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Abstract—This paper presents a balance controller that
allows a humanoid to recover from large disturbances and still
maintain an upright posture. Balance is achieved by integral
control, which decouples the dynamics and produces smooth
torque signals. Simulation shows the controller performs better
than other simple balance controllers. Because the controller
is inspired by human balance strategies, we compare human
motion capture and force plate data to simulation. A model
tracking controller is also presented, making it possible to
control complex robots using this simple control.

I. INTRODUCTION

A fundamental control problem for humanoids is balanc-
ing, which is related to the control of unstable systems such
as inverted pendulums. We believe that balance is achieved
by a set of decoupled controls that regulate the center of pres-
sure and simultaneously ensure that the humanoid balances
upright. In human balance experiments, it has been observed
that people use a mixture of strategies for dealing with these
disturbances. The ankle strategy fixes all joints except the
ankle, and balances like a single inverted pendulum. The
hip strategy is characterized by a large bending at the hips,
which results in a repositioning of the center of mass [1].
These two strategies are illustrated in Fig. 1.

In Section II, we present a controller that is inspired by
these human balance strategies and accounts for the limits
on the location of the center of pressure to ensure that the
robot can stand with its feet flat on the ground and withstand
large disturbances. We begin by ignoring the presence of
the feet and pretend there are no constraints on the joint
torques. The torques generated by the balance controller
determine the ideal positioning of the center of pressure. This
information is fed into an integral controller which maintains
the constraints on the center of pressure and keeps the robot
standing upright. Our controller is simulated on a double
inverted pendulum, which is subjected to a large external
disturbance force and results are presented in Section III. The
performance is compared to other controllers and to human
balance experiment data.

Since humans behave like double inverted pendulums, we
want our humanoid robots to also behave as such. For this
reason, we present a model tracking control algorithm in
Section IV. The algorithm makes use of operational points
to define a relationship between the simple model system
(e.g. the double inverted pendulum) and the more complex
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Fig. 1. The two strategies mimicked by our balance controller. The ankle
strategy causes the robot to behave like a single inverted pendulum while
the hip strategy allows the robot to use the gravitational force to help it
balance

robot (e.g. a humanoid). We apply this algorithm to a 3-link
planar biped robot in the sagittal plane and simulation results
are presented in Section V.

A. Related Work

Humanoid robot researchers often describe balance and
motion using simple models. Early work on balance and
stability of dynamic bipeds was done by Vukobratovic, et.
al. [2], followed by Golliday, et. al. [3] and Hemami, et.
al. [4]. In these studies, the biped was usually represented
by a planar double inverted pendulum with the base joint
representing the stance foot and ankle joint.

The center of pressure (CoP) is used as a measure of
stability in bipeds. It represents the location of an equivalent
force, equal to the integral of the pressure distribution under
the foot, that is a measure of the tendency for the feet to
rotate and come off the ground. The use of ground reference
points, such as the CoP, has been present in almost every
humanoid project. While the definition and usefulness of the
CoP has been questioned [5] [6], it is still the dominant
measure of stability used by many robots, including the
highly successful Honda Asimo [7].

The constraints imposed on the ankle joint make hu-
manoids behave like the acrobot [8], which consists of a
series of inverted pendulums with all but the base joint
actuated. By definition, the CoP of the acrobot is always
fixed below the base joint, yet it can still balance itself. In
humanoids, the location of the CoP is roughly proportional to
the magnitude of the torque at the ankle. If the ankle torque
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Fig. 2. A double inverted pendulum with foot can apply torques at the ankle
and hip joints. The location of the center of pressure must be underneath
the foot

is always commanded to be zero, then the CoP stays at zero
as well, and the humanoid becomes an unstable acrobot.

Biomechanics researchers have subdivided human balance
control into the hip strategy and the ankle strategy [9]. For
the ankle strategy, all of the joints except for the ankles
are fixed and balance is accomplished by torquing only the
ankles. At some point, this becomes too difficult for the
ankles and the hip strategy is employed. This is characterized
by a large deflection at the hip and a quick centering of the
center of mass over the ankle. Shifting the center of mass
manipulates the moment created by the gravitational force,
allowing the human to balance much like the acrobot.

Preview control [10], similar to model predictive control
[11] and constrained optimal control [12], changes the inputs
incrementally by simulating the system forward to prevent
constraint violations. This kind of incremental control is nec-
essary because the CoP imposes limits on the joint torques,
namely the ankles, at each instant to keep the humanoid’s feet
flat on the ground. Integral control has previously been used
to control humanoid balance [13] to decouple the dynamics
of the center of pressure and the center of mass.

The idea of using intuitive controllers for simpler models
on complex robots led to the development of operational
space controls [14] and virtual model controls [15]. Both
make use of the principle of virtual work and the Jacobian to
perform actions in a task space. In operational space control,
controllers are created to track trajectories of operational
points and in virtual model control the joint torques create
virtual forces at arbitrary points on the body. Khatib, et al.
applied prioritized operational space controls to humanoids
[16] to complete dynamic tasks while remaining in an upright
posture. As first presented, the controller was better suited for
arm motions or single support tasks, but was later organized
into a general framework which included the necessary
contact constraints for controlling humanoids [17].

II. BALANCE CONTROL

Balance in humanoids can be partially explained by the
center of pressure, or CoP. This point must be away from
the edges of the foot, or the foot will begin to rotate.
Traditional control, such as linear quadratic regulators and
PID controls do not account for this constraint, except by
limiting the torque commands. In the presence of a large
external disturbance force, these linear controllers would
command more torque than the robot can deliver while
keeping the foot flat on the ground. For this reason, we derive
a controller that takes into account these constraints, ensuring
that the robot remains balanced and upright with its feet flat
on the ground.

The balance controller is derived below for fully-actuated,
unconstrained planar dynamic systems with equations of
motion of the form,

M(6)6 =7 — N(,0) (1)

where 6 is a vector of joint angles, M is the inertia matrix,
T are the joint torques, and /N is a vector containing the
gravitational, centripetal and coriolis forces.

We use planar inverted pendulum models, like the one
in Fig. 2, to present the controller. Even though there is
no explicit foot in our model, it is assumed to be flat on
the ground at all times, contributing no kinetic or potential
energy. The definition of the center of pressure still applies
as long as it remains within the area the foot would cover.

A. Unconstrained Balance Control

We initially ignore the presence of the foot, which imposes
limits on the location of the CoP, and hence limits on
the ankle torques. We use a two-part balance controller
inspired by the hip and ankle strategies. The first controller
is a simple full-state linear quadratic regulator (LQR). This
optimal controller is found by linearizing the dynamics about
vertical and it can be written as

0
TLQrR = —KLqQr [ i ] )

This controller always applies restoring torques to drive
the joint angles to zero. This causes the robot to behave
like a stiff inverted pendulum, similar to the ankle strategy.
However, as the deflection at the ankle becomes larger, the
center of mass moves outwards, creating a large moment
due to gravity that the ankle torque must balance. For this
reason, we add another controller to regulate the horizontal
position of the center of mass over the ankle to minimize
this moment, much like the hip strategy. The acceleration of
the horizontal position of the center of mass, xcn, can be
written as

Fom = Jo0 + J. M7 (T = N), 3)
where J, = 0xcm/00. The regulator response we desire is
i’CM = 7kCMp(ICM — ‘TéM) — kCMdj:CMa which we can
achieve by the following control,

Tcm = N -— MJ; (Jmo + kCMp(xCM — deM)

+kcmatom) €]
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where J designates the pseudo-inverse of the matrix J,
and zd,, is a desired center of mass location. For balance,
the desired location should be over the ankle, so that the
force of gravity points through the ankle joint and causes
no moment. Unlike the LQR controller above, this controller
will apply non-restoring torques. These non-restoring torques
can result in a large deflection at the hip, characteristic of the
hip strategy. In general, these controllers can be conflicting.
However, the CM regulator only has an effect as the CM
moves away from zero and cannot maintain posture alone,
so both controllers are used simultaneously.

B. CoP Regulator

The location of the center of pressure is an important in-
dicator of the robot’s ability to balance because it represents
the position of a single equivalent force on the foot. In order
to keep the feet flat on the ground, this point has to be within
the area under the foot. For our double inverted pendulum
model of planar biped robots, the location of the center of
pressure is given by an equation of the form,

Tankle o At
- )
Fnormal B+ cr

where A is a matrix that selects the ankle torque from the
vector of torques, 7. The normal force cancels the weight and
downward acceleration of the center of mass, SO0 Flormal =
Mot (Zom + g) and

B = (.0 — J.M™'N +g)
C = mrM"

&)

TCoP =

where ¢ = 9.81m/s? and J, is the Jacobian of the z-
coordinate of the center of mass, and a function of joint
angles only. The numerator of this equation is a function
of only the torque at the ankle joint, meaning that if the
ankle torque is zero then so is the CoP. This means that the
limits on the location of the CoP approximately define the
limits on the ankle torque. The problem with applying the
unconstrained controllers above is that it may command an
ankle torque that would violate these constraints. For this
reason, we use the above controllers as a reference torque,

7" = TLQR + Toum- (6)

We use this reference torque to compute an ideal center of
pressure, CoP*, using Eq.(5). If the required ankle torque is
too large, this point will exceed the boundaries of the foot.

Block diagram of balance controller

The actual desired center of pressure, CoP?, is created by
limiting this value to be under the foot.

To actually balance while tracking the desired center of
pressure, we use a decoupled integral controller,

U = UCoP + Uposture @)

where ucop regulates the location of the CoP and uposture
keeps the robot standing upright. The joint torques are
the integral of this equation. The use of integral control
creates smooth torque inputs and results in easily decoupled
dynamics, as shown below.

We can track 2, using a feedback control that gives the
response, Lcop = —kcop(Tcop — deOP). The dynamics of
the CoP are found by taking a derivative of Eq.(5),

Tcop = D + Eu ®)

where u = 7 is the new control input and

D = —((B+Cr)A7)/F?
E = (FA-CAT)/F?
F = B+Cr

According to Eq.(8), to achieve our desired response we must
apply the control,

ucop = —ET (D + kcop(zcop — 2op)) ©)

The approximate effect of the pseudo-inverse is to command
an ankle torque, since the center of pressure is largely
determined by this torque. Using only Eq.(9), we can control
the location of the CoP, but ankle control alone will not
keep the robot standing upright. For posture control, we add
extra controls that lie in E* = null(F). Intuitively, this null-
space is essentially associated with all joints other than the
ankle. According to Eq.(8), such controls will not affect the
dynamics of the CoP. To control posture, we attempt to track
the desired torque from Eq.(6), the unconstrained balance
controller above. The resultant posture controller becomes

Uposture = Z(E:TKT (Td - T))Ez* (10)
7

where E7 is a unit basis vector of the null space and K

is a gain matrix that determines how closely the integrator

tracks the reference torque, 7¢. Because the null-space is

associated with all joints except for the ankle, Eq.(10) does

not change the ankle torque. However, the reference ankle



Fig. 4. Double inverted pendulum model used in this example. Parameters
are m1 = 35kg, mo = 35kg, L1 = 1lm and L2 = 1m
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Fig. 5. Response to a 23N s impulse push.

torque is not ignored, because it was used in the calculation
of CoP?, which is tracked using Eq.(9). The entire controller
is summarized in the block diagram in Fig. 3.

III. EXAMPLE: DOUBLE INVERTED PENDULUM

This controller is applied to a planar double inverted
pendulum robot, shown in Fig. 4. The center of mass of each
link is at the center and there are joint torques at both the
ankle and hip joints. The linear quadratic regulator controller
was derived by writing linearized dynamics about the upright
pose, (6,6)” = (0,0,0,0)7, as

0 0

L) =Aa( "

( 0 ) ( 0

For the properties of the model, given in Fig. 4, and the

following manually-chosen () and R matrices,

Q = diag[le*,1¢5,1,10] and R = diag[100, 100]

>+Bu

the K matrix became
1383.0 347.6 508.2 151.0

Kigr =
@ 299.2 366.6 131.6 77.62

TABLE I
CONTROL PARAMETERS

Parameter Value
kcMp 400
koma 50
kcop 100
K- diag[le?, 1e4]

Maximum Push Force Before Foot Rotation/Falling

25

@
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Fig. 6. Performance comparison of various controllers subject to a
horizontal impulse.

The other parameters used for the controller are given in
Table 1.

Fig. 5 shows the response to an unknown disturbance, in
this case an instantaneous 23/Ns horizontal impulse to the
center of the torso link. This impulse results in non-zero
initial joint velocities. The CoP was constrained to be on the
interval zcop € [—0.1,0.1].

A. Performance Comparison

For comparison, we will use several other controllers
that would commonly be used for this type of control
problem and compare their performance to our controller.
By performance, we mean the robot’s ability to withstand
large disturbance forces without breaking the constraints on
the center of pressure and causing the foot to rotate or fall
over. The three controllers we will compare our controller
to are an unconstrained LQR controller, an LQR controller
with a saturation limit on the ankle torque and a constrained
LQR controller using receding horizon control. The same
model and simulator were used for each controller. As before,
horizontal pushes were applied to the center of mass of the
upper link, and the magnitude was increased until the robot
became unstable, either by the CoP moving to the edge of
the foot or by falling over.

The results of this comparison are summarized in Fig. 6.
As expected, the unconstrained LQR controller performs the
worst because it takes no care to avoid applying too large
of an ankle torque and the CoP quickly moves to the edge
of the foot. When a saturation limit on the ankle is imposed
on the LQR controller, its performance is increased because
it now accounts for CoP constraints, but cannot handle large
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Fig. 7. Animation comparing the responses of the constrained LQR controller (light green) and our controller (dark blue) to a 17Ns impulse. Our controller

produces a large bend at the hips, similar to the hip strategy used by humans
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Fig. 9. Comparing the Constrained Linear Quadratic Regulator (CLQR)
to the center of pressure regulator (CoPR) for a 17Ns impulse. The CLQR
used a 1.0s lookahead while the CoPR used the same control parameters
given in Table I

disturbance forces. The constrained LQR controller performs
slightly better than the LQR controller with ankle saturation
limit because the receding horizon optimization keeps it from
exceeding the ankle torque limit. Our controller performs
better, able to reject a 23/Ns impulse opposed to the 21 N's
impulse survived by the constrained LQR controller. The
response due to our controller is noticeably different because
of the use of the regulator on the center of mass, as shown
in the animations in Fig. 7 and responses in Fig. 9. The
difference can also be seen in Fig. 8, where our controller
bends at the hip to recover.

B. Human Balance Experiments

Here we compare the responses produced by our controller
to human balance experiments. The subject was placed with
each foot on a force plate to measure ground reaction forces
and a motion capture system was used to measure joint
movements. A horizontal push was applied from behind;
however, the magnitude and duration of the actual push were
not measured. We simulate the push as a constant force over

Animation of the response to a 23Ns impulse.
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Fig. 10. Comparison of the response of the subject and a simulated double
inverted pendulum to a push from behind to the middle of the torso.

TABLE I
CONTROL PARAMETERS FOR HUMAN COMPARISON

Parameter Value
mi 25kg
mo 45kg
Ly 0.9m
Lo 0.5m
Force 205N/0.1s
kcmp 100
kond 5
k?CoP 100
K diag[le?, 1e?]

a fixed duration rather than an impulse. A double pendulum
was fit to the subject by attaching the joints to the center
point between the feet, the middle of the hip, and the middle
of the shoulders and projecting into the sagittal plane. The
plots in Fig. 10 compare the simulated response to the human
response using the model parameters and controller gains
shown in Table II. The joint angles reflect a response that
does not appear to be a simple LQR-like control strategy,
but rather a strategy that is closer to that achieved by our
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Fig. 11. Operating points are placed on the robot so that it will mimic the
simpler model.

controller.

IV. MODEL TRACKING CONTROL

We would like to control our humanoid robots to behave
like a double inverted pendulum. Since a humanoid generally
has more degrees of freedom, we can take advantage of its
redundancy to accomplish this. The method below shows
a general approach to controlling complex robots to track
a double inverted pendulum model using our controller to
balance.

First, we create operating points to relate the model and
the robot, as shown in Fig. 11 where a double pendulum is
fit to a triple pendulum that represents a planar biped. The
operating points can be written as

P7' = X’!'(e’!')7

where (+),, and (-), are the generalized coordinates of the
model (e.g. double pendulum) and the robot (e.g. 3-link
planar biped), respectively. These operating points connect
the hip of the biped to the middle joint of the double inverted
pendulum and the head to the tip. The derivatives of these
operating points are

Pr = Jn(0)0m
Pr - Jr(er)ém

where J,,, and J, are Jacobians. The objective of the con-
troller is to match these points on the robot to the points
on a simulated model. For this we need to relate the motion
of these points to the dynamics of the system. The second
derivative of the robot operating points can be written as

b = J.b,+J.0,

= Jb, + J. M7 (7 — N,), (11)

where M, is the inertia matrix of the robot, N, is the
gravitational and centrifugal/coriolis forces and 7, are the

joint torques. A feedback controller of the following form is
used

7 = Ny + M, J, (15;1 — Job + Kye + Kdé) . (12)
where J,. is the dynamically consistent generalized inverse
[16] of J,, e is the error between the operating points of
the model and the robot, e = P,,, — P,, and ]5751 is a desired
acceleration. We generally expect J, to have sufficient rank
because the robot has more degrees of freedom than the
model. This controller reduces to the following differential
equation,
é+Kdé+er:O,

which asymptotically drives the error to zero assuming K,
and K are chosen accordingly.

To realize the balance task being performed by the model,
which is using the controller from the previous section, we
use the acceleration induced by its control,

P =P, = Jpbm + T M (100 — Ny) (13)

Since the robot may have a center of mass slightly to the
side due to its bent legs, we also need to feed in the CM of
the robot to a slow integrator that adjusts the desired CM of
the model,

t
cMmé . =—K; / C M, opordt. (14)
0
To summarize, the full state of the system is
Oy
0
0
X = .
O
Tm
C']\4151i"10de1
and the full controller is
T = Ne+ Mo (Jinbm + Jn My (T — Niy)
—Jp0, + Kpe + Kqé), (15)

where 7, is the torque found by simultaneous forward
simulation of the model and the integral of Eq.(7).

V. SIMULATION RESULTS

To illustrate the use of this control algorithm, we control
the 3-link planar biped using the same double inverted
pendulum controller from above. The two systems can be
seen in Fig. 12. At the start of the simulation, the double
inverted pendulum is fit to the biped using a mapping created
by setting the operating points of the two models equal,

O = X;Ll (X:(6r))

ém = J_ mJ rér

The parameters of the robot and model are taken from a

biped robot in our lab and are displayed in Table III.
Fitting the model to the robot is an important step. We

want the dynamics of the model to match the dynamics of
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Animation of the 2-link model and the 3-link robot. The robot is pushed subject to a 100N force for 0.1s. The green dot is the CoP of the 2-link
model and the black dot is the CoP of the robot.

Fig. 12. A double pendulum model fitted to a full planar biped robot
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TABLE III
PHYSICAL PROPERTIES OF THE ROBOT

Tibia Femur Torso
mass (kg) 10.4024 11.352 36.24
length (m) 0.3810 0.3918 0.6320
inertia (kg - m?) | 0.570853 | 0.656981 | 10.9458
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Fig. 14. Reference points response to 17Ns impulse

the robot as closely as possible. So to do this, the following
relationships were used:

LT = 0.95(L7 + L5)
Ly = Lj

my' = my 4y

my = my

where these variables are described in Fig. 12. The bottom
link is purposely set to a slightly shorter length than the sum
of the lengths of the femur and tibia to prevent the knees
straightening out. Such a condition would be problematic as
a singularity exists when the knees are straight and we do not
currently have constraints that would keep the knees from
bending in the opposite direction. The tracking controller
uses PD gains to follow the operational points. The Cartesian
positions of these points are shown in Fig. 13. The gains used
for this simulation were

K, = diag[10,10,10,10] K, = diag[10, 10, 10, 10]
K =25

While this model tracking controller is able to closely
follow the double inverted pendulum model simulation, it
does not fully account for the constraints on the CoP. As
can be seen in Fig. 14, the CoP of the robot deviates slightly
from the CoP of the model during the transient response and



could cause instability. However, the correction made by the
use of Eq.(14) regulates the center of mass to end up over
the ankles and perfectly balance the robot in steady state.

VI. SUMMARY AND FUTURE WORK

The humanoid balance controller presented here is based
on prior work on balancing unstable systems such as inverted
pendulums and the acrobot and is inspired by the hip and
ankle strategies observed in human balance experiments.
The use of a linear quadratic regulator mimics the ankle
strategy by causing the robot to behave like a single inverted
pendulum while a regulator on the horizontal location of the
center of mass resembles a hip strategy controller. The center
of pressure serves as a useful ground reference point as it has
physical meaning and can be used as a measure of stability.
We presented a decoupled controller that tracks the center of
pressure and keeps the robot standing at an upright posture.
By accounting for the limits on the location of the center of
pressure, we ensure that the robot can stand with its feet flat
on the ground and withstand large disturbances.

For applying this balancing controller to complex robot
systems, we presented a general model tracking control
algorithm. For a model system, we used the double inverted
pendulum. Using operational points attached to key loca-
tions, we derived a feedback controller that allows the robot
system to track the model system. The model is simulated
and its dynamics are used as a feed-forward term in the
control of the robot. An important task in the use of this
control algorithm is the choice of the model system that
closely approximates the robot. Because of the discrepancies,
an additional integrated state was added to adjust the center
of mass to end up directly over the ankle, where the moment
caused by gravity goes to zero.

All current results are from numerical simulation. The
simulation assumed a continuous dynamic system and all
analysis was performed in MATLAB. Results were compared
to human balance experiments, showing that the subject
exhibited a response similar to that generated by our con-
troller. The controller will soon be applied to a full-body
hydraulic humanoid robot made by SARCOS. While this
paper specifically addresses the problem of balancing, the
regulation of the center of pressure and disturbance rejection
properties that our controller exhibits are useful in walking
and other dynamic motions, which will be the focus of future
research.
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