
Autonomous Blimp Control using Model-free Reinforcement Learning

in a Continuous State and Action Space

Axel Rottmann∗ Christian Plagemann∗ Peter Hilgers† Wolfram Burgard∗

Abstract— In this paper, we present an approach that applies
the reinforcement learning principle to the problem of learning
height control policies for aerial blimps. In contrast to previous
approaches, our method does not require sophisticated hand-
tuned models, but rather learns the policy online, which makes
the system easily adaptable to changing conditions. The blimp
we apply our approach to is a small-scale vehicle equipped
with an ultrasound sensor that measures its elevation relative
to the ground. The major problem in the context of learning
control policies lies in the high-dimensional state-action space
that needs to be explored in order to identify the values of
all state-action pairs. In this paper, we propose a solution
to learning continuous control policies based on the Gaussian
process model. In practical experiments carried out on a real
robot we demonstrate that the system is able to learn a policy
online within a few minutes only.

I. INTRODUCTION

Compared to other flying vehicles, aerial blimps have the

advantage that they operate at relatively low speed, that they

do not need to move in order to keep their altitude, and

additionally are not overly sensitive to control errors like,

e.g., helicopters. In this paper, we investigate the problem

of learning to control the height of an autonomous blimp

online and without pre-defined physical models. The goal of

this work is to allow the blimp to autonomously learn the

actions necessary to maintain its height from scratch after it

has been switched on. We have several demands to such a

learning approach:

1) It should be able to learn the control policy directly

on the blimp, i.e., without the need for simulation or

human intervention,

2) it should be able to learn the policy within a few

minutes on the real blimp, and

3) it should be able to deal with the continuous

state-action space given by the current estimate for the

height and the vertical velocity.

The first requirement assures that the blimp adapts its be-

havior to the current properties of the environment and its

own dynamics such as the amount of helium contained in the

envelope. The second property is necessary to ensure that the

blimp can actually learn new policies from scratch whenever

needed and still being able to fulfill its mission. The third

requirement is important to deal with the continuity of the

underlying state-action spaces.

Our approach is based on the reinforcement learning

principle, i.e., the goal to be achieved by the controller

∗University of Freiburg, Department for Computer Science, D-79110
Freiburg. †University of Freiburg, Department of Microsystems Engineer-
ing, D-79110 Freiburg

Fig. 1. Blimp used to evaluate our approach (left image). The right image
shows the gondola with two rotors for pitch and thrust control. They can
be rotated by 180 degrees.

is specified by virtual rewards given to the system when

certain system states are reached. Our approach employs a

Kalman filter to estimate the ground clearance based on noisy

distance measurements obtained from an ultrasound range

sensor. Based on these height estimates, we apply Monte

Carlo reinforcement learning in combination with Gaussian

processes to represent the Q-function over the continuous

state-action space. To evaluate our approach, we imple-

mented it on the blimp depicted in Figure 1. Experimental

results demonstrate that our approach can quickly learn a

policy that shows the same performance as a manually tuned

PD2-T2 controller.

The paper is organized as follows. After discussing related

work in the following section, we will describe the properties

of our blimp in Section III. In Section IV we will then

introduce our approach to learning the control policy of the

blimp. After that, we will present how to learn such a policy

online on the blimp in Section V. Finally, we will present

our experimental results obtained on a real robot and in

simulation in Section VI.

II. RELATED WORK

The problem of controlling a blimp has been stud-

ied intensively in the past. For example, Varella Gomes

and Ramos [19] as well as Hygounenc et al. [8] de-

scribe the physical principles of airship operations and use

the non-linear dynamics to control several flight phases

from takeoff to landing. Zhang and Ostrowski [21] use

a vision-guided blimp combined with a PID controller.

Fukao et al. [6] discuss image-based tracking control for

an indoor blimp. Wyeth and Barron [20] present a low level

reactive controller and Rao et al. [12] use a fuzzy controller.

Compared to these approaches, our algorithm does not

assume prior knowledge about the dynamics or pre-defined

controllers. Instead, it learns the control policy online and

does not require a-priori information about the payload, the

temperature, or the air pressure. Furthermore, autonomous

blimps have been presented in different application scenarios,

for instance by Jung and Lacroix [10], Fukao et al. [5], and

Green et al. [7].

The approach that is most closely related to the one

described in this paper has recently been presented by

Ko et al. [11]. They also deal with the problem of learning

to control an autonomous blimp and choose a similar set of

methods for this task. In contrast to our approach, however,

they make extensive use of models of the dynamics, both

for describing an analytical motion model as well as for

the controller itself. Gaussian processes are used to learn

the residuals of these models in a supervised manner using

motion capture data as ground truth. In contrast to their

work, we aim at learning the control policy directly, without

representing an explicit motion model or based on simula-

tion. Using only the real hardware as source of information

about the dynamics, our system learns a non-parametric

representation for the Q-Function while the system is flying.

Additionally, Gaussian processes have been applied to

the reinforcement learning problem in various ways. En-

gel et al. [2] approached the problem from the viewpoint

of temporal difference learning (GPTD) and later extended

this scheme to be able to deal with stochastic state transitions

to improve action selection and to learning Q-values without

an explicit transition model (GPSARSA) [3]. Their approach

was successfully applied to the problem of learning complex

manipulation policies [4]. Continuous state spaces have also

been considered by Smart and Kaelbling [17]. Rasmussen

and Kuss [13] present a different approach, in which the

system dynamics and the value function are learned using

separate Gaussian processes. In contrast to their work, we

show that our approach can be directly applied on a real

robot and be utilized to learn a policy online.

III. THE AUTONOMOUS BLIMP

The approach presented in this paper has been targeted for

the system depicted in the left image of Figure 1. It is based

on a commercial 1.8 m blimp envelope, which is described

in detail in [16]. The blimp is steered by three motors. One

motor is mounted in the tail fin to control the yaw. The other

two are mounted on each side of the gondola to control the

pitch and thrust. The latter two are also attached to a shaft

which can be rotated up to 180 degree by a servo (see right

image of Figure 1). The gondola includes an Intel XScale

PXA270 based system-on-a-chip with 600 MHz and 128 MB

RAM. An on-board 32 MB flash memory serves as storage

for the Linux operating system. This board is used to control

the speed of the motors, to change the position of the servo,

and to process the sensor data. For our experiments we used

a downward-facing ultrasound sensor at the bottom of the

gondola. The measurements of this sensor are integrated

on-board by a Kalman filter which sequentially estimates

the height and the vertical velocity of the vehicle. The total

weight of the gondola and hardware is about 200 grams

and the complete system is powered via a 3.7 V/1500 mAh

lithium polymer battery.

IV. REINFORCEMENT LEARNING

Reinforcement learning is based on the idea that an agent

interacts with a potentially unknown environment and gets

rewarded or penalized according to the actions it performs.

In general, the agent receives rewards for actions that are

beneficial in certain states for achieving a long-term goal.

The agent thus seeks to behave in a way that maximizes

its numerical reward. A reinforcement learning task can

be defined by a tuple {S,A, δ, r}, consisting of states S,

actions A, a transition function δ : S×A → S, and a reward

function r : S×A → R, which defines the immediate reward

to be received when executing action a in state s. The goal

is to determine a policy function π : S → A, which maps

each state s to an action a, such that the future expected

reward is maximized. As described by Sutton and Barto [18],

the expected long time reward in state st can be expressed

recursively as

Rπ(st) =

∞
∑

i=0

γirt+i , (1)

where γ ∈ (0, 1] is a discount factor. In general, the sequence

of rewards rt+i is obtained by starting in state st and then

iteratively applying a policy π for selecting the next action

at = π(st).

A. On-Policy Monte Carlo Control

Several approaches have been proposed to solve the re-

inforcement learning problem by maximizing the expected

long time reward as stated in (1). In this paper we apply the

Monte Carlo (MC) method, which has the advantage that

it allows the agent to learn directly from experience while

interacting online with a completely unknown environment.

This enables us to learn without prior knowledge and also in

situations in which no simulation environment is available.

Formally, we seek to learn the state-action value function

Q(s, a) : S×A → R, representing the expected future reward

when selecting action a in state s. To gather training data, we

iteratively generate episodes e1, . . . , eT . Each episode et =
(

(s1, a1), . . . , (sN , aN)
)

consists of state-action pairs, which

are in turn selected using a given policy. An episode ends

when a pre-defined goal state is reached, which typically

yields maximum reward or a maximum episode length is

exceeded. After the execution of an episode, the Q-values

are derived by averaging over the expected long time rewards

Q(s, a) = R(s, a) , (2)

where R(s, a) is the average long time reward if action a is

executed in state s. In this scheme, the best policy is given

by the maximum over the Q-value function

π(s) = arg max
a

Q(s, a) . (3)

A commonly applied strategy for generating the training

episodes e1, . . . , eN is the so-called ǫ-greedy approach. Un-

der this scheme one chooses a random action with probability

ǫ ∈ (0, 1] and, otherwise, selects the currently best action as

defined by (3).

B. Learning the Q-Function

A crucial choice for any learning task is the type of

representation that is to be used for the core concepts. In the

reinforcement learning task outlined above, we seek to learn

the Q-function from sampled action sequences. Most existing

approaches to the problem represent the Q-function using a

discrete approximation over the space of state-action pairs.

This, however, can lead to discretization errors or, when fine-

grained grids are used, requires a huge amount of memory

and a time-consuming exploration process. Therefore, func-

tion approximation techniques that directly operate on the

continuous space such as neural networks [1], [15], kernel

methods [9], or Gaussian processes [13], [3] have been pro-

posed as powerful alternatives to the discrete approximations

of the continuous Q-function. From a regression perspective,

these techniques seek to model the dependency

qi = Q(si, ai) + ǫi (4)

for the unknown function Q and independent and identically,

normally distributed noise terms ǫi, given a training set D =
{(xi, qi)}

D
i=1 of state-action pairs xi = (si, ai) ∈ S×A and

estimates of their Q-value qi.

Gaussian processes can be seen as a generalization of

weighted nearest neighbor regression [14], where the de-

pendency of a function value on its local neighborhood

is described using parameterized covariance functions. We

imply in this work the squared exponential

k(x,y) = σ2
f exp



−

d
∑

j=1

(xj − yj)
2

2ℓ2j



 , (5)

where ℓ is the length-scale and σf the signal variance. In

our model, the inputs x and y with x,y ∈ S × A are

d-dimensional vectors, which are constructed by concate-

nating the corresponding state and action vectors. Given a

set of data samples D from the Q-function and the hyper-

parameters θ = (σf , ℓ1, . . . , ℓd) of the covariance function,

arbitrary Q-values q∗ can be predicted for a new input

location x∗ by

q∗ = k∗
(

K + σ2
nI

)

−1
q , (6)

where K ∈ R
D×D is the covariance matrix for the train-

ing points, Kij = k(xi,xj), k∗ ∈ R
D, represents the

covariances between training points and the query point

x∗, k∗

i = k(x∗,xi), and q = (q1, . . . , qD) represents the

Q-values from the training set. For details about Gaussian

process regression, we refer to the book of Rasmussen and

Williams [14] or the numerous other introductory works

available. The learning task consists of two parts, i.e., the

gathering of training data D, which has been described in the

previous section, and the adaptation of the hyper-parameters

θ of the covariance function as well as the global noise

parameter σn. In the Gaussian process framework, these

parameters can be optimized by maximizing the marginal

data likelihood of the observed training data D. In our current

system we optimize these parameters using gradient descent.

TABLE I

MONTE CARLO LEARNING USING GAUSSIAN PROCESSES TO

APPROXIMATE THE Q-FUNCTION.

• Input: amin, amax, ǫ, γ
• Repeat until convergence:

1) Generate an episode (s1, a1), . . . , (sN , aN) of state-action
pairs using the ǫ-greedy policy.

2) For each pair (sn, an) appearing in the episode calculate
the expected long time reward

R(sn, an) =

N−n
X

k=0

γkrsn+k,an+k
,

where γ ∈ (0, 1] and r represents the immediate reward.
3) Add all R(sn, an) to the training set D of the Gaussian

process GP and optimize the hyper-parameters θ and σn.

• The best policy π for a state s′ is given by

π(s′) = arg max
a

GP (s′, a),

where a ∈ [amin, . . . , amax].

To avoid the blimp having to wait until the parameters have

been updated, we realized a thread-based implementation

which performs the optimization in parallel to the learning

task. In the simulation experiments, however, the optimiza-

tion is carried out after each round of 100 episodes.

V. ONLINE POLICY LEARNING ON A REAL BLIMP

For the task of learning online to control an autonomous

blimp, several specific constraints have to be met. First, we

need to specify the reward function, which implicitly defines

how we want the blimp to behave and react. Second, we need

to define how the episodes are created during continuous

online learning without restarting the blimp. Finally, we need

to define the state and action space and need to explicitely

constrain the state space to limit exploration.

We consider the task of stabilizing the blimp at a given

altitude h∗ without knowing the specific dynamics or any

parameters of the environment. In practice, altitude control is

already a complex task as blimps are very sensitive and their

behavior highly depends on outer influences such as payload,

battery level, temperature, and air flow. In general, it is hard

to determine a globally suitable policy applicable to several

conditions. Therfore, we seek to learn the best policy for the

current conditions while the blimp is in operation. For this

task, we propose to use the on-policy MC approach to rein-

forcement learning. To deal with the continuous Q-function,

we apply Gaussian processes as approximation technique.

The resulting algorithm is outlined in Table I.

We define the state space S by st = (dt, vt), where

dt = ht − h∗ represents the distance to the goal altitude h∗.

The terms ht and vt are the estimated height and velocity

values calculated by the Kalman filter. The velocity v is

negative, if the blimp descends. The action space A is

naturally limited by the capabilities of the motors, i.e., by

an interval at ∈ [amin, amax].
To apply MC learning to the blimp, we need to specify

how the episodes are created. In our application, we have to

sample the episodes e1, . . . , eN from a sequence of measure-

ments (s1, a1), . . . (sT , aT) obtained while the blimp is mov-

ing trough the environment. For each state-action pair (st, at)
in the sequence an episode et =

(

(st, at), . . . , (st+p, at+p)
)

is generated consisting of the p successor states. The length

p of an episode is defined by the factor γ. An episode ends

if the factor γp is smaller than a given threshold θ which has

been set to 0.1 in our current implementation. The expected

long time reward for each state-action pair is finally given

by

Rπ(st, at) =

p
∑

i=0

γirt+i . (7)

To guarantee convergence to the optimal policy, the learn-

ing task would either have to be endlessly restarted at random

initial states to assure that all state-action pairs are visited,

or, like in our work, a continuous policy would have to

ensure that all state-action pairs are visited with a non-zero

probability.

An additional condition induced by continual movement

of the blimp is the limitation of the exploration space. In our

case, in which the blimp is never restarted in well-defined

starting states, the system may move outside of the safe

working environment and, for example, hit the floor or

ceiling. Our experiments were performed in a factory build-

ing with a ceiling height of 5 m. We avoid collisions, by

artificially guaranteeing that the selected action at satisfies

the equation dt ·at < 0.0 if the absolute value of the current

distance dt is greater than 1.5 m.

Finally, to stabilize the blimp at a given altitude h∗, we

have to specify the conditions of the learning task that

the agent reaches the goal when it tries to maximize the

expected long time reward. A common strategy is a boolean

reward function, means, if the goal is reached r+ is received

otherwise r−, where r+ > r−. In our specific task, we

found that such a boolean reward function requires a longer

learning phase than a reward function that is proportional to

the distance to the goal

r(st, at) = −|dt|. (8)

A common method to learn the optimal policy is the so

called actor-critic [18] which separates the policy from the

value function. One structure is used to select the action

whereas the other represent the actual learned progress.

This guarantees that the policy is fixed while learning the

Q-values. In our current system, we use one structure to

simultaneously represent the values and the current ǫ-greedy

policy. In experiments not reported here, we compared these

two methods and achieved no significant difference in the

resulting policies.

VI. EXPERIMENTS

The approach described above has been implemented and

tested in simulation as well as on a real robot. The goal of

the experiments is to demonstrate that our approach learns

to control a real blimp online and within a short time-frame

without any prior information about the dynamics of the

vehicle. Furthermore, we describe results indicating the

improvement obtained by utilizing Gaussian processes for

function approximation without loosing precision. Finally,

we compare the behavior of our policy learned online with

a manually tuned PD2-T2 controller.

The real-world experiments described in this section have

been conducted with the small-scale blimp described in

Section III. The challenge is to control the altitude without

knowing the specific dynamics of the blimp or any param-

eters of the environment. In practice, height control already

is a complex task as blimps are very sensitive to outer

influences like payload or air flow. Additionally, it has to be

taken into account that the resolution of the ultrasound sensor

is 1 cm and since the velocity is very small the estimation

is susceptible to errors. Therefore, the estimated state of

the blimp is extremely noisy and accordingly the results of

potential actions can hardly be predicted.

To evaluate the progress of the learning processes we

derived the dynamics of the blimp based on standard physical

aeronautic principles [19]. Since we only took the movement

in the vertical direction into account, the effects to all other

dimensions were ignored. Afterwards, the produced forces of

the motors depending on the control signals were determined

on a measuring system and the parameters of the dynamics

were optimized based on several test flights. We applied

the resulting dynamics to move the blimp in simulation as

well as to determine a policy we can use as a base-line in

our experiments. This policy was computed using dynamic

programming [18] with a transition function based on the

dynamics. Please note, that this policy is optimal with respect

to the dynamics, but not in general for all conditions. As can

be seen from the experiments, this policy is well-suited to

evaluate the learning progress.

In all experiments only the two motors mounted at the

gondola were used. They were oriented upwards to control

the altitude and the maximum values amin and amax for the

actions were set to −0.8 and 0.8 respectively. These values

represent the engine speed in percent. We also analyzed

different time intervals between the processed measurements

and obtained the best results for a time delay of 1 second.

Whereas shorter intervals made it nearly impossible to pre-

dict the effects of an action, larger intervals complicated the

learning in environments of limited height like our factory

building as the blimp typically quickly reaches the maximum

height or gets too close to the floor.

A. Simulated Learning

In the first experiments we analyzed whether the integra-

tion of a Gaussian process for function approximation yields

an improvement of the learning process. To perform this

experiment, we simulated the movement of the blimp based

on the dynamics with additional noise and learned control po-

lices using the standard MC approach and our MC approach

with Gaussian processes. Although the time-complexity of

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10000 20000 30000 40000 50000

e
rr

o
r

to
 b

a
s
e

-l
in

e
 p

o
lic

y

time (sec)

monte carlo
monte carlo using GPs

Fig. 2. The sum of squared differences between the present best actions
and the base-line policy for the standard Monte Carlo learning approach
and our approach using Gaussian processes.

inverting the covariance matrix in Gaussian processes can

be speed up by the fact that they are symmetric and positive

definite, the number of samples D has to be limited in the

case of long runs. Therefore, we average two samples if their

euclidian distance is smaller than a given threshold of 0.01.

Thus, we follow the idea of MC but still adhere the property

of continuous spaces. Incidentally, for short-term runs the

reduction of the samples is needless since the calculation of

the inverse matrix with 1, 000 samples requires less than one

second.

Figure 2 plots the sum of the squared differences to the

base-line policy averaged over multiple runs. As can be

seen from the figure, our approach using Gaussian processes

for approximating the Q-function converges significantly

(α = 0.05) faster and also provides a significantly better pol-

icy up to 50, 000 seconds. This illustrates that the approxima-

tion provided by the Gaussian process is extremely beneficial

when only a few states have been visited. Furthermore, it

also yields a good performance in the long-term without

sacrificing precision despite the reduction of the sample

space. Due to space restrictions we only plot the graph up to

time-step 50, 000. Note that even up to 1, 000, 000 time-steps

the error of the standard MC approach never fell below the

error obtained with our method.

B. Learning Online on a Real Blimp

This experiment is designed to demonstrate that our MC

approach to reinforcement learning using Gaussian processes

for approximating the Q-function can be applied online on a

real blimp. It also illustrates that our approach allows us to

efficiently learn on a completely model-free, real system with

unknown dynamics. To perform this experiment we ran the

blimp in a factory building with a vertical exploration space

of 5 m. Figure 3 illustrates the average learning rate over

multiple runs compared to the base-line policy calculated

from the blimp dynamics. As can be seen from the graph,

our approach is able to learn a good policy already after only

a few states have been visited. Note, that every second only

one new state is inspected. At the beginning, the learning

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300

e
rr

o
r

to
 b

a
s
e

-l
in

e
 p

o
lic

y

time (sec)

online learning

Fig. 3. Learning rate of our Monte Carlo learning approach using Gaussian
processes applied online on the real blimp.

 0

 1

 0 50 100 150 200 250 300

time (sec)

ε

 0

 1

 2

 3

 4

a
lt
it
u

d
e

 (
m

)

online learning

Fig. 4. The upper graph shows the altitude of the blimp while it learns to
stabilize at 2 m. The lower graph plots the schedule of the ǫ-greedy policy.

rate is very instable which is due to the fact that the low

number of samples typically introduce a high variance in the

Gaussian process. As the number of samples increases, the

learning rate stabilizes and converges quickly to an accurate

estimate, which is close to the base-line policy.

Figure 4 shows a typical evolution of the height of the

vehicle and the schedule of the ǫ-greedy policy for one

learning experiment. As can be seen, at the beginning the

blimp is exploring the states and with descending ǫ the

blimp is gradually exploiting the current policy and finally

stabilizing at the goal of 2 m. Figure 5 depicts the final policy

learned during this run, which lasted 300 seconds.

C. Comparison to a Manually Tuned PD2-T2 Controller

The final experiment is designed to illustrate the benefit

of online learning on real systems compared to a manually

tuned PD2-T2 controller, which is a PD controller with

two D terms and two delay elements. This PD2-T2 has

been developed based on the dynamics and characteristics of

our blimp system and the parameters of the controller have

been optimized in simulation. Additionally, we integrated

a virtual PWM module to deal with the dead-zone of the

non-linear actor function. Figure 6 shows the behavior of the

blimp using the PD2-T2 and the controller learned with our

-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8

distance to goal (m)
velocity (m/s

2
)

best action

-1
-0.5

 0
 0.5

 1-0.4
-0.2

 0
 0.2

 0.4
-0.8
-0.4

 0
 0.4
 0.8

Fig. 5. Policy learned online on the real blimp with our Monte Carlo
learning approach using Gaussian processes within three minutes.

approach over a time period of three minutes. As can be seen,

the policy learned online stabilizes the blimp as efficient as

the PD2-T2 controller and yields a similar behavior. It can

also be observed that the controller learned online is not

penalized by the reward function for overshooting and thus

behaves different to approach the goal.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we presented an approach to control the

height of a blimp using reinforcement learning. Our ap-

proach applies Monte Carlo reinforcement learning and

utilizes Gaussian processes for dealing with the continu-

ous state-action space. Our approach does not require any

pre-defined models about the dynamics of the blimp and is

able to learn a policy online on a real blimp. As a result,

our approach can be applied whenever the blimp is switched

on and does not require any tuning of parameters whenever

internal or external conditions change.

Our approach has been implemented and evaluated on a

real blimp and has been compared to policies learned based

on prior information of the system dynamics. Experimental

results demonstrate that our approach can quickly learn an

effective policy and also performs equally well as a manually

tuned PD2-T2 controller.

ACKNOWLEDGMENT

This work has partly been supported by the DFG within

the Research Training Group 1103, by the EC under con-

tract number FP6-IST-34120-muFly (action line: 2.5.2.: mi-

cro/nano based subsystems) and BP6-004250-CoSy, and by

the German Ministry for Education and Research (BMBF)

through the DESIRE project.

REFERENCES

[1] R. Coulom. Reinforcement Learning Using Neural Networks, with

Applications to Motor Control. PhD thesis, Institut National Poly-
technique de Grenoble, 2002.

[2] Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman: The Gaussian
Process approach to temporal difference learning. In Proc. of the

Int. Conf. on Machine Learning (ICML), 2003.
[3] Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with

gaussian processes. In Proc. of the Int. Conf. on Machine Learning

(ICML), 2005.

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

a
lt
it
u

d
e

 (
m

)

time (sec)

policy learned online
manually tuned controller

Fig. 6. Altitude progress obtained by applying the online learned policy
and the policy of the manually tuned controller while the blimp stabilizes
at 2 m.

[4] Y. Engel, P Szabo, and D. Volkinshtein. Learning to control an octopus
arm with gaussian process temporal difference methods. In Advances

in Neural Information Processing Systems (NIPS), 2005.
[5] T. Fukao, K. Fujitani, and T. Kanade. An autonomous blimp for a

surveillance system. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), 2003.
[6] T. Fukao, K. Fujitani, and T. Kanade. Image-based tracking control of

a blimp. In Proc. of the IEEE Conf. on Decision and Control, 2003.
[7] W. Green, K. Sevcik, and P. Oh. A competition to identify key

challenges for unmanned aerial robots in near-earth environments. In
Proc. of the Int. Conf. on Advanced Robotics (ICAR), 2005.

[8] E. Hygounenc, I-K. Jung, P. Soueres, and S. Lacroix. The autonomous
blimp project at LAAS/CNRS: Achievements in flight control and
terrain mapping. In International Journal of Robotics Research, 2003.

[9] N. Jong and P. Stone. Kernel-based models for reinforcement learning
in continuous state spaces. In ICML workshop on Kernel Machines

and Reinforcement Learning, June 2006.
[10] I-K. Jung and S. Lacroix. High resolution terrain mapping using low

altitude aerial stereo imagery. In Int. Conf. on Computer Vision, 2003.
[11] J. Ko, D. Klein, D. Fox, and D. Hähnel. Gaussian processes and

reinforcement learning for identification and control of an autonomous
blimp. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 2007.
[12] J. Rao, Z. Gong, J. Luo, and S. Xie. A flight control and navigation

system of a small size unmanned airship. In Proc. of the IEEE

Int. Conf. Mechatronics and Automation, 2005.
[13] C. E. Rasmussen and E. Kuss. Gaussian processes in reinforcement

learning. In Advances in Neural Information Processing Systems

(NIPS), 2004.
[14] C.E. Rasmussen and C. Williams. Gaussian Processes for Machine

Learning. MIT Press, 2006.
[15] M. Riedmiller. Neural fitted Q iteration - first experiences with a

data efficient neural reinforcement learning method. In Proc. of the

European Conference on Machine Learning (ECML), 2005.
[16] A. Rottmann, S. Sippel, T. Zitterell, W. Burgard, L. Reindl, and

C. Scholl. Towards an experimental autonomous blimp platform. In
Proc. of the Europ. Conf. on Mobile Robots (ECMR), 2007.

[17] W. Smart and L. Kaelbling. Practical reinforcement learning in
continuous spaces. In Proc. of the Int. Conf. on Machine Learning

(ICML), 2000.
[18] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.

MIT Press, Cambridge, MA, 1998.
[19] S. Varella Gomes and J. Ramos. Airship dynamic modeling for

autonomous operation. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 1998.
[20] G. Wyeth and I. Barron. An autonomous blimp. In Proc. of the IEEE

Int. Conf. on Field and Service Robotics (FSR), 1997.
[21] H. Zhang and J. Ostrowski. Visual servoing with dynamisc: Control

of an unmanned blimp. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 1999.

