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Abstract— In this paper, we study how multiple robots can
cover known terrain quickly. We extend Multi-Robot Forest
Coverage, a state-of-the-art multi-robot coverage algothm,
from terrain with uniform traversability to terrain with no n-
uniform traversability, which is nontrivial. We prove that its
cover times are at most about sixteen times larger than miniral
and demonstrate experimentally that they are significantly
smaller than those of an alternative multi-robot coverage

Fig. 1. Example of Weighted Terrain

algorithm.
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Coverage requires robots to visit each location in known
terrain once to perform some task. Examples include lawn
mowing, cleaning, harvesting, search-and-rescue, iioinus
detection and mine clearing. In this paper, we study cov-
erage with multiple robots since multiple robots can often
cover terrain faster than a single robot. Recently, several Fig. 2. Model of Weighted Terrain
researchers have proposed multi-robot coverage algasithm
for terrain with uniform traversability, where the travars
time is the same everywhere. Two promising multi-robotit uses a tree cover algorithm [2] as a subroutine that is
coverage algorithms are Multi-Robot Spanning Tree Coverspecific to non-weighted terrain. We thus first generalize th
age (MSTC) [4] and Multi-Robot Forest Coverage (MFC) tree cover algorithm and only then MFC. We prove that the
[5], which both extend the single-robot coverage algorithmnew version of MFC is guaranteed to find solutions with
Spanning Tree Coverage (STC) [3]. In this paper, we gencover times that are at most about sixteen times larger than
eralize these multi-robot coverage algorithms to terraithw minimal. We then demonstrate experimentally that its cover
non-uniform traversability (= weighted terrain), as showntimes are significantly smaller than both those guaranteed
in Figure 1, to extend their applicability to more realistic by the worst-case bound and those of MSTC. We also
situations [1]. demonstrate experimentally that the robots are close ip the

We show that STC finds solutions with minimal cover initial locations after they have covered the terrain, vahic
times in polynomial time for a single robot in weighted facilitates their retrieval. Therefore, our generaliaatiof
terrain if the robot has to return to its initial locationefit ~ MFC to weighted terrain indeed results in a powerful multi-
has covered the terrain. Multi-robot coverage with minimalrobot coverage algorithm.
cover times is known to be NP-hard for two robots and con-
jectured to be NP-hard for an arbitrary number of robots [5].
Thus, one needs to design multi-robot coverage algorithms We model weighted terrain as consisting of large square
that determine solutions with suboptimal (but good) covercells. Each large cell is either entirely blocked or engirel
times in polynomial time. To this end, we generalize MSTCunblocked. Each unblocked large cell has a positive integer
and MFC to weighted terrain. MSTC can be generalizedveight that corresponds to how difficult it is to traverse the
relatively easily but cannot guarantee to find solutiondwit large cell and is evenly divided into four small square cells
good cover times. MFC is nontrivial to generalize becausé&each small cell has a weight that is equal to one quarter

of the weight of the large cell, as shown in Figure 2. Each
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Fig. 3. Simple Single-Robot Coverage Problem
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with a time that is equal to the average of the weight of theagjacent small cells; andc; 1. (cni1 = 1 is the initial small cell
two small cells. Each move is atomic, that is, needs to bef the robot.) Let the weight of small cel} bew(c;) and the time
executed in full by a robot. The travel time along a robotof moves; bet(s;) = (w(c;) +w(cit1))/2. Then, the travel time
path is the sum of the times of the moves of the robot whemyjong the robot path 57, #(s:) = 32", (w(e:)+w(cis1))/2 =

it moves along the path. S, w(e;), which is at least the sum of the weights of all small

We study two different team objectives. For the teamcells. STC makes the robot enter and exit every small celttixa
objective “Cover,” the robots need to move so that each smalnce. Its cover and return times are thus equal to the sums of

cell is visited by at Iegst one robot. Their cover time is équathe weights of all small cells and thus minimal. The sums @f th
to the largest travel time along any robot path. For the teamyeights of all small cells are equal to the sums of the weiglits
objective “Cover and Return,” the robots need to move s |arge cells. m.

that each small cell is visited by at least one robot and then )
return to their initial small cells. Their cover and retuime The cover times of STC can be smaller than the sum of the

is again equal to the largest travel time along any robot.patiVeights of all large cells by at most the largest weight of any
Figure 3 shows a complete coverage problem for a singléma" cell because the robot stops one move before returning

robot, including the large cells with their weights, the §ma !0 its initial cell. STC does not necessarily find solutiongw

cells with their weights, and the robot path with the times ofMinimal cover times, as shown in Figure 4 for the single-
the moves for the team objective “Cover and Return.” The0bot coverage problem from Figure 3, but it finds solutions
cover and return time is equal to the sum of the weights ovith close-to-minimal cover times. The robot needs to enter
all large cells, namely 88. (We actually mean the sum of the&Very small cell except for its initial small cell at Ie_astoen

weights of all unblocked large cells since blocked largéscel @nd needs to exit every small cell except for its final small

do not have a weight but sacrifice precision but concisenesscell at least once. STC finds solutions where its final small
cellis next to its initial small cell but the best final smadilic

[1l. SPANNING TREE COVERAGE might have a larger weight. Thus, the cover times of STC

Spanning Tree Coverage (STC) [3] finds solutions withcan be larger than minimal by at most the largest weight
minimal cover times (and cover and return times) in poly-of any small cell (that is, a quarter of the largest weight of
nomial time for single robots in non-weighted terrain. STCany large cell). Overall, STC finds solutions with close-to-
can be generalized easily to weighted terrain, as followsminimal cover times and minimal cover and return times in
First, STC constructs a graph whose vertices correspond teolynomial time for a single robot in weighted terrain.
the unblocked large cells and whose edges connect adjacentFigure 5 shows the spanning tree and robot path for the
unblocked large cells. Second, STC finds a spanning tree dérrain from Figure 2 for one robot with the team objective
this graph. Third, STC lets the robot move along the path thatCover.” The cover time is 682 for STC. The robot has to
circumnavigates this spanning tree. For the team objectiverake one additional move to return to its initial small cell
“Cover and Return,” the robot completely circumnavigatesfor the team objective “Cover and Return” (shown with a
the spanning tree until it returns to its initial small célbr ~ dashed line in the figure). The cover and return time is 688
the team objective “Cover,” the robot stops once all smalifor STC.
cells have been visited, that is, one move earlier. Clearly,
STC runs in polynomial time.

Theorem 1:STC finds solutions with minimal cover and  Coverage with multiple robots can be faster than coverage
return times for a single robot in weighted terrain. Thewith a single robot. (The backtracking version of) Multi-
minimal cover and return times are equal to the sums oRobot Spanning Tree Coverage (MSTC) [4] finds solutions
the weights of all large cells. with suboptimal cover times (and cover and return times) in

Proof: The robot needs to enter and exit every small cell atpolynomial time for multiple robots in non-weighted terrai
least once for the team objective “Cover and Return.” Asstthmé = MSTC can be generalized relatively easily to weighted
the robot path igs1,...,s,), where moves; connects the two terrain, as follows. We assume for simplicity here that ¢her

IV. MULTI-ROBOT SPANNING TREE COVERAGE



are at least three robots and handle fewer than three rabotsihat each move is atomic, and the robots might thus not betable
the extended version of the paper: First, MSTC constructs aplit the travel time evenly between them. MSTC lets rahathen
graph whose vertices correspond to the unblocked large celmove clockwise until it meets robet. The sum of the times of the
and whose edges connect adjacent unblocked large cellgaths of robots; andr; until they meet is at most(r;, r)/2 +
Second, MSTC finds a spanning tree of this graph. Thirdw.a./4 +t(r;, ) /2 4+ Wmaz /4 + t(ri,75). Thus, robots-; and
MSTC splits the path that circumnavigates this spannirg trer; meet after a travel time of at most(r;,7x)/2 + Wmaz/4 +
into segments between the initial small cells of the robotst(r;,r1)/2 + Wmaz/4 + t(ri,75))/2 + Wmaz /4 = (t(rj, %) +
The number of segments is equal to the number of robots(r;,7;))/2 + Wmaz/2 < Wsum /2 + Wmaz/2 = (1 + @) Wsum /2
The travel time along a segment is the sum of the timesnd their travel times are thus at m@$t+ ¢)wsum /2. MSTC lets
of the moves of a robot when it moves along the segmentobotry, first move clockwise until it meets robej and then move
Case 1: If the travel time along each segment is at mostounterclockwise. Assume without loss of generality thudiot r;
half of the travel time along the path, then MSTC lets eachs adjacent to robat;, in the counterclockwise direction. (Robots
robot move counterclockwise along the segment adjacent tandr,, are identical if there are only four robots, and robatsind
it. Otherwise, let(r,r’) be the travel time along the segment r; are identical if there are only three robots.) A similar angut
from the initial small cell of robot in the counterclockwise as for robotr; then shows that the travel time of robof is at
direction to the initial small cell of robat'. Assume without  mostt(r;,74)/2 4+ Wmaz /4 +1(rj,76) /2 + Wmaz /4 +t(rk, 1) <
loss of generality that robot; (r; and ry, respectively)  woum/2 4+ Wmae/2 = (1 4+ @)wsum/2 siNCL(ri, 75) > Weum/2
is adjacent to robot, (r; and r;, respectively) in the and thust(rj,rx) + t(rk, ) < wsum/2. MSTC lets every other
counterclockwise direction and thatr;, ;) is larger than  robot move counterclockwise and their travel time thus imast
half of the travel time along the path. (Robots and r; the time of the segment in their counterclockwise directigrich
are identical if there are only three robots.) Case 2: Ifis at mostwsum /2 < (1 + ¢)wsum /2. The travel time of each
t(rj,rx) < t(rp,r;), then MSTC lets robot; first move  robot and the cover time of MSTC thus is at mébt @) wsum /2.
counterclockwise until it is in an adjacent small cell to Case 3: Case 3 is just a mirror image of Case 2. -tLgtbe the
robot r, (= meets robotry) and then move clockwise, covertime of STC and,,s:. be the cover time of MSTC. Then, we
lets robotr;, first move clockwise until it meets robot; have shown that,stc < (14+¢)wsum /2 in all three cases. Thus, it
and then move counterclockwise, and lets all other robotsolds thatt st < (14+@)Wsum /2 < (14+0) (tste +Wmaz/4)/2 =
move counterclockwise. Case 3: #fr;,ry) > t(rp,7:), (14 @)tste/2 + (1 + )Wimaz/8 SiNCLste > Woum — Wmaw /4.
then MSTC lets robot;, first move counterclockwise untii m

it meets robotr; and then move clockwise, lets robet . .
Figure 6 shows the spanning tree and robot paths for the

first move clockwise until it meets robe}, and then move ) ) ’ >
counterclockwise, and lets all other robots move clockwiseterraln from Figure 2_for fpur robots with the team objective
“Cover.” The cover time is 332 for MSTC. The cover and

For the team objective “Cover,” the robots move as given

above and stop once all small cells have been visited. FdEtum time is 664 for MSTC and only 394 for optimized

the team objective “Cover and Return,’ the robots moveVISTC. Unfortunately, this example also demonstrates that

as given above and, once all small cells have been visited/S 1€ finds solutions whose cover times (and cover and
return to their initial small cells by moving either backatar '€tUrn times) do not necessarily improve with an increasing

along their segments (MSTC) or along paths with minimalnhumger of robots since ][\A|STC malﬁes ﬁnly tvr\]/o rr]obots exit
times from their current small cells to their initial smadlis the bottom-most row of large cells through the narrow

(optimized MSTC). Clearly, MSTC runs in polynomial time. passage. Additional robots in the center of the bottom-most
Theorem 2:The cover times of MSTC for at least three "W do not shorten the times of the paths of these two robots.

robots are at least about a factordf(1 + ¢) smaller than € cover times (and cover and return times) of MSTC
the cover times of STC, wherg is the ratio of the largest become arbitrarily bad compared to the minimal ones if

weight of any large cell and the sum of the weights of alone expands the terrain above the narrow passage and adds
large cells robots in the center of the bottom-most row since then all

Proof: Let wma. be the largest weight of any large cell and of the robots have to exit the bottom-most row of large cells
wsum be the sum of the weights of all large cells (which equalstohmlnlmlze the cover times (and ?p\éer alnq returr? rt]'mes)d'
the time of the path that circumnavigates the spanning.tig&n Thus, MSTC cannot guarantee to find solutions with goo

¢ = Wmaz/Wsum. Case 1: If the travel time along each segment g COVver times (and cover and return times).
at most half of the travel time along the path that circumgatés

the spanning tree, then MSTC lets each robot move along the
segment adjacent to it in the counterclockwise directidre Favel Multi-Robot Forest Coverage (MFC) [5] finds solutions
time of each robot and the cover time of MSTC thus is at mostwith suboptimal cover times (and cover and return times) in
Wsum /2 < (1 + ¢)wsum /2. Case 2: MSTC lets robot; first  polynomial time for multiple robots in non-weighted temai
move counterclockwise until it meets robet. The sum of the MSTC determines one tree, splits the path that circumnav-
times of the paths of robots; and r;, until they meet is at most igates it into one path for each robot and lets each robot
t(r;, 7). Thus, robotsr; and 7, meet after a travel time of at move along its path. MFC, on the other hand, determines one
mostt(r;,7k)/2 + Wmas /4. The termwnmq. /4 takes into account  tree for each robot and lets each robot move along the path

V. MULTI-RoOBOT FORESTCOVERAGE



MFC (Robot 1) MFC (Robot 2) MFC (Robot 3) MFC (Robot 4)
cover time = 217 cover time = 216 cover time = 225 cover time = 216
cover and return time = 256 cover and return time = 256 cover and return time = 256 cover and return time = 256

Fig. 7. Example of MFC

that circumnavigates its tree. MFC is nontrivial to genieeal Proof: The cover times of STC can be smaller than the sum of
to weighted terrain. It uses a tree cover algorithm [2] as ahe weights of all large cells by at most the largest weighaof
subroutine that is specific to non-weighted terrain becé&use small cell, while the cover times of MFC are at most the weight
operates on graphs with weighted edges. We therefore buildf the largest trees and thus at most the sum of the weight of a
on the existing algorithm and design a tree-cover algorithmarge cells. Consequently, the cover times of MFC can beetarg
TREE COVER that is specific to weighted terrain becausehan the cover times of STC by at most the largest weight of any
it operates on graphs with weighted vertices. We describe gmall cell (that is, a quarter of the largest weight of angdacell).
and prove its properties in Section VI. The cover and return times of STC are equal to the sum of the

MFC for weighted terrain then uses TREE COVER asweights of all large cells, while the cover and return timéMéC
follows: First, MFC constructs a graph whose vertices correare equal to the weights of the largest trees and thus at mest t
spond to the unblocked large cells and whose edges connestm of the weights of all large cells. Consequently, the cavel
adjacent unblocked large cells. Each vertex has a weight thaeturn times of MFC cannot be larger than the cover and return
is equal to the weight of its large cell. Second, MFC usegimes of STC. m

TREE COVER to find a ropted tree cover of this graph, However, MFC can make the following much more pow-
where the roots are the vertices that correspond to the largg guarantee with respect to the minimal cover times (and
cells that contain the initial small cells of the robots. Thecoyer and return times), which MSTC cannot make:

roots thus correspond to the robots. A rooted tree cover of Theorem 4:The cover times (and cover and return times)
this graph is a forest of trees with exactly one tree for eactyf MFC are at most about a factor a6(1 + ¢|K| + e)
root. Every vertex is in at least one tree. The weight of &arger than minimal, where > 0 is an arbitrary precision
tree is the sum of the weights of its vertices. The weightparameter that affects how often TREE COVER is called,
of the rooted tree cover is the largest weight of any of its| k| is the number of robots anglis the ratio of the largest

trees. MFC performs a binary search (described later) thageight of any large cell and the sum of the weights of all
runs in polynomial time and uses TREE COVER to find ajarge cells.

rooted tree cover with a weight that is at most a factor of proof; Let A7 be the weight of the rooted tree cover found by

4(1 + ¢|K| + ¢€) larger than minimal, where > 0 is an  TREE COVER,N be the weight of a weight-minimal rooted tree
arbitrary precision parameter that affects how often TREEover,0 be the cover time of MFCP be the minimal cover time,
COVER is called| K| is the number of robots anglis the  and () be the minimal cover time if the robots need to visit only
ratio of the largest weight of any large cell and the sum ofihe ypper left small cells of all large cells. Furthermog i,
the weights of all large cells. Third, MFC lets each robotpe the largest weight of any large cell. First, it holds that M
move along the path that circumnavigates its tree. For thgince the robots visit all small cells and return to theitisismall

team objef:tive “(.Iover and.Return,” eac.h rlol_).ot completelycells when they circumnavigate their trees. The resultmgctime
ClrcumnaVIgates Its tree unt'l it returnsto its |n|t|a.| Qhﬂ‘iﬂ?” thus cannot be |arger than the We|ght of the rooted tree cover

For the team objective “Cover,” the robots stop once all $malsecond, it holds thad/ < 4(1 + ¢|K| + €)N since we use TREE

99”3 have been visited. Clearly, MFC runs in polynomial covER to find rooted tree covers with a weight that is at most a
time. factor of 4(1 + ¢|K| + €) larger than minimal. Third, it holds that
Remember that the cover times of MSTC for at least threev/4 < Q + w,n.. /4. Consider a solution where the robots need
robots are at least about a factor2g{1+¢) smaller than the  to visit only the upper left small cells of all large cells. @bruct
cover times of STC according to Theorem 2. MFC cannofa rooted tree cover where the tree of a robot contains extutly
make such a strong guarantee with respect to STC: vertices that correspond to the large cells that contairsamsll cell
Theorem 3:The cover times of MFC can be larger than visited by the robot. The weight of each tree divided by faai
the cover times of STC by at most the largest weight ofmost the travel time of the robot plus the largest weight gfsmall
any small cell (that is, a quarter of the largest weight of anycell (that is, a quarter of the largest weight of any largd) e@hce
large cell). The cover and return times of MFC cannot bethe robot has to enter and exit all small cells it visits ex@assibly
larger than the cover and return times of STC. for its initial small cell which it does not need to enter atslfinal



small cell which it does not need to exit. Thus, the weighttaf t
tree cover we constuct divided by four is at most the largeset
time of any robot plus the largest weight of any small cell &me
weight of the weight-minimal tree cover divided by four ietbfore

at most the largest travel time of the robots plus the largesght

of any small cell. FourthQ) < P trivially. Using these results, it
holds thatO < M < 4(1+ ¢|K|+¢)N < 16(1 + ¢|K| +¢)Q +
4(14+-¢| K|+ €)wmaz < 16(14+¢|K|+€)P+4(1+¢| K|+ €)wmaz-
The proof continues to hold if each occurrence of cover time i
replaced with cover and return timem

¢ =~ 0 for terrain with many large cells of about the same
weight. For examplep = 0.0814 for the terrain from Figure
2. Then,16(1+ ¢|K|+¢) ~ 16 for a small number of robots

|K| and e close to zero. Thus, the cover times (and cover . . .
Sqlven capacity plus one, then each element can be placecatlgx

and return times) of MFC are at most about sixteen time
larger than minimal.

Proof: We reduce BINPACKING to our problem. BINPACK-
ING consists of a set of elements with given integer sizes and
fixed number of bins, each with the same given integer capacit
The problem is to determine whether each element can bedpilace
exactly one of the bins so that the sum of the sizes of the eleme
in each bin does not exceed its capacity. Given an instance of
BINPACKING, we transform it in polynomial time to an instanc
of the problem of determining whether the weight of a weight-
minimal K-rooted tree cover for grapld’ is at most a given
constant, as follows: We create a completely connectedhg€ap
with one vertex for each element (whose weight is equal teire
of the element) and one vertex for each bin (whose weight&.on
The set of rootsK contains exactly the vertices for the bins. If
the weight of a weight-minimakK -rooted tree cover is at most the

one of the bins so that the sum of the sizes of the elementn ea
bin does not exceed its capacity, by placing each elementerod

Figure 7 shows the trees and robot paths for the terra"ﬂwe bins whose vertex is the root of a tree that contains thexe

from Figure 2 for four robots, together with the cover time

and cover and return time for each robot. The cover time is

225 and the cover and return time is 256 for MFC.

VI. WEIGHT-MINIMAL ROOTED TREE COVERS

of the element. Similarly, if each element can be placed acty

one of the bins so that the sum of the sizes of the elements in
each bin does not exceed its capacity, then one can conatrkiet
rooted tree cover whose weight is at most the given capadity p
one, by making the tree rooted in the vertex of a bin contain th

In Section V, we stated that we modified an existing tree e rices of the elements that the bin contains. Thus, thghteif a

cover algorithm [2] to work on graphs with weighted vertices
rather than weighted edges. We now state the resultin
algorithm (called TREE COVER), prove its properties and
describe how MFC uses it.

A. The Problem

We solve the following problem: Le&@ = (V, E) be a
graph with weighted vertices, where(v) is the integer
weight of vertexv € V. Let K C V be a set of distinguished
vertices, called roots. A -rooted tree cover off is a forest

weight-minimal K -rooted tree cover is at most the given capacity
Blus one as well. m

D. Our Algorithm

We now describe TREE COVER, a tree-cover algorithm
inspired by [2] that takes as input a gragh a set of roots
K and a bound3 > w,q.. It either reports SUCCESS and
returns aK-rooted tree cover of grapty with weight at
most4 B or reports FAILURE, in which case there does not

of |K| trees, which can share vertices and edges. The set ekist a/-rooted tree cover of grap with weight at most

their roots must be equal t&, and every vertex irl/ has

B/(1+ ¢|K|). TREE COVER operates as follows:

to be in at least one tree. The Welght of a tree is the sum of 1) Contract all roots into a Sing|e vertex, find any span-

the weights of its vertices. The weight of ld-rooted tree

cover is the largest weight of any of its trees. The problem

is to find a weight-minimakK -rooted tree cover of grap®i.

B. Definitions

We use the shorthands,u, = >, cy w(v), Wmae =
max,cy w(v) and ¢ = Wpar/Wsum (@S used earlier).

Furthermore, we define the weight of a path in the graph

to be the sum of the weights of its vertices, except for its

ning tree of the resulting graph, and then uncontract
the single vertex again, splitting the spanning tree into
|K| trees.

Decompose each tree recursively into zero or more
non-leftover subtrees and one leftover subtree. We
call the following decomposition procedure once for

each tree from the previous step. The decomposition
procedure removes vertices from the given tree as it
generates the non-leftover subtrees. When it termi-

2)

end vertices. We define the distance between two trees in the
graph to be the minimal weight of any path that connects

some vertex in one of the trees to some vertex in the other
tree.

C. NP-Hardness

We show that finding weight-minimak -rooted tree cov-
ers is NP-hard, which provides our motivation for designing
approximation algorithms that run in polynomial time.

Theorem 5:Finding a weight-minimal K-rooted tree
cover for graphg~ is NP-hard.

nates, we declare the leftover subtree to be the root
of the given tree if all vertices have been deleted.
Otherwise, we declare the leftover subtree to be the
remaining tree (formed by the non-deleted vertices).
The decomposition procedure applies to a tree rooted
in . We distinguish three cases:

Case 1:The weight of the tree rooted inis less than

B. Then, we simply return.

Case 2: The weight of the tree rooted im is in

the interval[B,2B). Then, one non-leftover subtree
consists of the tree rooted in We remove the subtree



from the tree rooted im (leaving the empty tree) and  Proof: If TREE COVER reports SUCCESS then it returns, for

return. each root, the tree consisting of the leftover subtree ofrdlo¢ of
Case 3:The weight of the tree rooted inis 2B or  weight at mostB, the single non-leftover subtree (if any) matched
larger. We distinguish three subcases: to the root of weight at mos23, and a weight-minimal path (if

Case 3a: The weights of all trees rooted in childrenany) of weight at mostB from the non-leftover subtree to the
of r are less thanB. Then, we pick a number of leftover subtree. The weight of each tree is thus at mist
trees rooted in children of so that the weight of resulting in aK-rooted tree cover of weight at mo$B. m

the tree consisting ofr and these trees is in the

interval [B, 2B). One non-leftover subtree consists of Theorem 7:If TREE COVER reports FAILURE, then
r and these trees. We remove the subtree except féhere does not exist &'-rooted tree cover of grap&i with

r from the tree rooted in and recursively apply the Weight at mostB/(1 + ¢|K]).

decomposition procedure to the remaining tree roote% r;)rﬁg: hAazs\l;ngr:tr;?’t V";‘it"r‘]’eghzm]g‘/i?zf ';?%Sd If:eeteLCg\e/etrhgf
in7n Qrder to ,f'nd the other non-leftover sgbtregs. It set of non-leftover subtrees created in Step 2 of TREE COVER
is possible to pick a number of trees rooted in childrenang (1) C K be the set of roots that can be matched to non-
of ~ so that the weight of the tree consistingrodnd leftover subtred € L because the non-leftover subtree and the
these trees is in the intervaB, 2B) since the weight leftover subtree of the root are at distance of at mi8siVe show
of r is at mostB (since B > wy,q,) and the weights t£1/at |2JIESL’ K:’Sl)lf %RlELIg (‘;‘gveé’gry sethof non-ler:‘toner sulbtfrtees

. I CL.Step3o can then match all non-leftover
of all trees rooted in children of are less thari3 but subtrees according to Hall's Marriage Theorem. ThereféREE

the weight of the tree rooted inis 2B or larger. ~ COVER reports SUCCESS and not FAILURE, which proves the
Case 3b: The weight of at least one tree rooted in aontrapositive of the theorem and thus also the theoreri. itse
child of r is in the interval[B,2B). Then, we pick Consider anyL’ C L. Let T be the set of trees of a weight-

such a tree. One non-leftover subtree consists of thigninimal K-rooted tree cover of grapls and 7’ C T be the

tree. We remove the subtree from the tree rooted irset of trees which have at least one vertex in common with at
r and recursively apply the decomposition procedurgeast one of the non-leftover subtrees in. Let w(L’) be the

to the remaining tree rooted inin order to find the  sum of the weights of all non-leftover subtrees fih and w(7")
other non-leftover subtrees. be the sum of the weights of all trees . First, it holds that
Case 3c: Otherwise, the weight of at least one trees’ > w,,,,/|K| since the sum of the weights of all vertices can
rooted in a child ofr is 2B or larger. Then, we pe split evenly among the trees in the best case. Secondlds ho
recursively apply the decomposition procedure to thathatw(L') > B|L’'| since the weights of all non-leftover subtrees
tree and then to the remaining tree rooted in order  in 1’ are in the interval B, 2B) and thusB or larger. Third, it

to find the non-leftover subtrees. holds thatw(T”) < B’|T’| since the weights of all trees if’

3) Find a maximum matching of all non-leftover subtreesare at mostB’ since any weight-minimak -rooted tree cover of
to the roots, subject to the constraint that a non-leftovegraphG has weightB’. Fourth, it holds that U;c . K ()] > |T7].
subtree can only be matched to a root if the non-For every tree irif”, there exists at least one non-leftover subtree
leftover subtree and the leftover tree of the root arein 1’ that has at least one vertex in common with the tre@"in
at distance of at mosB. Then, the non-leftover subtree i and the root of the tree iff”

4) If any non-leftover subtree cannot be matched, reporkre at distance of at most’ < B/(1 + ¢|K|) < B. The non-
FAILURE. Otherwise, report SUCCESS and, for eachjeftover subtree inl’ can thus be matched to the root of the tree
root, return the tree consisting of the leftover subtreein 7. Overall, the setJ,c. K (I) contains the roots of all trees
of the root, the single non-leftover subtree (if any) in 7", its cardinality thus is at least the cardinality Bf. Fifth,
matched to the root, and a weight-minimal path (if it holds thatw(L') < w(T") 4+ wma=|L’| Since every vertex in
any) from the non-leftover subtree to the leftover at least one non-leftover subtree iri is also in at least one tree

subtree. in T’. The non-leftover subtrees ih’ can contain at mostL’|
duplicate vertices, each with weight at mast,...: Every non-
E. Properties leftover subtree that Step 2 of TREE COVER creates contdins a

most one vertex that has not yet been removed from all treadext

Clearly, TREE COVER runs in polynomial time and either j, step 1 and thus could be a duplicate vertex. This statehuids
reports SUCCESS or FAILURE. It is also easy to see thahecause the trees created in Step 1 share at most their rubts a
the weights of all non-leftover subtrees (if any) returngd b step 2 removes all vertices of a non-leftover subtree frantréte,
the decomposition procedure in Step 2 of TREE COVERgycept possibly for the root of the non-leftover subtree ms€
for a given tree are in the intervaB, 2B). The weight of 35 when it creates the non-leftover subtree. Using theastseit
the leftover subtree is in the interved, B). Also, the root  hoids thatw,mes = wsumd < |K|B' . This inequality implies that
of the tree is in the leftover subtree. We now prove the maing/|17| > w(7") > w(L') — wmae|L'| > B|L'| — |K|B'¢|L'| =
properties of TREE COVER. (B - [K|B')|L| > (B'(1L+ 6|K|) — |K|B'¢)|L| = BIL].

Theorem 6:1f TREE COVER reports SUCCESS, then it This inequality in turn implies thatU,c. K(1)| > |[T'| > |L/],
returns aK-rooted tree cover of grapti’ with weight at  which is what we wanted to provem
most4B.



F. Application [outdoor]. The third kind is an indoor-like terrain with vl

We perform binary search on the interjal,az, Wsum] and doors [indoor]. The position of the walls and doors are
to find a small value of3 for which TREE COVER reports fixed, but doors are closed with 20 percent probability. We
SUCCESS. We start with the lower bound,,, and the Vvary the number of robots from 2, 8, 14 to 20 robots. We
upper boundu,.,.,. We then repeatedly run TREE COVER €nsure that no two robots are placed in the same large cell
with B set to the average of the lower and upper boundbly randomly choosing different large cells for each robot
If TREE COVER reports FAILURE, then we set the lower @nd placing the robots in their lower left small cells. A
bound toB. Otherwise, we set the upper boundfo We  clustering percentage parametedetermines how strongly
stop once the difference of the upper and lower bound ighe initial large cells of the robots are clustered. The first
at most the given value of the arbitrary precision parametefobot is placed uniformly at random. Subsequent robots are
¢ > 0. We then return thek-rooted tree cover of grap@ then placed within an area centered at the first robot, whose

returned by TREE COVER witlB set to the upper bourid. height and width are (approximatelyy: of the height and

Let b be the weight of a weight-minimak -rooted tree ~ Width qf the terrain. Thus, a small yaluenfe;ults ina high
cover of graphG. We assume in the following that> 1  clustering of _|n|t|al large cells, while: = 200 is e_quwalent
since this property holds for MFC due to the weight of {0 NO clustering at all [none]. For each scenario, we report
each unblocked large cell being a positive integer. Bebe ~ data that has been averaged over 50 runs with randomly
the lower bound and3,, be the upper bound of the binary generated terrain (if applicable) and randomly generated
search after termination. First, it holds thBt, — B, < ¢ initial small cells. All cover times and cover and return éisn
according to the termination criterion. Second, it holdatth have been rounded to the nearest integer.
b > B,/(1 + ¢|K|) according Theorem 7 since TREE Table 9 reports f_or each scenario a lower bound that
COVER with B set toB, reports FAILURE. (This statement 'epresents an idealized cover time (and cover and return
also holds forB; = w,,,,, the initial lower bound, since>  time) [ideal max]: It simply divides the sum of the Weights.of
Wmax-) Third, the weight of thek -rooted tree cover of graph &l large cells by the number of robots. The ideal cover time
G returned by the binary search is at mé#t, accordingto (@nd cover and return time) would result if no robot needed
Theorem 6 since TREE COVER witB set to B, reports {0 pass through already visited small cells. The table also
SUCCESS. (This statement also holds 8 = wsym, the ~ €POrS the smallest [min] and largest [max] travel time of
initial upper bound, since TREE COVER then generates any robot for each combination of a multi-robot coverage
most one non-leftover subtree for each root, which containglgorithm, scenario and team objective. The largest travel
the root.) Using these results, it holds that the weight ofime is equal to the cover time (or cover and return time),
the K-rooted tree cover of grap@ returned by the binary a_md the_ d|fferer_1ce_ be_tween the smallest and largest _travel
search is at mostB, < 4(B; +¢) < 4(1 + ¢|K|)b+4e <  lmes gives an |nd|cat|0r_1_of how balanced the travel_t|mes
4(1+¢| K| +¢€)b, which is at most a factor of(1+ ¢| K| +e) of the robots are. In_addltlon, the_ table also reports thie rat
larger than minimal. The binary search runs in polynomiaIOf the actual travel time and the ideal cover time (and cover

time because TREE COVER runs in polynomial time andand return time) [ratio], giving an upper bound on how far
is run [10gs ((Wsum — Wimaz)/€)] < 108y Weum — logy € + 1 the actual cover time (or cover and return time) is largentha

times, which is polynomial in the size of the input for a minimal. The ratio is indeed only an upper bound, since the
constant value of. ideal may not be achievable. For instance, several robots
must visit the same small cells in the example from Figure

VIl. EXPERIMENTAL RESULTS 7.

We now compare MFC (with a small value for the We make the following observations: The ratio of the
precision parameter) and MSTC experimentally. We evaluateover time (or cover and return time) and the ideal cover time
them on both team objectives, namely "Cover” and "Cover(and cover and return time) increases with the number of
and Return”, and in different scenarios, namely differ-robots for both MFC and MSTC since the overhead (defined
ent kinds of terrain [terrain], different numbers of robotsas the number of already visited small cells that a robot
[robots], and different clustering of the robots [clustgfi  passes through) increases with the number of robots. The
The size of the terrain is alway) x 49 large cells. The ratio increases very slowly with the number of robots for
weight of each large cell is always chosen uniformly atMFC, but much faster for MSTC, implying that the cover
random from the weights 8, 16, 24, ..., 80. Figure 8 showdimes (and cover and return times) of MFC remain close
the three different kinds of terrain used in the experimentsto minimal for large numbers of robots. The ratio changes
The first kind of terrain is empty [empty]. The second kind insignificantly with the amount of clustering for MFC, but a
is an outdoor-like terrain where walls are randomly removedot for MSTC, implying that the cover times (and cover and
from a random depth-first maze until the wall density dropsreturn times) of MFC remain small if robots start in nearby
to 10 percent, resulting in terrain with random obstaclessmall cells — a common situation since robots are often

deployed or stored together. The ratio changes insignifican

*Our description generalizes easily since it does not tai@ aecount  for MFC if the team objective is changed from “Cover” to
that the weights of the vertices are integers. A weight-mali K -rooted « " .

Cover and Return”, but increases by about a factor of two

tree cover can be inferred after a binary searchefer 1 if the weights of o g
the vertices are integers. for non-optimized MSTC (because the robot with the largest
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Fig. 8. Screenshots of Different Kinds of Terrain
Terrain Robots | Clustering Ideal Max MFC MSTC Optimized MSTC
“Cover and Return” “Cover” “Cover and Return” “Cover” “Cover and Return” “Cover”
Max  (Min) | Ratio | Max _(Min) | Ratio Max  (Min) | Ratio [ Max (Min) | Ratio Max  (Min) | Ratio | Max _(Min) | Ratio
Empty 2 30 45094 47369 (43018)] 1.07 | 47353 (10612)] 1.07 96669 (83672)] 2.10 | 48340 (46595)] 1.10 || 48865 (42446)] 1.11 | 48334 (41325)] 1.10
2 60 45094 47840 (42516)| 1.09 | 47825 (10621)| 1.08 || 100558 (79782)| 2.27 | 50284 (48821)| 1.14 || 50940 (40688)| 1.15 | 50279 (40101)| 1.14
2 none 45094 48061 (42334)( 1.09 48028 (10613)( 1.09 104811 (75532)| 2.37 52409 (48862) 1.19 53082 (38625)| 1.20 52406 (38078) 1.19
8 30 11273 12698 (9676) [ 1.15 12645 (9208) | 1.14 73870  (411) 6.67 36967 (206) 3.34 37506  (261) 3.38 36938 (207) 3.33
8 60 11273 12765 (10058) 1.16 12749 (9549) | 1.15 72479  (1106) 5.54 36240 (559) 227 36883 (668) 3.33 36240 (559) 2.27
8 none 11273 13726 (8983) | 1.24 13699 (8729) | 1.24 54885 (2519) | 4.94 27453 (1259) | 2.47 28026 (1511) | 2.52 27445 (1260) | 2.47
14 30 6442 7620 (5396) | 1.21 | 7586 (5359) | 1.20 72107 (37) | 11.41 | 36054 (19) 571 || 36639 (37) 5.80 | 36054 (19) 571
14 60 6442 7620 (5208) | 1.21 | 7581 (5166) | 1.20 69594 (177) | 11.01 | 34797 (89) 551 || 35441 (149) | 5.61 | 34797 (89) 5,51
14 none 6442 8004 (4768) | 1.27 | 7977 (4719) | 1.26 43131 (616) | 6.71 | 21566 (308) | 3.35 || 22099 (438) | 3.44 | 21566 (308) | 3.35
20 30 4509 5575 (3487) | 1.26 | 5505 (3466) | 1.24 70424 (19) | 1593 | 35214 (9) 7.97 || 35810 (19) 810 | 35214 (9) 7.97
20 60 4509 5460 (3666) | 1.23 | 5428 (3628) | 1.23 67842  (93) | 1539 | 33922 (48) 7.69 || 34553 (93) 7.84 | 33921 (48) 7.69
20 none 4509 5736 (3093) | 1.29 | 5704 (3054) | 1.28 33042 (280) | 7.50 | 16521 (140) | 3.75 || 17028 (254) | 3.87 | 16251 (140) | 3.75
Outdoor 2 30 40586 43430 (37877)[ 1.09 43418 (10612)( 1.09 86654 (75655)| 2.18 43330 (42868) 1.09 43927 (38497) 1.10 43327 (37933) 1.09
2 60 40586 43677 (37652) 1.10 43664 (10600)( 1.10 91671 (70637)| 2.29 45841 (42694) 1.15 46410 (36050)( 1.16 45836 (35512) 1.15
2 none 40586 43910 (37472) 1.10 43884 (10652)( 1.10 94781 (67529)| 2.38 47396 (42937)( 1.19 48083 (34655) 1.21 47390 (34071) 1.19
8 30 10146 11679 (8657) | 1.17 | 11622 (8484) | 1.17 66563 (303) | 6.72 | 33287 (153) | 3.36 || 33847 (209) | 3.42 | 33283 (153) | 3.36
8 60 10146 11677 (8526) | 1.17 | 11633 (8436) | 1.17 58422 (1131) | 5.88 | 29270 (573) | 2.94 || 29834 (691) | 2.99 | 29223 (570) | 2.94
8 none 10146 12124 (8248) | 1.22 | 12078 (8164) | 1.21 54687 (1988) | 5.47 | 27355 (1004) | 2.74 || 27999 (1229) | 2.80 | 27347 (1000) | 2.74
14 30 5798 6919 (4876) | 1.22 | 6838 (4835) | 1.20 63965 (41) | 11.29 [ 31983 (21) 565 || 32580 (40) 575 | 31983 (21) 5.65
14 60 5798 6803 (4877) | 1.20 | 6752 (4842) | 1.19 56196 (245) | 9.92 | 28098 (123) | 4.96 || 28645 (198) | 5.06 | 28098 (124) | 4.96
14 none 5798 7253 (4446) | 1.28 | 7208 (4386) | 1.27 43183 (671) | 7.53 | 21592 (335) | 3.77 || 22177 (453) | 3.87 | 21592 (335) | 3.77
20 30 4059 5240 (2945) | 1.32 | 5170 (2918) | 1.30 63018 (26) | 18.95 [ 31509 (13) 7.97 || 32056 (26) 811 | 31509 (13) 7.97
20 60 4059 5041 (3341) | 1.27 | 4995 (3275) | 1.25 56366 (97) | 14.22 | 28183 (48) 711 || 28743 (82) 7.25 | 28183  (48) 711
20 none 4059 5203 (2811) | 1.31 | 5179 (2778) | 1.30 34814 (285) | 8.68 | 17407 (142) | 4.34 || 17998 (214) | 4.49 | 17407 (142) | 4.34
Tndoor 2 30 38212 41237 (35599)| 1.10 | 41225 (10612)| 1.10 81616 (/1193)| 2.18 | 40815 (39557)| 1.09 || 41609 (36585)| 1.11 | 40808 (35898)| 1.09
2 60 38212 41091 (35923)| 1.10 | 41028 (10612)| 1.10 85686 (67123)| 2.28 | 42849 (41000)| 1.14 || 43726 (34840)| 1.17 | 42843 (33955)| 1.14
2 none 38212 40784 (36339)| 1.09 | 40678 (10625)| 1.09 88988 (63823)| 2.38 | 44500 (39984)| 1.19 || 45528 (33535)| 1.22 | 44494 (32470)| 1.19
8 30 9553 11703 (8323) | 1.25 | 11556 (8197) | 1.23 60767 (195) | 6.50 | 30421 (103) | 3.26 || 31336 (140) | 3.35 | 30390 (101) | 3.25
8 60 9553 11522 (8464) | 1.23 | 11440 (8346) | 1.22 55229 (815) | 5.85 | 27620 (408) | 2.93 || 28670 (502) | 3.04 | 27616 (408) | 2.93
8 none 9533 11602 (8049) | 1.24 | 11516 (7903) | 1.23 49818 (1925) | 5.31 | 24909 (962) | 2.66 || 25926 (1114) | 2.77 | 24909 (962) | 2.66
14 30 5459 7815 (4044) | 1.46 | 7686 (3988) | 1.43 58513  (35) | 10.93 | 29256 (17) 546 || 30242 (33) 565 | 29256 (17) 5.46
14 60 5459 7353 (4024) | 1.37 | 7227 (3983) | 1.35 52785 (219) | 9.85 | 26393 (111) | 4.93 || 27358 (156) | 5.11 | 26392 (111) | 4.93
14 none 5459 6937 (4128) | 1.30 | 6871 (4047) | 1.28 37708 (646) | 7.04 | 18854 (323) | 3.52 || 19782 (410) | 3.70 | 18854 (323) | 3.52
20 30 3821 6669 (1175) | 1.77 | 6536 (1146) | 1.74 56833 (20) | 15.14 | 28446 (10) 757 || 29434 (19) 7.84 | 28421 (10) 757
20 60 3821 5936 (1824) | 1.57 | 5824 (1791) | 155 50182 (88) | 13.50 | 25091 (44) 6.75 || 25985 (74) 6.99 | 25091 (44) 6.75
20 none 3821 5198 (2288) | 1.39 | 5133 (2238) | 1.37 32374 (382) | 863 | 16187 (191) | 4.32 || 17040 (264) | 455 | 16187 (191) | 4.32
Fig. 9. Experimental Results for MFC and MSTC (“Max” = Covem€E or Cover and Return Time)
travel time has to backtrack along most of its trajectory), VIIl. CONCLUSION
implying that all robots are close to their initial small isel We extended Multi-Robot Forest Coverage, a state-of-the-

when coverage is complete for MFC, which facilitates theirg t multi-robot coverage algorithm, from terrain with uni-
retrieval. The cover and return times of optimized MSTCtorm traversability to terrain with non-uniform traversiab
are significantly smaller than the ones of non-optimizedty currently, Multi-Robot Forest Coverage assumes ideal
MSTC for each scenario. Overall, MFC results in muchygpots, It is future work to generalize it to robots with actu

smaller cover times (and cover and return times) than MSTGyor and sensor uncertainty and other typical imperfestion
for more than two robots and in comparable cover times

(and cover and return times) than optimized MSTC for two REFERENCES
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