
A Unified Approach to Speech Production and Recognition Basedon
Articulatory Motor Representations

Jonas Hörnstein and José Santos-Victor

Abstract— We present a unified approach for speech produc-
tion and recognition based on articulatory motor representa-
tions. The approach is inspired by the Motor theory and the
discovery of Mirror neurons, and use motor representations for
both reproduction and recognition of speech. A model of the
vocal tract is used to create sound and the created sound is
then mapped back to the motor representation using a neural
network. To learn the map we mimic the behavior of a child
that uses a combination of babbling and interaction with its
caregiver to learn how to speak. Several different phases of
babbling and interaction are identified and described. These
help to overcome the inversion problem. The approach has
been implemented on a humanoid robot, which has successfully
learned to pronounce Swedish and Portuguese vowels. We
have also studied how the different phases of babbling and
interaction effect the error of the map and the achieved
recognition rate when presented with vowels from different
subjects. Finally we compare the recognition rates obtained
using motor space with recognition rates obtained by directly
using the acoustic parameters.

I. INTRODUCTION

Speech is an important and powerful tool for interaction
between humans, and is also a promising method for human-
robot communication. To be able to communicate by speech,
both partners involved in the communication have to share
some common phonemes and have the capability of both
vocalizing those as well as recognizing the phonemes as
they are vocalized by others. The tasks of finding common
phonemes, learning how to vocalize those, and recognition
of phonemes are usually handled separately. However, there
are reasons to believe that these mechanisms should not
be treated independently, and that there can be advantages
in handling these by a unified approach. Findings in neu-
roscience research has shown an increased activity in the
tongue muscles when listening to words that requires large
tongue movements [1]. This leads to believe that the motor
area is involved not only in the task of production, but also in
that of recognition. Earlier work including neurophysiolog-
ical studies of monkeys have shown a similar relationship
between visual stimulation and the activation of premotor
neurons [2]. Those neurons fire both when executing a motor
command and when being presented with an action that
involves the same motor command.
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Some work has already been done in order to verify the
usability of these findings in the area of robotics. More
specifically it has been shown that action recognition be-
comes significantly easier when performed in motor space
rather than directly in sensor space [3]. This further motivates
the simultaneous study of speech production and recognition.
While there are existing work using a mirror neuron inspired
approach in speech production, like the DIVA model [4], we
use a slightly different approach. They use babbling to learn
the auditory-motor maps, but the speech recognition and the
motion planning are performed in the auditory space. In this
work we directly use motor space to perform the speech
recognition as we specifically want to investigate he usability
of motor space not only for speech production, but also for
speech recognition.

The main contribution of this work is a unified approach
that can be used for learning to produce speech, extract
useful phonemes, as well as for speech recognition. There
are two main components in this approach. One is a flexible
architecture where we identify the units involved in speech
production and recognition, which make it possible to easy
to exchange individual units in order to try different typesof
methods. The other main component is the different phases
of self-exploration and interaction that is used to learn the
maps. These learning mechanisms are inspired by the way
a child learns to speak through babbling and through the
interaction with its caregivers. This makes it possible to solve
the inversion problem caused by the many to one relationship
between the articulator positions and the produced sound.

The rest of the paper is organized as follows. In section
2 we describe the architecture used for learning speech
production and recognition. In section 3 we describe the
learning mechanisms used for speech production along with
some results and in section 4 we give some results for speech
recognition. Conclusions are given in section 5.

II. SPEECH SYSTEM ARCHITECTURE

An overview of the architecture used in this work is
shown in Figure 1. The architecture consists of one speech
production unit, an auditory sensor unit, a sound-motor map,
and a speech recognition unit.

A. Speech production unit

The speech production unit consists of a model of the
human vocal tract and a position generator. There has been
several attempts to build mechanical models of the vocal tract
[5][6]. While these can produce some human like sounds
they are still pretty limited and there are no commercially
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Fig. 1. Speech architecture

available mechanical solutions. The alternative is to simulate
the vocal tract with a computer model. Such simulators are
typically based on the tube model [7] where the vocal tract
is considered to be a number of concatenated tubes with
variable diameter. On top of the tube model an articulator is
used that calculates the diameter of the tubes for different
configurations of the vocalization units. In this work we have
chosen to simulate the vocal tract by using vtcals developed
by Maeda [8]. This model has been developed by studying
x-rays from two women articulating French words, and has
six parameters that can be used to control the movements of
the vocal tract. One parameter is used for the controlling the
position of the yaw, one for the extrusion of the lips, one for
lip opening, and three parameters for controlling the position
of the tongue. A synthesizer is finally used to calculate the
resulting sound from the area function. The positions of the
articulators are given by a position generator. This can work
either in babbling mode in a direct mode. In the babbling
mode it randomly generates position either globally or in
the neighborhood of a given position, whereas in the direct
mode it receives a position from the speech recognition unit
which it simply reproduce.

B. Auditory unit

The auditory unit consists of a feature extractor that takes
sound as an input and calculates a number of sound features
(tonotopic sound representation) that are useful for speech
production and recognition. There exists various features
that can be used for this. For production and recognition of
vowels, formants are commonly used [9]. However, formants
only contains information that is useful for vowels so its
application is rather narrow. In other related work LPC
has been used [10][11]. LPC are more generally applicable
than formants, but still requires rather stationary signals to
perform good. Even though we are working with vowels
in the current study we have decided to use Mel frequency
cepstral coefficients (MFCC) [12] as our speech features as

these do not put any restrictions on the extendibility of the
proposed approach.

C. Sound-motor map

The next unit is the sound-motor map. This is responsible
for retrieving the vocal tract position from the given sound
features. This is a rather well studied inversion problem.
This is a non linear problem that becomes extra difficult
since several positions of the vocal tract results in the same
sound, so it may exist several possible solutions for a given
set of features. This is usually solved by introducing some
weighting function based on either dynamic restraints or
some comfort measurement. In our work is it solved through
a combination of babbling and interaction with the caretaker
as will be described in the next section. The map itself is
usually build by some kind of neural network. In [11] a
self organizing neural network is first used to cluster the
auditory information before it is passed on to an artificial
neural network that map the clustered sound to the vocal
tract. We have chosen not to do any clustering in the auditory
space, but instead take care of this in the motor space.
We have therefore chosen to use a straight forward method
where the auditory features are fed directly into an artificial
neural network with 20 hidden neurons and trained with back
propagation.

D. Speech recognition unit

Finally we have the speech recognition unit. This unit
stores sounds that it found useful for communication. Useful
configurations can either be inserted manually or be learned.
Many speech recognition system starts from a given set of
phonemes. Other system automatically clusters the infor-
mation into something that can be considered as pseudo-
phonemes [13]. While these techniques are usually applied
directly in the auditory space, the same techniques can be
used in motor space. In this work we have chosen to extract
useful speech units through the interaction with the caregiver



as will be described in the next section. While we only con-
sider vowels in this work, the same approach can be used for
other phonemes. The vowels given by the caretaker is stored
in a motor cluster. In the current work we only teach the robot
one suitable position for each desired sound. The cluster is
therefore reduced to a a simple dictionary. The recognition
task is handled by the classifier that compares positions given
from the sound motor map with the positions stored in the
motor cluster. We have implemented two classifiers for the
recognition, one that uses Euclidean distance and one that
uses Mahalanobis distance to find the nearest neighbor.

The Euclidean distanced1 is calculated directly as the
distance between the given positionp and each of articulator
positionsci stored in the cluster.

d1 =
√

(p − ci)T (p − ci)

To calculate the Mahalanobis distance we first calculate
the mean valueµi and the covariance matrixΣi for a number
of mapped training data for each classci in the cluster. The
Mahalanobis distanced2 between a given positionp and
stored class is then calculated as:

d2 =

√

(p − µi)T Σ−1

i
(p − µi)T

III. SPEECH PRODUCTION

In this this section we look at how a robot can use the
architecture described in the previous section to learn how
to vocalize vowels. The method used is inspired by the
way children develop their speech through a combination
of self-exploration in the form of babbling and through the
interaction with a caregiver. Early babbling can be seen as
random movements of the articulators, while in the later
stages the babbling gets more rhythmic and focused around
some stationary points. Here we first do a random babbling
and later focus the babbling around the learned vowels.

A. Initial babbling

During the initial babbling random motor positions are
generated by the position generator. We generated 10000
random positions vectors for this phase. Each vector contains
information about the position of the 6 articulators used
in Maedas model. These are then passed on to the speech
production unit that calculates the resulting sound. The sound
is then fed into the auditory unit that calculates the MFCC
and passes these to the sound-motor-map. The sound-motor-
map finally tries to map the MFCC back to the original
articulator positions that originated the sound, comparesit
with the correct position given by the random articulator
generator, and uses a back-propagation algorithm to update
the map. Repeating this will create an initial map between
sound and the articulator positions used to create this sound.
Figure 2 shows the learning curve for the initial babbling.

Even after a long period of initial babbling a relatively
large residual error remains. This is because of the inversion
problem described in the introduction. Several articulator
positions can result in the same or similar sound. This

problem will be resolved in the next steps where the robot in
interaction with its caregiver starts to focus on a number of
useful articulator positions rather than the whole articulator
space.

Fig. 2. Average error of the mapped motor representations during initial
babbling for each epoch in the training. The error is expressed as the distance
between the correct and the mapped motor representation. As a comparison,
the distance between two different vowels is typically between 0.2 and 0.5

B. Learning vowels

The second phase can be seen as a parroting behavior
where the robot tries to imitate the caregiver using the
previously learned map. Since the map at this stage is only
trained with the robot’s own voice, it will not generalize
very well to different voices. This may force the caretaker to
change his or her own voice in order to direct the robot. This
behavior can also be found in the interaction between a child
and its parents, when the parents speak "baby language".
There can also be a need to over-articulate, i.e. exaggeratethe
positions of the articulators in order to overcome flat areasin
the maps that are a result of the inversion problem. When two
or more articulator positions give the same sound the initial
maps tends to be an average of those. However, for vowels
the articulator positions are usually naturally biased towards
the correct position as the sound is more stable around the
correct positions than around the alternative positions. For
most of the vowels it was not necessary to adapt the voice
too much. Typically between one and ten tentatives were
enough to receive a satisfying result. When the caregiver
is happy with the sound produced by the robot it gives
positive feedback which causes the robot to store the current
articulator positions in its cluster. This reinforcement was
given though the keyboard in the current implementation,
but more sophisticated methods could be used.

Using this technique we have been able to teach the robot
complete sets of Swedish and Portuguese vowels. Looking at
the articulator positions used by the robot we find that these
are similar to those used by a human speaker, see Figure 3.



Fig. 3. Learned articulator positions for Portuguese vowels. The upper left position corresponds to the Portuguese vowel O used in for example the word
só. The next position to the right correspondes to the vowelE used in sé, and the following positions corresponds to the vowels: o (sou), a (vá), e (vê),1
(pegar),5 (pagar), u (mudo), and i (vi).

C. Extended babbling

The robot can now use the learned set of articulator
positions as a starting point for further exploration, again
using a combination of self-exploration and interaction. In
this phase the self-exploration is biased towards the learned
articulator positions in order to specialize the maps to these
areas, and overcome the problem with ambiguous articulator
positions previously described. As a result, during this phase
the error in the sound-motor map for the learned vowels is
drastically reduced, Figure 4.

A secondary result of this phase is that articulator positions
that are not used in what is becoming the robot’s mother
language, will be less likely to be reached by the map. The
more a robot gets accustomed to use one set of articulator
positions, the more likely it will be to map the sound to
one of those, and the harder it will be for the robot to learn
new positions. While this may not be a desired features it is
interesting to do a parallell to humans as children that have
contact with several languanges during the babbling phases
can easily learn to produce sounds from all languanges, while
this gets increasingly difficult with age.

D. Gaining speaker invariance

One problem that the robot still has to overcome is the
difficulty to map different voices to the correct articulator

positions. This again has to be learned through the interaction
with one or more caregivers. One possible way to do this is to
let the caregiver imitate the robot, using his or her own voice.
The robot simply utter one of the sounds it has previously
learned and then listen to same utterance produced by the
caregiver. It can now update the sound-motor-map using the
sound produced by the caregiver and the articulator positions
used by the robot. Doing this with several different caregivers
will gradually introduce more invariance to speakers.

IV. SPEECH RECOGNITION

Being able to reproduce a sound that closely match the
original one doesn’t necessarily mean that robot know what
it actually said. In this section we deal with the problem
to classify a given sound as one of the previously learned
classes, i.e. one of the vowels. Especially we want to test
two things. First we study the effect on speech recognition
of the different phases of babbling and interaction with the
caregiver described in the previous section. Second we want
to compare the result of using motor parameters for speech
recognition with results from directly using MFCC.

A. Experimental setup

We have performed some initial experiments using 14
speakers (seven males and seven females) reading words



Fig. 4. Average error of the mapped motor representations for the learned
vowels as a function of the number of epochs, when using local babbling.

that included the nine Portuguese vowels previously learned
by the robot. We used the vowels from seven speakers for
training and the other seven for testing. Each speaker read the
words several times, and the vowels were hand labled with a
number 1 to 9. The amplitude of the sound was normalized
and each vowel was then divided into 30 ms windows with
50% overlap. Each window was then treated as individual
data which resulted in a training set of 2428 samples, and a
test set of 1694 samples.

We performed two different experiments. The first exper-
iment was made to study the effect of babbling. During this
experiment we measured the average sum of square error
between the mapped vowels and correct articulator position.
We also used the Euclidean distance to classify each mapped
vowel to the closest of the stored positions and calculated the
percentage of correctly classified vowels.

In the second experiment we wanted to test how well
the mapped motor representations perform in comparison
with using the MFCC directly. For this experiment we used
the two classifiers described in section 2, which calculate
the nearest class using Euclidean and Mahalanobis distances
respectively. Two instances of each classifier were created.
One of the instances used MFCC and the other used motor
representations. The Euclidean distance was calculated di-
rectly using the stored vowels. For the Mahalanobis distance
we first calculated the mean and covariance matrix for the
training vowels. In the second experiment we also added
noise to the test vowels in order to measure the sensitiveness
to noise of the two classifiers.

B. Effect of babbling

In the first experiment we studied the effect of the various
phases of babbling described in the previous section. During
the first phase we only performed initial babbling where
the robot randomly moved its articulators and listen to the
produced sound. During this training phase the robot had
not heard any human sound and as expected the recognition

TABLE I

RESULTS AFTER INITIAL BABBLING

Results Sum of square distance recognition rate
Robot vowels 3,4699 28,18%
Human vowels 9,7475 17,53%

TABLE II

RESULTS AFTER EXTENDED BABBLING

Results Sum of square distance recognition rate
Robot vowels 0,3195 84,44%
Human vowels 1,9839 22,22%

ratio at this stage is very low, table 1. Notice that, due to the
inversion problem, the recognition rate for the robot vowels
is also very low at this stage.

During the second phase the robot has retrieved a set
of vowels and use these for a local babbling. While the
robot at this stage has already heard at least the voice of
one caregiver, we only used the robot sound from the local
babbling for training. The results are shown in table 2. Here
it can be seen that the recognition rate of robot vowels has
drastically increased. In fact, by restricting the local babbling
to a very narrow neighborhood around the vowels we could
easily obtain 100% recognition rate for the robot vowels.
However, that would make the map too specialized and it
would not generalize will to human vowels. During this
phase we therefore generated motor positions using random
distributions with mean valus equal to the learned vowels
and a standard deviation of 0,1.

Finally we use the set with human training vowels to
train the network. The results of this is shown in table
3. As expected the recognition ratio is increased for the
human vowels. As we only use human vowels for training in
this step, the map will get increasingly more specialized on
human vowels and the recognition rate for the robot vowels
is therefore decreasing during this stage.

C. Comparison between recognition ratios for audio and
motor space

A second experiment was performed where we compared
the performance of the speech recognition calculated using
the motor representation with the speech recognition ratio
calculated using MFCC. We also tested the sensitiveness
to noise for these. Two different measurements were used
for the classification, Euclidean distance and Mahalanobis
distance. The results from these classifications are shown in
table 4 and table 5 respectively.

TABLE III

RESULTS AFTER INTERACTION

Results Sum of square distance recognition rate
Robot vowels 0,5568 49,10%
Human vowels 0,5150 57,67%



TABLE IV

RECOGNITION RATES USINGEUCLIDEAN DISTANCE

Results Motor positions MFCC
no noise 57,67% 20,60%

noise 15% 51,48% 24,56%
noise 30% 41,15% 24,09%

TABLE V

RECOGNITION RATES USINGMAHALANOBIS DISTANCE

Results Motor positions MFCC
no noise 59,27% 56,85%

noise 15% 45,99% 48,64%
noise 30% 35,95% 37,66%

As seen the Euclidean distance gives very poor results
when used with the MFCC. This is because we try to directly
map the sound of the humans to the sound produced by
the robot. However, the acoustic space of the robot is quite
different from the acoustic space of humans so even if the
sound is perceived as being the same vowel by a human
listener, by looking at the direct values of the MFCC in most
cases we would conclude that they are not. This difference in
acoustic space is not something that just robots have to worry
about. Children have to deal with exactly the same problem
when learning to speak as their acoustic space is very far
from that of their adult caregivers. By mapping the MFCC to
motor representation we can simplify the classification and
greatly improve the recognition rate when using a simple
Euclidean distance.

On the other hand, if we use a more advanced classifier
as the one based on the Mahalanobis distance, which uses
the human training vowels to recognise the test vowels
rather than the sound produced by the robot, the recognition
rates for MFCC get close to those optained by using motor
representation.

V. CONCLUSIONS

We have presented an unified approach for speech pro-
duction and recognition. This uses a combination of bab-
bling and interaction with a caregiver to automatically learn
both how to pronounce vowels and to recognize vowels
pronounced by other subjects.

It is found that using self-exploration, i.e. babbling, alone
is not enough to create a good map between acoustic
and articulatory space. This is because several articulatory
positions result in the same articulated sound. However, we
find that the map is good enough to let the caregiver guide the
robot towards the correct articulator positions by changing
his or her voice. We have successfully taught the robot both
Swedish and Portuguese vowels.

Once the robot has learned a number of useful positions
it can concentrate the babbling to the neighborhood of those
positions. This way the robot can overcome the inversion
problem and correctly learn to map its own sound to its
articulator positions. However, there is still a big difference

between the sound produced by the robot for a specific
vowel, and sound produced by humans. Also, sound pro-
duced by different individuals, or by the same individual
under different conditions, also result in a variety of different
sounds for the same vowel. To gain some speaker invariance
the robot has to interact with several different speakers. We
let the robot interact with seven speakers and then used the
speech of seven different individuals to test the recognition
rate. It was found that the recognition rate based on the
motor representations were as good or better than the rates
obtained by directly using MFCC. Also, in the case of the
motor representations, it was possible to use a very simple
classifier.

While it is early to draw any general conclusions about
the performance of using motor representations compared to
directly using acoustical features, these results are encour-
aging and future work will include validating the results on
other data sets, and also extending the data sets to include
other phonemes and words.
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