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Abstract— Affordances represent the behavior of objects in
terms of the robot’s motor and perceptual skills. This type
of knowledge plays a crucial role in developmental robotic
systems, since it is at the core of many higher level skills such
as imitation. In this paper, we propose a general affordance
model based on Bayesian networks linking actions, object
features and action effects. The network is learnt by the robot
through interaction with the surrounding objects. The resulting
probabilistic model is able to deal with uncertainty, redundancy
and irrelevant information. We evaluate the approach using a
real humanoid robot that interacts with objects.

I. INTRODUCTION

The development of embodied systems able to act in a
complex world and to interact with humans requires the
definition of adequate knowledge representations to support
the execution of a large number of tasks. In this paper, we
study a concept in biological systems known as affordances
[1] and propose a computational model to acquire and use
them.

Gibson introduced the affordance concept to define the
relation between an agent and its environment through its
motor and sensing capabilities (e.g. graspable, movable or
eatable) as illustrated in Fig. 1. For instance, humans can
grasp a cup or sit on a sofa, but not vice versa. Dogs can sit
on a sofa but cannot grasp a cup.

A robot can exploit this type of knowledge to under-
stand the behavior of the world in terms of its own ac-
tions/perceptions. It can predict the effects of an action
executed upon an object or select the most appropriate object
for a given goal. These basic capabilities are at the core
of higher level cognitive skills such as making decisions or
interacting with other robots or humans. Indeed, they allow
to recognize actions and intentions from other agents and can
be used, for instance, in imitation [2], [3]. Thus, affordances
are a suitable representation of the world in terms of the robot
capabilities which may be used as common knowledge for
higher development levels.

In order to model, acquire and use affordances, one must
consider two important properties. First, affordances appear
from the interaction between the robot and the environment
and, hence, depend on the world, the agent’s motor and
perceptual capabilities and its experience. For instance, the
lack of sound perception prevents learning the affordances
associated to a drum. Second, the robot needs to have ready a
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Fig. 1. Affordances as relations between (A)ctions, (O)bjects and (E)ffects,
that can be used to solve different questions: prediction, action selection or
object selection.

set of basic capabilities and concepts that allow it to interact
with the world. In other words, the robot should be at a
developmental stage [3] where it can detect objects, perform
basic manipulations and measure the resulting effects.

The contributions of this paper are threefold. Firstly,
we propose a model for affordances based on Bayesian
Networks (BN) [4] a general probabilistic representation for
causal dependencies. Although BN have been used in many
contexts to model statistical dependencies (e.g. for relational
data [5]), it is, to our knowledge, the first time they are used
to model affordances. Secondly, we show how this model can
be learned from observations as a structural learning method,
where affordances are encoded as probabilistic relations
between actions, objects and action effects. Finally, we show
how the learned affordance model can be used for inference
or planning in several types of tasks.

The proposed model has been evaluated using the hu-
manoid robot Baltazar (see Fig. 1). The robot used grasp,
touch and tap actions on different objects and measured
the effects as salient changes in the sensor measurements
(e.g. object motion). The results suggest that the learned
network correctly models the dependencies between actions,
object features and the resulting effects and detects irrelevant
features.

The paper is organized as follows. Next section dis-
cusses the related work. Section III describes our affordance
learning using Bayesian networks. Section V validates the
proposed model. In Section VI we draw the conclusions and
comment future developments.

II. RELATED WORK

According to Gibson’s definition, affordances describe the
relation between a living being and its environment [1].



Gibson argues that this relation is shaped by the perceptual
and motor abilities of the agent. Hence, the word affordance
represents what the elements of the environment afford to
the agent. In ecological psychology, there is still an ongoing
discussion to establish a definition or model for the affor-
dances (see [6] for a brief review). Some authors have shown
different examples of affordance in humans comparing the
perceptions among different people [7], measuring response
times to task elicited by specific orientations [8] or perceiving
heaviness [9]. Unfortunately, there is few evidence of how
humans learn affordances.

In a robotic context, we can distinguish two different
approaches. The first one simply uses affordances as prior
knowledge linking objects and actions. In [10] a computa-
tional cognitive model of infant grasp learning is proposed,
where affordances model information that helps the modules
performing the action. Affordances have also been used
as prior distributions for action recognition in a Bayesian
framework [11] or to perform selective attention in obstacle
avoidance tasks [12].

The second type of approaches focuses on the learning
of emergent affordances and their application to different
tasks. In [13], a robot learned the direction of motions
of different types of objects after poking and used this
information to recognize actions performed by other agents.
Then, the robot used these maps to obtain the same motion
of an observed action. In [14] imitation is also driven by
the effects. However, they focus on the interaction aspects
and do not consider a general model for affordances. The
biologically inspired behavior selection mechanism of [15]
uses clustering and self organizing feature maps to relate
object invariants to the success or failure of an action. All the
previous approaches learn a specific type of affordance using
the relevant information extracted from their sensor channels.
A more complete solution has been recently proposed in
[16] where a supervised learning procedure also selects the
appropriate features from a set of visual SIFT descriptors.
The work in [17] focuses on the importance of sequences of
actions and invariant perceptions to discover affordances in
a behavioral framework.

III. MODELING AFFORDANCES

In this section, we first describe the assumptions in terms
of robot capabilities required to start learning the affordances.
Then, we present the affordance model and how it can
be used to make inference for prediction, recognition and
planning purposes.

A. Robot skills and notation

We assume that the robot is endowed with a set of
skills (either programmed or learned through experience)
that support reasoning at a more abstract level than joint
positions or raw percepts. We assume that the robot is able
to detect nearby objects and measure basic features like
position, color, shape or size. In addition we also hypothesize
that the robot can interact with objects in a simple manner
through a pre-existing action repertoire and can extract some
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Fig. 2. Bayesian network model to represent the affordances. (a) An
example of the previous model using color, shape and size information
for the object features and motion and contact information as effects. (b)
Generic model where the nodes represent the actions A, the object features
available to the robot F (1)...F (n) and the effects obtained through the
actions E(1)...E(m).

features from its own body such as its hand position and
velocity in the image. We address the affordance learning
problem at this level of abstraction where the main entities
are the robot actions, the features of the objects and the
resulting effects. Details on the implementation of these skills
are given in Section V.

More formally, let the discrete random variable A = {ai}
represent the execution of a robot action. Object properties
and effects are also modeled using discrete random variables
corresponding to the classes detected by the robot. We denote
Fr = {Fr(1), ..., Fr(nr)} the robot own features extracted
by the pre-processing modules (for instance, hand position in
the image, propioception,...) and Fo = {Fo(1), ..., Fo(no)}
object features extracted for object o. Finally, let E =
{E(1), ..., E(ne)} be the effects detected by the robot after
executing an action. The set of nodes X is formed by the
discrete variables A, Fr, Fo and E, X = {A,Fr, Fo, E}1.

B. Affordance model

This section introduces Bayesian networks as the frame-
work to represent the relations between actions A, robot
features Fr, object features Fo and effects E. We use a
Bayesian network (BN) to encode the dependencies among
these variables (see Fig. 2).

A Bayesian network (BN) B = (G,Θ) over a set of
variables X = {X1, ...,Xn} is a probabilistic directed
graphical model where the nodes of the graph G represent
the random variables X and the (lack of) arcs represent
conditional independence assumptions. Θ = {θi} represents
the set of parameters defining the conditional probability
distributions p(Xi | XPa(Xi), θi) of each node in the graph
depending on the parents XPa(Xi).

Affordances can be represented using BNs in a very
natural way, since an arc from Xi → Xj can be interpreted as
Xi causes Xj (see [18]). In this way, affordances are actually
represented by the arrows between nodes and the parameters
of the resulting conditional distributions. This representation

1We represent random variables by capital letters X and its realizations
as x.



has several advantages. It allows to take the uncertainty of
the features and effects perception into account and provides
a unified framework for learning and using affordances.

C. Inference

Since the structure of the BN encodes the relations
between actions, object features and effects, we can now
compute the distribution of a (group of) variable(s) given
the values of the others. The most common way to do this
is to convert the BN into a tree and then apply the junction
tree algorithm [19] to compute the distributions of interest.
It is important to note that it is not necessary to know the
values of all the variables to perform inference.

Based on these probabilistic queries, we are able to use
the affordance knowledge to answer the questions of Fig.
1 simply by computing the appropriate distributions. For
instance, the prediction of the effects when observing an
action ai given the observed object features fj is just p(E |
A = ai, F = fj). It is important to note that the query
can combine features, actions and effects both as observed
information or as the desired output.

IV. LEARNING AFFORDANCES

In this section, we address the affordance learning task.
As mentioned before, affordances arise from the interaction
between the agent and the surrounding objects. Thus, the
robot has to apply its actions to different objects and observe
the resulting effects. Let D = X1:N be the set of such trials.
We want to discover the network structure and the parameters
that best model the interaction between the robot and the
objects.

We are interested in learning the structure G, which is
actually an instance of a model selection problem. In a
Bayesian framework, this can be formalized as estimating
the distribution on the possible network structures G ∈ G
given the data. Using the Bayes rule, we can express this
distribution as the product of the marginal likelihood and
the prior over graphs,

p(G | D) = ηp(D | G)p(G) (1)

where η = p(D)−1 is the normalization constant. The prior
term p(G) allows to incorporate prior knowledge on possible
structures.

Given the discrete representation of actions, features and
effects, we use multinomial distributions and their corre-
sponding conjugate, the Dirichlet distribution, to model the
CPDs p(Xi | XPa(Xi), θi) and the corresponding parameter
priors p(θi). Using this representation, the marginal likeli-
hood for a node Xi and its parents given the trials D is
[20]:

p(x1:N
i | x1:N

Pa(xi)
) =

∫
[

N∏
n=1

p(xn
i | xn

Pa(xi)
, θi)]p(θi)dθi

=
|Xi|∏
j=1

Γ(αij)
Γ(αij + Nij)

|XP a(Xi)|∏
k=1

Γ(αijk + Nijk)
Γ(αijk)

where Nijk counts the number of datasets with Xi = j and
XPa(Xi) = k and Nij =

∑
k Nijk and Γ represents the

gamma function. The pseudo-counts αijk are the Dirichlet
hyper parameters of the selected prior distribution on θi and
αij =

∑
k αijk. The marginal likelihood of the data is simply

the product of the marginal likelihood of each node,

p(D | G) = p(X1:N | G) =
∏

i

p(x1:N
i | x1:N

Pa(xi)
) (2)

where we have made explicit the dependency on the graph
structure G.

Unfortunately, the number of BNs is super exponential
with the number of nodes [21]. Thus, it is infeasible to
explore all the possible graphs and one has to approximate
the full solution. This can be done using Markov Chain
Monte Carlo (MCMC) [22] to construct a chain whose
stationary distribution is p(G | D).

The previous learning scheme is able to distinguish among
equivalence classes2. So as to be able to infer the correct
causal dependency, it is necessary to use interventional data
where we fixed some of the variables to a specific value to
disambiguate between graphs in the same equivalence class.

In the case of a robot interacting with its environment,
there are several variables that are actively chosen by the
robot: the action and the object. In other words, they are
interventional data set by the robot to some specific value
at each trial. Interventional data is currently an important
research topic within BN learning algorithms (see [23]).
Under the assumption of a perfect intervention of node i,
the value of Xi = x∗

i is set to the desired value and its CPD
is just an indicator function with all the probability mass
assigned to this value p(Xi | XPa(Xi), θi) = I(Xi = x∗

i ).
As a result, the variable Xi is effectively cut off from
its parents XPa(Xi). More sophisticated models allow for
uncertain interventions (see [23]).

Once the structure of the network has been established,
the parameters θi of each node can be estimated using a
Bayesian approach [24]. The estimated parameters can still
be sequentially updated on-line allowing to incorporate the
information provided by new trials.

V. EXPERIMENTS

In this section we present a set of experimental results to
illustrate the acquisition and usage of affordance knowledge.
We used Baltazar, a 14 degrees of freedom humanoid torso
composed by a binocular head and an arm. Baltazar is able
to perform three different actions A = {a1 = grasp, a2 =
tap, a3 = touch}. The robot applies its actions on a set
of different objects with two shapes (box and ball), with
different colors and three sizes (see Fig. 3)(a).

We recorded a set of 250 trials following the protocol
depicted in Fig. 3(b). At each trial, the robot was presented
with an object. Baltazar randomly selected an action and

2Two directed acyclic graphs G and G′ are equivalent, if for every BN
B = (G, Θ) there exist another network B′ = (G′, Θ′) such that they
define the same probability distribution.
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Fig. 3. (a) The playground for the robot contains objects of several
sizes, colors and shapes. (b) Experiments protocol. The object to interact
is selected manually and the action is randomly selected. Object properties
are recorded in the INIT to APPROACH transition when the hand is not
occluding the object. The effects are recorded in the OBSERVE state. INIT
moves the hand to a predefined position in open-loop.
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Fig. 4. Clustering of velocity and contact. The figure show for each trial
(grasp is represented by x, tap by � and touch by o) the measured velocity
(x-axis) and the contact information (y-axis). The vertical lines show the
cluster boundaries for velocity and the horizontal line for contact.

approached its hand to the object. When the reaching phase
is completed, it performed the selected action (tap, grasp
or touch) and finally returns the hand to the initial location.
During the action, both object features and resulting effects
are recorded.

A. Robot skills

The robot motor skills have been learned following the
framework presented in [11]. Each action is executed in three
steps. First, the hand is moved into the field of view of the
robot using a static sensory-motor map. Then, the hand is
moved toward the object in closed-loop using visual servoing
and finally the robot performs the action.

Regarding perceptual skills, we have selected three fea-
tures to describe an object: color, shape and size. Each
one is modeled as a n-dimensional vector space: a 16 bin
hue histogram for color; a 6-d vector for shape based on
geometric properties such as circleness or eccentricity; and

the area in the image for size. The effect detectors measure
the object velocity and the hand velocity in the image and the
distance between them. A simple contact sensor measures the
persistent contact between object and hand. Since our setup
is clearly discrete, we applied, the X-means algorithm [25] to
form clusters in the space of each object feature and effect.
Table I summarizes the clustering results for the different
variables and provides the notation used in the remainder of
this section. The clusters are computed prior to the learning
of the affordance networks and they represent the domain of
each node of the network.

TABLE I

SUMMARY OF VARIABLES AND VALUES.

Symbol Description Values
A Action grasp, tap, touch
C Color clustered in green1,green2,

yellow, blue
Sh Shape clustered in ball, box
S Size clustered in small, medium, big
V Object velocity clustered in small, medium, big

HV Hand velocity clustered in small, big
Di Object Hand Distance clustered in small, medium, big
Ct Contact clustered in short, long

We would like to stress that the final purpose is to learn
the affordances given a set of available motor and perceptual
skills, not to make a perfect object classification. Due to the
simplicity of the perception process and different working
conditions, clustering errors occur. The learning task has to
cope with object and effect misclassification.

Figure 4 shows the result of the clustering algorithm for
the object velocities and contact information. Roughly, a
grasp action resulted in medium velocity (except in one
case where the ball fell down the table) while tap produced
different velocity patterns depending on the shape and size
of the object. The combination of different features produces
different patterns that can be used to infer statistical depen-
dencies and causation.

B. Affordances

Based on the previous descriptors of actions, object fea-
tures and effects, we present some experiments to illustrate
the ability of the proposed model to represent and learn
affordances. We would like to remark that the robot does
not receive any information about the success or not of the
actions. The interest is in understanding the effects obtained
by the actions in an unsupervised manner.

As mentioned before, affordance knowledge depends on
the robot skills. We first show how the robot is able to
distinguish the effects of different actions and simultaneously
perform feature selection discarding irrelevant features. We
present two cases. In the first one, the robot does not have
contact information and relies only on its visual features. The
corresponding network fails to distinguish between touch and
tap on a box since the effects are equal (boxes do not roll and
the robot’s hand positions w.r.t. the object are almost equal).
In the second one, we add contact information and show how
the resulting network disambiguates these actions using the



A C Sh S

OV HV

Di

A C Sh S

HV Di

OV

A C Sh S

OV HV

Di 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Graphs

P
(G

ra
ph

s)

(a) (b) (c) (d)

Fig. 5. Affordances network learned without contact information using the MCMC algorithm. (a-c) Three most likely graphs and (d) the distribution of
the equivalent class graphs.
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new information. Note that tap actions produce only a brief
contact with the object.

We used the MCMC algorithm with random initialization
and BDeu priors to give uniform priors to different equiva-
lence classes [20]. The MCMC stopped after 5000 samples,
generated with a burn-in period of 5003.

Figure 5 shows the most likely networks and the distribu-
tion of graphs obtained with the MCMC algorithm without
using contact. As shown in the histogram of Fig. 5(d), most
of the probability mass is assigned to the network depicted
in Fig. 5 (a). Although there is not a ground truth to compare
the estimated networks, we see that color has been detected
as irrelevant when performing any action. Shape and size
are important for grasp and tap since they will have an
impact on observed object velocity, contact and distance
between the hand and the object. Hand velocity depends
mainly on the action, since the robot performs the same
movements independently of the success or failure of the
intended action. The other two networks (Fig. 5 (b) and (c))
are slight variations of the previous one, but still capture the
main properties of the world presented to the robot.

Figure 6 shows the maximum likelihood graph using
contact information. The resulting network captures a similar
structure and dependencies as in the previous case.

Figure 7 shows the weighted marginal likelihood of the
estimated networks as the number of robot trials increases for
both cases. Notice that the network with contact information
is more complex. Therefore, a similar marginal likelihood
indicate a better modeling of the data as expected due to the
extra information.

Recall that the actual dependencies are encoded in the
multinomial CPDs of each node given the graph. In order to

3The implementation of the algorithms is based on the BNT toolbox for
Matlab, http://bnt.sourceforge.net/.
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Fig. 8. Action recognition. Ratio of correct classifications for different
number of trials.

evaluate the quality of the network we also used a leave
one out validation technique to classify the robot action
given the object features and the perceived effects. Figure
8 shows the ratio of correct classifications. Due to the lack
of contact information, the robot cannot distinguish between
touch and tap actions executed upon a box. The action
recognition ratio converges to 0.85, where the errors are
due to the unobservability between touch and tap. If the
robot has this information available, the network is able to
distinguish between them and this ratio achieves 0.98. Notice
that when recognizing actions performed by other people,
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Fig. 9. Examples of CPD for the learned network: (a) shows p(S | V =
vi, A = tap, Sh = ball), the CPD of the shape of a ball given the action
was a grasp for every possible value of the velocity. (b) shows p(Ct | S =
si, A = grasp, Sh = sq), the CPD of contact given a grasp was performed
on a box for every value of size.

contact information is usually not available. In this case, the
recognition ratio for the network with contact information
also degrades to 0.85.

To further validate that the network actually captures
the correct dependencies, we show next some conditional
probability distributions. Figure 9(a) shows the distribution
of size after performing a tap on a ball for different velocities.
According to it, small balls move faster than bigger ones
which was the actual behavior during the experiments. The
predicted contact of a grasp action for different sizes is
present in Figure 9(b). It basically states that grasps succeed
more often with small objects than with bigger ones.

In summary, we have shown that the proposed model al-
lows to represent affordance knowledge and learn it through
experience. This is done based on the motor and perceptual
skills in a completely unsupervised manner. There is no
notion of success or failure and the network may not be
able to distinguish between non separable objects given the
used descriptors. However, it constructs a plausible model of
the behavior of the different objects under different actions
that can readily be used for prediction and planning.

VI. CONCLUSIONS

This paper addresses the unsupervised learning and usage
of affordances, i.e. the relations between actions, objects
and effects. We have proposed a general model based on
Bayesian networks and presented a particular implementation
based on discrete random variables. The network does not
assume prior knowledge on the relations between the objects
and effects and implicitly performs feature selection during
the learning phase.

Based on the previous framework, there are plenty of
opportunities for future research. Biological systems develop
many of their different skills in parallel. We are now investi-
gating how to dynamically incorporate new robot capabilities
(actions) or world knowledge in the learning algorithms.
This is important to deal with higher dimensional spaces.
Although the proposed model can directly learn through
observation of other agents’, it is necessary to develop
mechanisms to update the knowledge sequentially and to
deal with new actions or effects. Finally, active exploration
strategies may also allow to reduce the number of trials

required to learn the affordances in more complex and
realistic situations.
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