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Abstract— We present a cascaded control architecture for a
Yamaha RMAX robotic helicopter. The controller is composed
of an inner-loop that stabilizes the unstable poles of the
helicopter’s linear dynamic model; and an outer-loop that
decouples the dynamics of the lateral, longitudinal, vertical,
and heading axes and enables trajectory tracking. Actual flight
results are presented to demonstrate the validity of the method.
A discussion on the method’s limitations and our plans on how
to overcome them are also presented.

I. INTRODUCTION AND PROBLEM STATEMENT

A robotic helicopter is an aircraft equipped with a sens-
ing, computing, actuation, and communication infrastructure
that allows it to execute a variety of tasks in autonomous
mode. Tasks may range from simple monitoring with a
video camera to sophisticated terrain modeling and identifi-
cation/tracking of individuals and objects, to name a few. A
ground station is used to issue mission plans to the helicopter,
and to receive and record telemetry and sensor data. Mission
plans may be as low-level as a set of waypoints through
which the helicopter must fly or as high-level as “find all
specimens of baobab1 within the boundaries of this national
park and return their geographic coordinates.”

In this article we are concerned with the problem of
controlling the position and heading of a robotic helicopter
to make it fly along a pre-planned trajectory. Our focus
is on the Yamaha RMAX, one of the most sophisticated
remote control helicopters that can be retrofitted as a robotic
vehicle, in use by the Carnegie Mellon [3], Georgia Institute
of Technology [6], UC Berkeley [8], and NASA [14] robotic
helicopter research groups. The trajectory is assumed to be
safe in the sense that it respects pre-defined bounds on the
helicopter’s velocities and accelerations, and in that it does
not pose the risk of a collision with obstacles. Helicopter
obstacle avoidance is dealt with, for example, in [13].

The RMAX control problem is made difficult by the
unstable, nonlinear, and coupled nature of this machine. In
the early days of robotic helicopter control, this problem was
solved by proportional-integral-derivative (PID) controllers
in a two-loop architecture. In this type of controller, the
inner-loop is responsible for stabilization of the roll and pitch
axes, and the outer-loop is responsible for tracking in the
x, y, z, and yaw control axes. These PID-type controllers
were implemented and are still in use in a variety of
robotic helicopter projects that use the RMAX. Because
these controllers do not take into account the dynamics of

1The baobab are trees native to Madagascar, Africa and Australia.

the helicopter, especially the coupling between the control
axes, they offer limited performance. As dynamic models
of a similar robotic helicopter, the Yamaha R50, became
available [11], model-based controllers were proposed and
demonstrated to be practical. While some of these model-
based controllers were only tested in simulation environ-
ments [8], others were validated in actual field experiments
[11]. One of the most sophisticated model-based controllers
to be flown on an actual RMAX is probably the H∞-based
controller by La Civita [10]. Much like it PID predecessor,
this controller is also based on a cascaded architecture,
where a multiple-input-multiple-output (MIMO) inner-loop
stabilizes the helicopter’s attitude, and four independent
single-input-single-output (SISO) controllers are responsible
for trajectory tracking. Again, this architecture ignores the
coupling between the four control axes of the RMAX, and
although it provided for very good flight performance, it can
still be enhanced by considering the full dynamic coupling
of the aircraft. Learning controllers have also been proposed
in the literature, albeit for smaller helicopters (see, e.g., [1],
[2]).

We propose an original model-based cascaded position
and heading controller for a robotic RMAX helicopter. Much
like other works published in the literature, the controller is
also based on an inner-loop that stabilizes the poles of the
helicopter’s dynamic model. Our choice for this loop is a
linear quadratic regulator (LQR), which brings the unstable
poles of the RMAX model to the left-hand plane. Unlike past
work, however, in the outer-loop we fully take into account
the coupling between the control axes to design a feedback
linearization controller (FLC). This combination of a model-
based LQR and a model-based FLC form the basis of our
contribution to the state-of-the-art. Actual flight data show
promising results, and indicate that we can expect even more
impressive results as we improve our dynamic models of the
Yamaha RMAX to refine the controllers.

II. CONTROLLER DESIGN MODEL

The cascaded controller design is based on Cheng et al.’s
linear dynamic model for the RMAX in hover mode [4],
given by:

ẋ = Ax+Bu (1)

where the state x and input u are given by:
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x =
[

uB vB wB p q r r f b

β1c β1s κ1c κ1s β̇0 β0 ν
]T

(2)

u =
[

δlat δlon δcol δped
]T (3)

and the individual state and input components represent:
• uB, vB, wB: linear velocities of the helicopter in body

frame.
• p, q, r: angular velocities of the helicopter.
• r f b: yaw rate feedback (a gyro-like mechanism internal

to the Yamaha RMAX).
• β1c, β1s: lateral and longitudinal cyclic pitch of the main

blades.
• κ1c, κ1s: lateral and longitudinal cyclic pitch of the

stabilizer bar.
• β0: main blades’ coning angle.
• ν : inflow.
• δlat : lateral command.
• δlon: longitudinal command.
• δcol : collective command.
• δped : pedal (yaw) command.

We refer the reader to the literature on helicopter design
and control for a full explanation of the seven last elements
of the state vector, as well as the elements of the control
vector [7]. Here it suffices to say that the lateral command
generates rolling moments, the longitudinal command gen-
erates pitching moments, the collective command generates
vertical force, and the pedal (yaw) command generates
yawing moments, all with respect to the helicopter’s center
of gravity.

To be able to control directly the position and heading
(yaw) angle of the helicopter, we need to add its position
and heading angle to the state vector. Note that if we add the
position in the navigation frame,

[
xN yN zN ]T , the sys-

tem becomes nonlinear, as the position in navigation frame
is obtained by pre-multiplying the position in body frame by
a nonlinear rotation matrix. Therefore, we chose to add the
position in body frame to the state vector,

[
xB yB zB ]T ,

to keep the model linear. (We will later show how the
desired trajectory, normally defined in navigation frame, can
be easily transformed to the body frame for guidance and
control purposes.) On the same token, instead of adding to
the model the exact, nonlinear transformation from angular
rates to attitude (which includes the heading angle), we chose
to approximate the attitude angles as the time integral of the
angular rates. This approximation is valid as long as the
helicopter flies with small (< 10o) roll and pitch angles,
which is true most of the time in non-aggressive flight.
Note that the accuracy of this approximation (and of the
entire state estimation process) is dependent on the quality
of the sensors used. In our case the RMAX carries a high-
precision Litton inertial measurement unit, which provides
very accurate angular rate measurements in all three axes.

With these considerations taken into account we extend
the state vector to include the following variables:

xB = ∫ uB dt, yB = ∫ vB dt, zB = ∫ wB dt (4)
φ ≈ ∫ pdt, θ ≈ ∫ qdt, ψ ≈ ∫ r dt (5)

Therefore,

x =
[

xB yB zB uB vB wB

φ θ ψ p q r r f b

β1c β1s κ1c κ1s β̇0 β0 ν
]T

(6)

Note that, by the definition above, xB, yB, zB represent the
position of the helicopter in a frame which rotates with the
helicopter’s body but whose origin is the same as the origin
of the navigation frame; φ , θ , ψ are the helicopter’s roll,
pitch, and yaw attitude angles.

In the model given by Equations (1), (3), and (6), some
states are not directly measured; they are the yaw rate feed-
back, the main blades’ and the stabilizer bar’s cyclic pitch,
the coning angle, and the inflow. Coincidentally, these states
are also the ones associated with the least dominant poles of
the system, and therefore produce the least modeling error if
eliminated from the model. We therefore generated a lower-
order model with only the helicopter’s position and attitude,
linear and angular velocities, and yaw rate feedback:2

xc =
[

xB yB zB uB vB wB

φ θ ψ p q r r f b
]T (7)

The helicopter’s control synthesis design model is, finally,
given by:

ẋc = Acxc +Bcuc (8)
yc = Ccxc (9)

with

uc = u =
[

δlat δlon δcol δped
]T

yc = y =
[

xB yB zB ψ
]T

In Equations (8)-(9) the subscript ’c’ indicates that this is the
model that we will use for control synthesis purposes. The
elements of the matrices in (8) can be found in [4].

As is usual in helicopter modeling, this control synthesis
design model is unstable, as can be easily verified by
computing its poles (the eigenvalues of Ac) and plotting
them in the complex plane. Figure 1 shows the poles of this
system that are near the origin of the complex plane. Note
the unstable poles on the right-hand plane, corresponding to
the pitch axis.

2The yaw rate feedback cannot be disregarded because it is electrome-
chanically coupled with the yaw dynamics, which is a dominant pole of
the system. We obtain this variable using estimation techniques as shown
in Section III-E.
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Fig. 1. Near-origin poles of the (unstable) nominal control system design
model (Equations (7), (8), (9)).

III. CONTROL METHODOLOGY

Our approach to the problem of controlling the RMAX’s
position and heading is based on the cascaded combination
of three well-established control methodologies. Initially,
we use a linear quadratic regulator to stabilize the right-
hand plane poles; then we use a feedback linearization
controller to decouple the input/output pairs; finally, we
use a proportional-derivative controller to enable trajectory
tracking. Each of these techniques are described in the
sequel.

A. Linear Quadratic Regulator

The linear quadratic regulator (LQR for short) has its ori-
gins in the optimal control theory field. Optimal control is
concerned with the optimization (usually minimization) of
a system’s energy or energy-like function, when the system
evolves from an initial state x(t) to a final state x

(
t f

)
. In

particular, consider a dynamic system described by Equation
(8), and assume the system must reach a desired state xd = 0
while the following energy-like cost function is minimized:

J =
∫

∞

t0

(
xT

c Qxc +uT
c Ruc

)
dt (10)

The LQR methodology finds a fixed gain matrix KLQR
such that the state feedback control law

uc =−KLQRxc (11)

minimizes J while the system evolves along (1) to xd . The
(usually) diagonal, positive-definite matrices Q and R define
the “contribution” from each input and state to the cost J;
the larger a term is in either Q or R, the more the LQR will
try to minimize the corresponding input or state. “Large”
matrices R will therefore tend to “save” energy by applying
small inputs to the system, and “small” matrices R will have
the opposite effect.

In practice, one of the side effects of applying the LQR
methodology is that the poles of the system change from
those given by the matrix Ac to those given by Ac−BcKLQR,
since

Fig. 2. Near-origin poles of the nominal control system design model
(Equations (7), (8), (9)) with LQR state feedback (11).

ẋc = Acxc +Bcuc =
= Acxc−BcKLQRxc =
= (Ac−BcKLQR)xc (12)

In our case, this results in all poles being moved to the left-
hand side of the complex plane, thus rendering the combined
dynamic model + LQR state feedback a (mathematically, at
least) stable system. This can be seen in Figure 2, where
we show the near-origin poles of the control design system
(Equations (7), (8), (9)) under the LQR state feedback,
with KLQR computed with the Matlab command lqr for
Q = diag(1,1, . . . ,1) and R = diag(1,1, . . . ,1). Note that the
originally unstable poles are now in the left-hand plane.

Since the control design system is stable under the LQR
state feedback, we can now utilize other control method-
ologies to drive the system to any admissible output. We
choose here the technique known as feedback linearization,
as explained in the sequel.

B. Feedback Linearization Controller

The feedback linearization control methodology (FLC) has
its origins in the nonlinear control theory field. It finds a
state transformation and a state feedback law that (mathemat-
ically) decouples and linearizes the system, thus allowing one
to (again, mathematically) control each output independently
of all others with a simple linear controller (e.g., a PD con-
troller). This is particularly interesting for the position and
heading control of a helicopter, where all axis (and especially
the lateral and longitudinal ones) are highly coupled. From
a simplified point of view, the methodology requires one to
compute successive time derivatives of the system’s output,
until all inputs appear explicitly in the resulting differential
equations. At this point, the equation is inverted and the
input is computed as an explicit function of the system’s
matrices and state, as shown in the sequel. (For a more formal
description of the FLC and the Lie algebra concepts behind
it, we refer the reader to [5]).

We start with the control synthesis model (Equations (7),
(8), (9)):
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ẋc = Acxc +Bcuc (13)
yc = Ccxc (14)

(Recall that the reduced state xc is given by Equation (7)
and that yc = y, uc = u.) The control input uc is chosen as
a combination of the LQR state feedback and an auxiliary
input vc:

uc = vc−KLQRxc

Therefore, the system can be described by:

ẋc = (Ac−BcKLQR)xc +Bcvc (15)
yc = Ccxc (16)

We now compute ẏc as:

ẏc = Ccẋc =
= Cc (Ac−BcKLQR)xc +CcBcvc

= Cc (Ac−BcKLQR)xc (17)

because, for this particular system, CcBc is equal to the null
matrix. Since vc does not appear explicitly in Equation (17),
we differentiate the output once again to obtain:

ÿc = Cc (Ac−BcKLQR) ẋc =

= Cc (Ac−BcKLQR)2 xc +
Cc (Ac−BcKLQR)Bcvc (18)

Now Cc (Ac−BcKLQR)Bc is a square, full-rank matrix,
and thus invertible. If we make vc equal to the following
state feedback-like term:

vc = [Cc (Ac−BcKLQR)Bc]
−1 ·

·
[
v̄c−Cc (Ac−BcKLQR)2 xc

]
(19)

then the closed-loop behavior of yc is dictated by ÿc = v̄c.

C. PD Controller

Finally, by choosing v̄c as a proportional plus derivative
control of the form

v̄c = ÿref
c +Kd

(
ẏref

c − ẏc

)
+Kp

(
yref

c −yc

)
(20)

where yref
c is the desired (reference) output, the overall

dynamic behavior of the error ec = yref
c −yc becomes:

ëc +Kd ėc +Kpec = 0 (21)

In the absence of modeling errors, a careful selection
of the gain matrices Kp and Kd guarantees that ec → 0,
or, in other words, that yc converges to its reference value
with a convergence rate determined by the elements of the
gain matrices. If we choose them diagonal, positive definite
matrices, then each output is controlled independently of all

Fig. 3. System-level block diagram of the cascaded controller.

others and its dynamic behavior can be assigned arbitrarily.
Now because yc = y and uc = u by construction, Equation
(21) determines that the helicopter’s position in the ground-
fixed body frame, as well as its heading, converge to the
desired references.

D. Cascaded Control Law

In summary, the overall controller is given by:

uc = [Cc (Ac−BcKLQR)Bc]
−1 ·

·
[
ÿref

c +Kd ėc +Kpec+

−Cc (Ac−BcKLQR)2 xc

]
+

−KLQRxc (22)

Because all matrices appearing in Equation (22) can be com-
puted off-line, this control law can be easily implemented in
real time. Figure 3 presents a block diagram of the controller.

In practice, of course, the outputs cannot be exactly
decoupled because the model we used to synthesize the
controller only represents a portion of the helicopter’s full
dynamic behavior. As we will see in the sequel, however,
the controller’s performance is quite acceptable.

E. State Estimation

For practical implementation purposes, we need to know all
states in xc. The only state not directly measurable is the
yaw rate feedback, r f b. To obtain an estimate for its value,
we start by reproducing the corresponding dynamic equation
from the original model in [4]:

ṙ f b = Krr +Kr f br f b (23)

Because this is a stable, first-order filter, we can easily com-
pute an estimate r̂ f b with the following recursive formulation:

˙̂r f b = Krr +Kr f b r̂ f b, r̂ f b (0) = r f b (0) (24)

Additionally, because the time constant of this filter is very
small compared to the dominant ones in the control design
system, we can safely assume that the time derivative of r̂ f b
is negligible and therefore:

r̂ f b =− Kr

Kr f b

r (25)
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Equation (25) was used in the real-time code implemented
onboard the RMAX for the purposes of validating the
cascaded controller.

F. Waypoint Following in Ground-Fixed Body Frame

Recall that the triplet xB, yB, zB in the state vector xc
represents the position of the helicopter in a frame which
rotates with the helicopter’s body but whose origin is the
same as the origin of the navigation frame. Because guidance
waypoints are usually defined in the navigation frame, which
does not rotate but is rigidly fixed on Earth, we must
transform the waypoints to the ground-fixed body frame in
which the controller was designed. To do this we simply use
the fact that the position in the body frame is equal to:

 xB

yB

zB

 = CB
N

 xN

yN

zN

 (26)

where CB
N is the direction cosine matrix from navigation

to body frame, given by (with the usual convention sα =
sin(α), cα = cos(α)):

 cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ


The waypoint following in the ground-fixed body frame xB,
yB, zB is then achieved by using as reference output(

yref
c

)B
=

[
CB

N
0 0 0 1

](
yref

c

)N

IV. EXPERIMENTAL SETUP AND VALIDATION

To validate the cascaded controller proposed we utilized one
of the four Yamaha RMAX owned by the CMU Autonomous
Helicopter Laboratory. These vehicles have been instru-
mented over the years with a high-precision inertial naviga-
tion system, including two Novatel GPS receivers, a Litton
inertial measurement unit, and a custom-designed Pentium-
based processing computer, which runs a 13-dimensional
state estimation Kalman filter. The system is capable of 2.5
cm position estimation and 0.01 degree attitude estimation
accuracy. Figure 4 shows the aircraft used in the experiments
described in this section. The two GPS antennas can be
seen at the front and aft of the helicopter. The large white
box on the port (left) side houses the navigation, guidance,
and control computer. An identical box on the starboard
(right) side houses the laser processing computer, used for
3D terrain mapping. Both computers run the VxWorks real-
time operating system, with processes running at 100 Hz.

We validated the cascaded controller methodology in three
steps: (i) in Matlab, with the RMAX represented by the full
dynamic model (Equations (1), (3), (6)); (ii) in our hardware-
in-the-loop simulation box, also with the RMAX represented
by the full dynamic model; and (iii) during actual flights.
Due to space restrictions we present here only the actual
flight results, which are of course the most relevant.

Fig. 4. Yamaha RMAX.

The feedback linearization controller’s gains were set, by
trial and error, to Kp = diag(1,1,3,50), Kd = diag(2,2,3,5).
Initially the results were not satisfactory, because the heli-
copter’s roll and pitch angles oscillated with a high amplitude
(on the order of 10o) while the helicopter hovered. These
oscillations may be related to the unstable non-zero dynamics
reported by Koo and Sastry [9], and will be further studied
in the continuation of this project. For the time being we
limited the control action in each axis by creating artificial
gains that multiply each of the elements in uc:[

δlat δlon δcol δped
]T = Kuuc

We set Ku = diag(0.2,0.2,0.75,1.0) and obtained satisfac-
tory results: the helicopter hovered stably and was ready to
receive trajectory following commands.

We initially commanded flights along straight longitudi-
nal (forward-backward) and lateral (sideways) paths, while
keeping constant altitude and a stationary heading, at speeds
up to 8 m/s. These trajectories excite very little the coupled
longitudinal-lateral dynamics, and therefore were expected
to be followed quite “easily” by the cascaded controller,
which indeed was the case. The next step was to fly a
more dynamically challenging trajectory, which does excite
the coupling in the control axes and therefore pushes the
controller to a larger extent. (Remember that the cascaded
controller was designed on the basis of the hover model of
the RMAX, and theoretically should be expected to perform
well mostly at hover and low speeds.)

Figure 5 presents results collected on March 30th, 2007
with the helicopter flying an 8-shaped path. The path is
generated with third-order (cubic) splines that connect way-
points manually defined by the ground operator. Maximum
speed and acceleration along the path are also defined by
the operator, and used by a trajectory generation module to
define the time separation of the points along the splines. In
this test trajectory the helicopter must fly always “looking”
ahead, i.e., with heading tangential to the trajectory, and
must hold a constant altitude; the speed along the path is
3 m/s. The trajectory was specially designed to excite the
coupling in the aircraft, with turns to the right and to the
left executed simultaneously with forward flight, altitude
holding, and constant heading changes. The average tracking
error along the trajectory is 1.5 m. While there is definitely
room for improvements, this result can be considered very
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Fig. 5. Field validation of the cascaded controller flying an 8-shaped
trajectory. Actual flight path is the solid blue line, while the desired path is
the dashed red line.

satisfactory for a controller designed on top of a very simple
dynamic model of the RMAX.

V. CONCLUSION

The cascaded controller designed and validated in the field
proves that it is possible to utilize a rather simple dynamic
model of the Yamaha RMAX for model-based control de-
sign. In fact, it is the author’s understanding that this work is
the first controller design and validation effort presented in
the literature based on Cheng’s model. This, and the multiple-
input-multiple-output nature of both the inner- and the outer-
loop of the controller are the main contributions of this article
to the state-of-the-art.

The assumptions we made naturally limit the applicability
of the cascaded controller. Remember that the base dynamic
model was obtained by Cheng et al. for hover maneuvers,
and should not be expected to work well at very high speeds
(15 m/s or more). We successfully flew the helicopter at
8 m/s, but only over “dynamically decoupled” trajectories
(straight lines). When flying the 8-shaped figure at speeds
greater than 4 m/s, the helicopter oscillated substantially
along the trajectory, indicating poor decoupling between
the control axes. We intend to use Cheng’s forward flight
model as the basis for a controller that we anticipate will
allow for more stable high-speed flight. Remember also that
we chose to maintain the nominal control system design
model linear by approximating the attitude angles as the
integrals of the attitude rates (Equation (5)). Since this is
true only for roll and pitch angles not exceeding 10o, we
cannot expect the cascaded controller to perform aggressively
over trajectories requiring high accelerations (since, in a

helicopter, roll and pitch angles are directly proportional to
lateral and longitudinal accelerations, respectively). We will
relax this approximation and investigate how to extend the
current controller to the resulting nonlinear model.

Our future work will focus also on the improvement of
the cascaded controller by including the states not directly
measured (the main blades’ and stabilizer bar’s cyclic pitch,
the coning angle, and the inflow) in the control synthesis
model. We anticipate that this can be accomplished in a
straightforward way using established estimation techniques.
In the sequel we will develop more complex, nonlinear
models of the RMAX which include the aerodynamic effects
associated with a rigid body flying through a fluid, and a
corresponding nonlinear control design and validation effort.
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