuration. Based on the dimension arguments in Section
II-B, we have 22 degrees of freedom in choosing a 7-DOF
manipulator Jacobian with a prescribed null vector. If we
further require that JJT be diagonal, the number of degrees
of freedom in choosing J with a prescribed null vector
reduces to seven. An example of a nominal manipulator
Jacobian that is optimally fault tolerant to a single failure is
given by

Fig. 1. An example of a cylindrical geometry for an OGSP corresponding
to a realization of the optimally fault tolerant 6 × 7 manipulator Jacobian
given in (9). The labels on the struts correspond to the respective columns
of J (rows of M ). Similar parallel mechanisms have been proposed for
mounting in aerospace vehicles [14].

JT =

2
66666664

0.000 0.000 1.000 0.113 1.065 0.000
−0.175 −0.827 −0.536 0.870 0.023 −0.314

0.877 0.418 −0.239 0.297 −0.159 0.814
−0.408 −0.004 −0.913 −0.696 0.581 0.308

0.473 −0.802 0.364 −0.689 −0.553 −0.323
0.065 0.983 −0.174 0.020 −0.177 −0.993

−0.836 0.233 0.497 0.085 −0.781 0.508

3
77777775

.

(9)

This manipulator Jacobian corresponds to a 7-DOF
manipulator, and its null vector components are all equal.
Consequently, all seven relative manipulability indices
corresponding to (9) are equal to 1/

√
7. In this case, JJT

is diagonal so (9) corresponds to an OGSP.
There are a number of different possible manipulator

realizations that can be generated from the Jacobian in
(9). Clearly, the desired failure tolerance properties are not
affected by multiplying one or more of the columns of J by
−1. A parallel manipulator generated from this Jacobian is
shown in Fig. 1.

IV. EQUALLY FAULT TOLERANT
CONFIGURATIONS

Equation (8) served as a motivation in [13] for defining a
manipulator operating about a single point in the workspace
to be optimally fault tolerant to f ≤ r failures if all of its
relative manipulability indices ρi1,··· ,if

are equal, i.e.,

ρi1,··· ,if
=

√√√√
(

r
f

)
(
n
f

) (10)

for 1 ≤ i1 < · · · < if ≤ n. In this article, we will
prefer to say that a manipulator is equally fault tolerant to
f ≤ r failures at an operating configuration if (10) holds for
1 ≤ i1 < · · · < if ≤ n at that configuration. Note that equal
fault tolerance is a local property since it would apply to
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specific configurations and would be most applicable for ma-
nipulators operating in a small workspace. If a manipulator
is equally fault tolerant to f ≤ r failures, then by (8) it is
optimally fault tolerant in a worst case relative manipulability
index sense to f ≤ r failures. However, while it is clear that
an optimal value exists, it is possible that a manipulator may
not have a configuration that is equally fault tolerant to f
failures. In this case, the optimal value is smaller than the
bound given in (8). It is the goal of this section to show that
this is typically the case.

Our first result concerning equally fault tolerant configu-
rations is the following:

Theorem 1: If a manipulator is equally fault tolerant to
f failures where 1 < f ≤ r, then it is also equally fault
tolerant to f − 1 failures. Furthermore, the manipulator is
equally fault tolerant to k failures for k = 1, 2, . . . , f .

Proof: The proof is omitted due to space limitations.

The reason that Theorem 1 will play such an important
role in this work is the fact that it forces PN to have a
particularly simple structure when the manipulator is equally
fault tolerant to more than one failure. If J is equally fault
tolerant to a single failure, then the diagonal elements of PN

are all equal to r/n. If J is equally fault tolerant to f ≥ 2,
then by Theorem 1 it is equally fault tolerant to single failures
and to two failures. Hence, the (i, j) principal minor of the
symmetric matrix PN is

∣∣∣∣
r/n pij

pji r/n

∣∣∣∣ =
r2

n2
− p2

ij =
r(r − 1)
n(n− 1)

(11)

where we have used the fact that pji = pij and where the last
equality follows from the assumption of equal fault tolerance
to two failures. Solving for pij gives pij = ±1

n

√
r(n−r)

n−1

for all 1 ≤ i < j ≤ n. Hence, when J is equally fault
tolerant to f ≥ 2 failures, the diagonal elements of PN are
all equal and the off-diagonal elements of PN all have the
same magnitude, i.e., PN has the form

PN =




a ±b ±b · · · ±b
±b a ±b · · · ±b
±b ±b a · · · ±b
...

...
...

. . .
...

±b ±b ±b · · · a




(12)

where a = r
n and b = −1

n

√
r(n−r)

n−1 .
Consider now a manipulator with two degrees of redun-

dancy, and suppose that the manipulator is equally fault
tolerant to two failures. Since the rank of PN would then
be two, it follows that the 3× 3 principal minors of PN are
zero; otherwise, the rank of PN would be greater than or
equal to three. Any 3× 3 principal minor of PN necessarily
has the form

∣∣∣∣∣∣

a ±b ±b
±b a ±b
±b ±b a

∣∣∣∣∣∣
= a3 − 3ab2 ± 2b3. (13)

Since one of these two quantities is zero, so is their product
so that

0 = (a3 − 3ab2 + 2b3)(a3 − 3ab2 − 2b3)
= (a− b)2(a + 2b)(a + b)2(a− 2b)
= (a2 − b2)2(a2 − 4b2). (14)

We thus conclude that a2 = b2 or a2 = 4b2. Substituting
in the expressions for a and b yields that n = 0 or n = 3,
respectively. As n = 0 does not make sense, we conclude that
n = 3. Equivalently, the workspace has m = n−r = 3−2 =
1 degree of freedom so that the corresponding Jacobian is
a 1 × 3 matrix. Equal fault tolerance then dictates that the
Jacobian has the form J =

[ ±α ±α ±α
]

for some
α > 0.

The above observations prove the following result:

Theorem 2: No 8-DOF spatial manipulator can be equally
fault tolerant to two simultaneous joint failures.

An 8-DOF optimally fault tolerant manipulator Jacobian
will be determined in the next section. Of course the worst
case relative manipulability index to two failures will nec-
essarily be smaller than 1/

√
28, the upper bound given by

(8).
We are now ready to consider the case when J is equally

fault tolerant to f ≥ 3 failures. Applying similar arguments
as above, we obtain the following result:

Theorem 3: Regardless of a manipulator’s geometry or the
amount of kinematic redundancy present in a manipulator,
no fully spatial manipulator Jacobian can be equally fault
tolerant to three or more joint failures.

Proof: The proof is omitted due to space limitations.

Theorem 3 is in fact applicable to any manipulator whose
workspace dimension is greater than one, e.g., no planar
manipulator can be equally fault tolerant to three or more
failures regardless of how many joints it may have.

We now consider the case when a fully spatial manipulator
is equally fault tolerant to two failures. We have already
shown that this is impossible for r = 2. To simplify matters,
note that multiplying any of the columns of J by −1 does
not affect the fault tolerance properties of J . In doing so, the
corresponding rows and columns of PN are also multiplied
by −1 so that we can assume without loss of generality that
PN has the form

PN =




a b b · · · b
b a ±b · · · ±b
b ±b a · · · ±b
...

...
...

. . .
...

b ±b ±b · · · a




. (15)

We use the property that PN is a projection to determine
restrictions on the number of degrees of redundancy that
a fully spatial manipulator can have for the equal fault
tolerance property to hold. As a projection, P 2

N = PN so
that for j > 1,

b = p1j = (PN )1j = (P 2
N )1j = 2ab + qb2 (16)
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where q is the integer q = n1−n2−1 where n1 denotes the
number of elements in the j-th column of PN that are equal
to b and n2 denotes the number of elements equal to −b.
Clearly n1 + n2 = n − 1 as (PN )jj = a and (PN )ij = ±b
for i 6= j. Since b 6= 0, (16) yields

q =
1− 2a

b
. (17)

For a redundant fully spatial manipulator, m = 6 and n =
r+6. Substituting the expressions for a and b into (17) gives

q =
1− 2r

n

−1
n

√
r(n−r)

n−1

= (r − 6)

√
r + 5
6r

. (18)

The requirement that (17) is an integer is a necessary
condition for the existence of a manipulator having r > 1
degrees of redundancy with the property that it is equally
fault tolerant to two failures.

Unfortunately, the requirement that q is an integer elimi-
nates most if not all practical manipulator designs since only
specific values of r are feasible. Indeed, it was shown in
Section II-B that one can only expect to be able to design for
a prescribed null space if r ≤ 12. Testing r = 2, 3, . . . , 12,
one finds that only r = 3, 6, and 10 result in integer values
of q in (18). Note that this further confirms that no fully
spatial manipulator Jacobian corresponding to an 8-DOF
manipulator can be equally fault tolerant to two failures.
Consider now the case when r = 3. We have already noted
that n1 − n2 = q + 1 and n1 + n2 = n− 1 = r + 5 so that
2n1 = q + r + 6, or, equivalently, q + r = 2n1 − 6. Hence,
q+r is an even number so that q and r have the same parity,
i.e., both are even or both are odd. However, for r = 3, we
have q = −2 implying that r = 3 is not a feasible solution.
Thus, if a redundant fully spatial manipulator with r ≤ 12
degrees of redundancy is equally fault tolerant to two joint
failures then r = 6 or 10.

Ten or even six degrees of redundancy would be a con-
siderable amount of redundancy to add to a manipulator and
adding that much redundancy may even make the mani-
pulator more prone to a joint failure. So it could be argued
that even if one could design a manipulator to be equally
fault tolerant to two failures, it would be undesirable to do
so because of the high number of degrees of redundancy
required. This observation is even more significant for an
orthogonal GSP. The additional requirement that JJT be
diagonal reduces our freedom in designing a manipulator
Jacobian with a prescribed null space to 9 − 2r degrees of
freedom. For r = 6, this value becomes 9 − 2(6) = −3 so
that there are three more design constraints than degrees of
freedom to design such a manipulator.

V. OPTIMALLY FAULT TOLERANT
CONFIGURATIONS

In the last section it was shown that no 8-DOF Gough-
Stewart platform could be designed to operate at a configura-
tion that is equally fault tolerant to two simultaneous failures.
However, one can still design for worst case optimal fault
tolerance for up to any two simultaneous failures at a nominal

configuration in a manner that will be made precise later.
This is the goal of the current section.

We have already seen that, from a relative manipulability
index perspective, the null space of the manipulator Jacobian
completely characterizes fault tolerance. Basically, the fault
tolerance of a manipulator Jacobian depends on how spread
out the rows of the null space matrix N are. It is natural
then to try to spread these rows out as far as possible. This
intuitive notion of spreading out the rows of the null space
matrix will serve as a guide to identifying a configuration
that is optimally fault tolerant in terms of the worst case
relative manipulability index.

The case for manipulators with multiple failures is similar.
In designing a fault tolerant nominal manipulator Jacobian,
we first want the manipulator to be optimally fault tolerant
to a single failure, i.e., we require the null space matrix N to
have rows of equal norm. Among all manipulator Jacobians
meeting this requirement, we choose one that optimizes fault
tolerance to a second joint failure. This process can be
continued to f ≤ r failures. In this case, we will say that
the manipulator configuration is optimally fault tolerant in
terms of the worst case relative manipulability index to up
to f failures.

For a manipulator with two degrees of redundancy, it is
convenient to consider the rows of the n × 2 null space
matrix N to be points or vectors in a plane with each
vector originating from the origin. Optimal fault tolerance
to a single failure dictates that the norm of the rows be
equal, i.e., that the terminal points of the vectors lie on a
circle centered at the origin with radius

√
2/n. Now the

relative manipulability index ρij is equal to the absolute
value of the determinant of the matrix consisting of rows
i and j of N . Since these rows have length

√
2/n, we have

that ρij = 2
n | sin φij | where φij is the angle between the

corresponding i-th and j-th vectors. Fault tolerance is then
characterized by the

(
n
2

)
angles between the n vectors in the

plane.
Before proposing a candidate optimal solution, we note the

invariance of the unordered set {ρi1,··· ,if
| 1 ≤ i1 < · · · <

if ≤ n} to two simple operations on the columns of J . If
J ′ is obtained from J by multiplying some of the columns
of J by −1, by reordering some of the columns, or by a
combination of these two operations, then J and J ′ have
the same unordered set of relative manipulability indices.
Now rearranging columns and/or multiplying some of them
by −1 affects the rows of the null space matrix in exactly
the same way. These observations help simplify our study
of fault tolerance. In particular, when identifying an optimal
null space matrix N for the r = 2 case, we can assume that
when the rows of N are viewed as points in the plane, they
appear in the upper half plane, for if a particular row does
appear in the lower half plane, simply multiply that row by
−1 and its point representation will appear in the upper half
plane.

A natural candidate for an optimal N can now be obtained
by spreading the rows of N out as points on the upper half
circle of radius

√
2/n. In other words, we choose the n rows
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of N to appear as points at the ordered angles

φk =
πk

n
k = 0, 1, . . . , n− 1 (19)

on the circle with radius
√

2/n and centered at the origin.
The fact that (19) is an optimal null space matrix follows
directly from the following result:

Theorem 4: Let N be the n × 2 matrix whose i-th row
is given by

Ni =
hq

2
n

cos(π(i−1)
n

)
q

2
n

sin(π(i−1)
n

)
i
, i = 1, 2, . . . , n.

(20)
Then N is the null space matrix for an (n− 2)× n matrix
J that is optimally fault tolerant for up to two failures.

Proof: The proof is omitted due to space limitations.

Equation (19) is not the only optimal null space matrix. As
mentioned earlier, post-multiplication of a null space matrix
by an arbitrary r × r orthogonal matrix will result in a null
space matrix corresponding to the same null space of J . Also
note that permuting or multiplying rows of N by −1 will
not change the set of values of the relative manipulability
indices. In particular, any null space matrix N obtained from
(19) where one or more rows may possibly be multiplied
by −1 and/or where the rows may possibly be permuted
will still result in an optimally fault tolerant albeit different
manipulator Jacobian. These operations on the rows result
in precisely the same operations on the columns of J . Note
that while permuting the columns of J does not affect the
overall geometry of a parallel mechanism, it has a significant
impact on the geometry of a serial mechanism.

Using (19) directly gives a null space matrix

N =

2
666666664

0.500 0.000
0.462 0.191
0.354 0.354
0.191 0.462
0.000 0.500
−0.191 0.462
−0.354 0.354
−0.462 0.191

3
777777775

(21)

with the property that any corresponding manipulator
Jacobian is optimally fault tolerant for up to two joint
failures. A specific manipulator Jacobian corresponding to
(21) is

JT =

2
666666664

0.000 0.000 1.000 −0.639 0.765 0.000
−0.835 0.503 −0.225 −0.395 −0.845 −0.423
−0.017 0.148 −0.989 0.251 0.955 0.139

0.719 −0.688 −0.101 −0.498 −0.618 0.663
0.714 0.533 0.454 0.614 −0.123 −0.822

−0.831 0.054 0.554 0.572 0.046 0.853
−0.482 −0.875 −0.052 −0.474 0.314 −0.879

0.163 0.978 −0.131 −0.975 0.199 0.277

3
777777775

.

(22)
In this case, the rows of the manipulator Jacobian are
mutually orthogonal and (22) corresponds to an OGSP that
is optimally fault tolerant for up to two joint failures with
a worst case relative manipulability index

√
2/8 = 0.5 for

single failures and 2 sin(π/8)
8 = 0.0957 for two simultaneous

failures. Note that the second quantity compares reasonably
well to the upper bound 1√

28
= 0.1890 given in (8).

VI. CONCLUSIONS
In this article, the authors examined the issue of designing

kinematically redundant manipulators that are optimally fault
tolerant to multiple joint failures. The authors provided an
alternative proof of the recent result that the sum of the
squares of the relative manipulability indices corresponding
to f failures is equal to

(
r
f

)
. This result provides an upper

bound for the worst case relative manipulability index of
a manipulator with one or more failed joints. Previously,
this upper bound was used to characterize optimal fault
tolerance to multiple failures. However, in this article, it was
shown that this upper bound is typically not achieved and
is therefore not suitable for judging optimal fault tolerance.
This clearly indicates the need for further consideration when
designing robotic systems that are tolerant to multiple joint
failures. By identifying the required properties of the null
space of the manipulator Jacobian, the authors presented a
general method for finding a family of 8-DOF Gough-Stewart
platforms with optimal worst case fault tolerance for up to
two failures.
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