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Abstract— A linear time invariant controller design for a 
bilateral teleoperation of a pair of N-DOF linear robotic 
systems under constant time delay is presented. This 
framework uses position and velocity signals together with the 
force signals to compensate human/environment disturbances 
and achieve position coordination in both free motion and 
contact tasks. In this approach, by using Parseval’s identity 
passivity analysis is done in the frequency domain to render 
teleoperator passive. In passifying position and velocity 
feedback terms it is no need to consider the dynamics of the 
robotic systems as long as they satisfy Euler-Lagrangian 
dynamic system equation[1] . This fact simplifies the analysis 
and design routine. However it is shown that when force 
feedback is applied, gaining advantage of controller and robot 
dynamics decoupling is no longer available. Simulation is 
performed to illustrate the proposed algorithm and clarify 
some points in the design procedure. 

 

I. INTRODUCTION 
A telerobotic system is aimed at transferring a sense of 

remote task to the operator as he feels if he is performing 
that task directly. To do this, the teleoperator, consisting of 
master and slave robots, their controls, and the 
communication between them (see Fig.1), should be 
transparent, i.e. it has to transfer the mechanical impedance 
to the operator with the minimum distortion in the frequency 
of interest [4]. Also, this goal may be interpreted as the 
equality between two force signals, F1 and F2, and two 
position signals, q1 and q2. So, in the most simple case, 1-
DOF master and slave robots, we deal with a multivariable 
control problem. Moreover, there are two uncertain 
subsystems namely human and environment interfering in 
the dynamic properties of the overall system. Fortunately, 
human operator proved to be passive in working conditions 
and assumption of coupling with a passive environment 
makes the controlled system applicable to a large class of 
tasks. A control system to be considered safe should be 
robust to these subsystems. In some works [5 and 8], human 
and the environment are modeled by a linear mass-damper-
spring impedance with unknown gains but belong to a 
certain bounds. Some other works [16] presumes 
environment and human operator passive and makes use of 
Llewellyn criteria or infinity norm of the scattering matrix of 

the teleoperator to guarantee the stability of the system. 
These approaches are applicable in the case of linear 
systems.  
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Position coordination is an important concern in 
designing such systems. In scattering-based approaches 
extra control loops should be added to ensure the position 
tracking because of the lack of explicit position feedback 
[1].  

Although a real world application of a teleoperation 
system consists of multi-DOF robotic systems, many 
contributing works make use of a 1-DOF linear model [4, 
16, and 10] to focus the discussion to the important issues in 
a teleoperation system rather than multivariable and 
nonlinear control. H∞ robust control approaches have an 
advantage in that they are easily applicable to multi-DOF 
cases [6, 13, 14, and 15]. Unlike H∞ approaches, some other 
works choose a pre-specified control structure and adjust the 
parameters to obtain passivity of the teleoperator and 
performance [1, 2, and 3].  

As a case in point, Lee et al in [2], firstly, transfer the 
problem of the teleoperation of two n-DOF robotic systems 
to control of two decoupled n-DOF systems namely? and?. 
The first system is controlled with a PD controller to achieve 
position coordination of the overall system and?? to shape 
the dynamics of the overall system by use of impedance 
control approaches. Their work is generalized in [3] for an 
Euler-Lagrangian nonlinear systems. In [1], they apply this 
approach to the case of time-delayed teleoperation with 
nonlinear dynamics. They use just position information in 
the feedback loop. So, position coordination can not be 
achieved in the presence of human and environment 
disturbances forces. Mentioned works are similar in that 
passive implementation of the controller is done for the 
control terms individually. Clearly, this would simplify the 
control design task. This paper is in the line of these works. 

We assign a pre-specified control structure and set 
conditions for the passivity for its terms. In addition to PD 
control, a force compensation term is added to achieve 
position coordination in both cases of free motion and 
contact tasks.  

Manipulator’s motion can be divided into three different 
phases, free motion, contact motion, and the transition 
between them. There is large number of papers considering 
the first two issues, but the complexity which the variety of 
the environments adds in modeling makes the transition 
discussion difficult. Important issues in contact transition 
like impact forces and number and amplitude of bounces are 
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discussed in [7]. Ni et al discuss these issues in [8] for a      
1-DOF linear teleoperation system and linearly modeled 
human and environment. Other works prefer to bypass this 
problem by some practical solutions like adding damper 
impedance to the system as reported to be the most 
important factor in stability of the contact transition [9]. In 
this work, the additional terms added to passify the 
controlled system are mainly dissipative ones, so it is 
sensible to leave the performance of contact tasks to the 
simulation. 

II. MODELLING 
Consider a teleoperation system which consists of two N-

DOF robotic systems as the master and slave robots 
governed by two linear systems as follows, 
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where are the 1 2, nq q ∈ℜ position configurations, 

represent the human and environment force 

respectively,  are control signals, and 

 are the positive-definite (PD) inertia matrices. 
Each of the robots can be assumed as an Euler-Lagrangian 
dynamic system where Coriolis matrix is zero. It is also 
known that the controller passivity, i.e. 
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implies energetic passivity of the teleoperation system (), i.e. 
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This property is so beneficial in that one can just ensure 
the passivity of the teleoperator without concerning the 
nonlinear dynamics of the robots as long as it is Euler-
Lagrangian dynamic. However, when force feedback is 
applied to compensate the effects of Fi, i=1, 2 to achieve 
position compensation, this decoupling in design can not be 
used and the dynamics of the teleoperator should also be 
considered.  

III. CONTROL DESIGN 
Position error-based control used in [1] ensures position 

coordination just in free motion (when Fi=0, i=1, 2). Here, 
force feedback is also added to provide system with position 
coordination in both cases of free motion and contact tasks. 
Hence, the overall control is designed to be 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( )( )

0

Proportional termDerivative term

1 2 2 1 2 2 1
4

11 1 12 2 2 1 1 1 1
1

Compensation term
Dissipation terms

Deriv

2 1 1 2

j

v p

f f d d
j

v

T t K q t q t K q t q t

K F t K F t K q t K q t

T t K q t q t

τ τ

τ

τ

=

= − − + − −

+ − − −

= − −

+ ∑

& &

& &

& &

644474448 644474448

14444244443
144424443

( ) ( )( )
( ) ( ) ( ) ( )

0

Proportional termative term

1 1 2
4

21 1 1 22 2 2 2 2 2
1

Compensation term
Dissipation terms

j

p

f f d d
j

K q t q t

K F t K F t K q t K q t

τ

τ
=

+ − −

+ − −+ −∑& &

644474448 644474448

14444244443
14444244443

 (4)

where Kv, Kp are the symmetric and positive-definite PD 
gains and Kidj are four dissipation gains for each robot. One 
of them is to passify the effects of proportional control 
action and the other three to passify the effects of the force 
compensation term. τ1, τ2 are the constant communication 
delays.  

Design of the control consists of two steps. First, passify 
the effects of the PD control gains. In this step decoupling of 
the controller and robotic manipulator is utilized to simplify 
the design procedure. In the second step force compensation 
term become passive. As will be shown this requires 
incorporation of the system dynamics as well as PD control 
actions. 

 
The power generated by the controller is given by 
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in which  ppd and pf are the power associated with the PD-
control and force compensation terms respectively and are 
defined by 
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A. Passive implementation of the PD control  
In [1] sufficient condition for passifying this part is 

proposed. The method is mainly based on analyzing the 
energy production of the controller in the frequency domain. 
The condition can be summarized to be as follows, 

0
rd

id
p

K
K
τ

=  for i=1, 2 (8) 

where τrd is the round trip delay and is the sum of two delays 
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τ1 and τ2. 

B. Passive implementation of the force compensation 
terms  
In this section we are going to state conditions of 

passivity of the power associated with the force 
compensation terms. The Pf is expressed in terms of both 
position and force signals. In order to analyze passivity one 
may firstly express this power term by just position signals. 
This can be done using the equation of the motion defined in 
(1). Laplace transform is applied to solve these linear 
differential equations, 
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where Q1, Q2 are Laplace transforms of  the truncated 
signals ( ) ( )

1 2
,t tq qθ θ% %& &  ,respectively, which are defined by, 
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then, using these equations F1, F2 is calculated as, 
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where Ai, Bi, and C are defined as, 
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  (12) 
Thus, human and environment force signals consists of 

four parts which are separated inside the sigma operator by 
subscript i. The term i=1 indicates the part added by the 
robots inertia matrix, the terms i=2, 3 show the part added 
by derivative and proportional control action, and finally the 
term i=4 is the part added by dissipative actions.  

Using Parseval’s theorem, we can rewrite PF(t) in (7) as  

( ) 2

1

4
1

11 12 1 12
10

4

21 22 2 2
1

1 1 2

2 1 2

.  

                          .

j

j

t
j

F f f
j

j
f f d

j

T

T

P t dt Q K F e K F K Q

e K F K F K Q dQ

τ ω
π

τ ω

d

ω

+∞
−

=−∞

−

=

= −

+ −

⎡ ⎤
+⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

+⎢ ⎥
⎢ ⎥⎣ ⎦

∑∫ ∫

∑

 
Clearly, the part associated with dissipative terms always 
dissipates energy. Thus, we will distribute this part among 
the other ones to passify them. otal energy associated with 
the force feedback can be separated considering four parts of 
F1 and F2 as 
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and the terms , k=1…3, are defined by k
FP
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A
x x Ax= , and s=jw.  

Now we can render the compensation part passive by 
making the matrices associated with each part in power 
terms positive definite (PD). This can be done by a 
transformation of these matrices to the scattering matrices 
and ensuring that the resulting matrices have an infinity 
norm less than one. To clarify this lets consider one of the 

power terms i
FP , 
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i
FP  is the power associated with the input and output of a 

linear filter i
FH . So, the necessary and sufficient condition 

for it to be passive is that the transformed scattering matrix 
have an infinity norm less than one [11], i.e., 1i

FS ≤  where 

 for i=1, 2, and 3. ( )(I ) 1i i i
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C. Setting the force compensation gains 
The four force feedback gains Kfij, i, j=1, 2 have to 

selected appropriately in order to cancel out the effects of 
the force disturbances on the position coordination. 
Following [3], let us first decompose the system into locked 
and shaped systems to see the dynamic equation of the 
position error. Consider following state transformation 
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Using this transform, the dynamics of the teleoperator 

system can be written as  
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where vE is the velocity of the position error, ME, ML are 
symmetric and PD matrix given by 
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and TE, FE, TL, and FL are transforms for the Ti, Fi i=1,2 
given as 
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To simplify the discussion suppose that in the steady 
state, delayed signals qi(t-τi) i=1, 2 equal to qi(t). Then, by 
choosing TE=-FE the effects of external forces on the 
position error dynamics will be compensated. This will add 
following terms to the control signal: 
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so, Kfij, i, j=1, 2 are chosen as, 
( )

( )
11 12

21 22

 I

I
f f

f f

K K

K K

φ φ

φ φ

= = −

= − = − −
 

IV. SIMULATION 
In this section design and simulation of a 1-DOF 

teleoperation system is presented to illustrate the design 
procedure. In first step of design PD control gains are set 
and associated dissipation gain is set to passify it. Then in 
the second step after choosing appropriate gains for force 
compensation, other dissipation gains are set to passify these 
terms. 

Consider a teleoperation system described by, 
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where communication delays τ1, τ2 are chosen to be 1s and 
1.5s. 

Force measurement and position and velocity signals are 
available at both sites. Thus, control signals are set to be in 
the form of Eq.4. PD gains Kp and Kv are set to  2 and 0.5 
respectively. Using Eq.8 Dissipation term for PD gains are 
set to be 2.5 to passify PD action. 

 
Now consider the first part of the power associated with 

the force compensation term  i.e. the term 1
FP . K1f, K2f are 

set to be 2.5/(5+jw) and dissipation terms K1d1, K2d1 are set 
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to 5. As shown in Fig.2 the largest singular value of the 
matrix  is less than one and consequently the chosen 
values render this part passive. 
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Figure.1 Singular values of the matrix 1
FH  

The second term consists of the effects of the derivative 
control in the power term. The dissipation terms K1d2, K2d2 
are set to be 1. This term is relatively easily passified than 
other terms. In Fig.3 the singular values of the 
corresponding scattering operator are shown. 
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Figure.2 Singular values of the matrix 2
FH  

For the third term  dissipation terms K1d3, K2d3 are 
chosen to be 4. Fig.4 depicts that with this setting the 
singular values of the matrix   are both smaller than 1. 
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Figure.3 Singular values of the matrix 3
FH  

Dissipation terms K1d4, K2d4 are used to passify the forth 
power term . They are set to 2.5. Fig.5 shows the 
passivity of this term. 
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Figure.4 Singular values of the matrix 4
FH  

To demonstrate the performance of the controller we 
consider the following scenario. The human operator 
modeled by a PD position tracking controller by its spring 
and damping gains as Kph, and Kvh respectively. Firstly, he 
pushes the master robot to the position 0.8. Then, he tries to 
push the master robot to the position 1.5. While he is 
moving the robot to this target, he realizes the existence of a 
hard wall while receiving step-like force feedback. At the 
steady state motion of pushing this wall, we will have 
position coordination as well as force tracking and this point 
is the main contribution of this paper. Finally, he pushes the 
master robot back to its initial position. Chosen and 
designed values for the simulation are summarized in 
Table.1. Simulation results are shown in Fig.5.  
 

Table.1. Parameters in the simulation 
Chosen 

parameter Value Designed 
parameter Value 

τ1 1 s K1d0= K2d0 5 
τ2 1.5 s K1d1= K2d1 5 

M1=M2 1 K1d2= K2d2 1 
K1p=K2p 1 K1d3= K2d3 4 
K1v=K2v 0.5 K1d4= K2d4 2.5 
K1F= K2F 2.5/(5+s)   

V. CONCLUSION 
A control framework for control of a teleoperation system in 
the presence of large time delay was presented. This 
framework provides position coordination in both cases of 
free and contact motions while preserves passivity of the 
teleoperator. Pre-specified simple structure of the controller 
presents low cost and easily implemented control 
framework. Control system is separated to position and force 
feedback parts. The passification of the first part is studied 
in [1] by Lee et al. To compensate the environment forces 
and, hence, achieving position tracking in contact tasks force 
feedbacks are also added to the control system. The effects 
of this part on total energy are analyzed and sufficient 
condition for its passivity is obtained through studying the 
effects of several parts this force feedback adds. To 
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