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Abstract— We present a new approach to cope with unknown
redundant systems. For this we present i) an online algorithm
that learns general input-output restrictions and, ii) a method
that, given a partial set of input-output variables, provides an
estimate of the remaining ones, using the learned restrictions.
We show applications of the algorithm using examples of direct
and inverse robot kinematics.

Index Terms— manifold learning, humanoid robots, redun-
dancy, sensory-motor coordination

I. MOTIVATION

Forward-backward models represent generic maps be-
tween different spaces. These models can represent relations
between motor control and sensor readings, or the relation
among different sensor modalities, e.g., the sound and the
motion of a bell. Learning a map between such different
spaces has applications in brain research [1], robot control [2]
and sensory-motor coordination [3], among others fields. In
many different settings it is necessary to learn these models
without any knowledge about their structure.

The direct and inverse kinematics are fundamental func-
tions for robot control and provide a very good example
of the application of forward-backward maps. If we know
a kinematic chain then it is possible to compute some of
these functions analytically [4], [5]. Although the direct for
serial mechanism and the inverse for parallel mechanisms
are very easy to solve, the inverse problems may need
more sophisticated solutions. These solutions can be either
numeric or symbolic [4], [5] but, in general, are difficult
to apply in today’s robots with more than forty degrees
of freedom. In this high-dimensional setting, planning a
trajectory or computing the kinematics usually becomes a
difficult task. Such redundant robots can solve the same task
in many different ways and the main difficulty is to select
the best option available.

Besides complexity, if the kinematic structure of the
systems is unknown then the only solution may be to directly
learn these functions from real data. Since robot kinematics
are not, in general, bijective functions, they cannot, without
further manipulations, be learned with a function fitting
method [6], [7]. Even if one of the maps is injective, its
inverse may not be. And so we will need to learn both maps
independently.

Learning a structure including both maps can provide
significant advantages, if such knowledge can later be used
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to recover both maps. Also, it is advantageous to be able
able to deal with situations where multiple outcomes arise
from a single input. Typical manifolds resulting of several
sensory-motor coordination tasks have been studied in [8].

Note that all this information can be obtained with no
necessity to conduct further learning, i.e., one can easily
change from an inverse kinematics problem to a forward
one maintaining the manifold previously learned. Another
desired feature is to have an online learning algorithm that
could provide estimates at any point of the learning process,
and that could accommodate new data without the need to
perform heavy computations.

In this paper we present a new approach to work with
unknown redundant systems. For this we present:

• An online algorithm that learns input-output restrictions
of a generic smooth map;

• A method that, given a partial set of input-output
variables, provides an estimate of the remaining ones,
using the learned restrictions.

Referring to our problem, the manifold estimate can be
used to obtain the direct and inverse robot kinematics, i.e.,
to provide an estimate of the observed variables given an
actuation value, or, inversely, obtain the actuators position
that leads to a desired observation.

This paper is organized as follows: Section II presents the
related work. The formulation of our problem is presented
in Section III. The algorithm is presented in two sections:
Section IV presents the learning algorithm and Section V
shows how can the model be used to recover direct and
inverse kinematics. In section VI some examples illustrate
the proposed algorithm and finally, in section VII, some
conclusions and future work are presented.

II. RELATED WORK

Learning input-output functions can be done with local
regression methods [9], neural networks [10], among others
[11]. Of special importance is to know if the methods work
under redundancy: a regression can only be made in many-
to-one maps and not the opposite, so not only is necessary
to learn the maps but also to be able to use them under
redundancy.

The least-weighted projection regression (LWPR) algo-
rithm [12] has been proposed to incrementally learn general
non-linear functions with several local linear models. The
authors proposed an approach to learn in humanoid robots
[2] that includes position and velocity in the input to pre-
dict velocity in the output. We note that by including this
extra information the inverse kinematics becomes injective,
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except in the singularities. For this method the problem then
becomes the estimation of the direct kinematics because it is
not easy to invert the learned model. Another approach that
tries to circumvent the redundancy problem is to decompose
the robot degrees of freedom in redundant and non-redundant
ones [7]. The problem of this approach is that the decom-
position is done manually, working only with a predefined
selection of variables.

Many approaches have been used to solve the well known
redundancy problem. One of them is the damped least-
squares, where the inversion is made jointly with an energy
minimization [13], originally introduced to solve the problem
of controlling robots near singularities. Another procedure is
called the redundancy formalism [14]: in this setting, the
extra degrees of freedom can be used to solve other tasks,
provided that the corresponding motion is done along a
direction in the null space of the main motion. The work of
[15] presents a robot under visual control, where redundancy
is used to obtain better trajectories in a visual servoing
task. In [16] these formalism is applied by learning the
necessary jacobian information. Other works have dealt with
planning in humanoid robots. A system able to decompose
the forces in order to act both in the task domain, but also
and independently in the robot posture, is presented in [17].

Instead of doing an input-output regression it is possible
to learn the restrictions between both spaces. If they define a
manifold is is possible to use a manifold learning mechanism.
ISOMAP [18] and LLE [19] are two standard methods to do
generic manifold estimation and both provide convergence
proofs. These methods try to map the given manifold into a
lower dimensional space. They are not applicable directly to
our setting because they do not provide a parametric model
of the high-dimensional data and do not work online.

III. PROBLEM FORMULATION

This paper presents a new approach to learn forward-
backward models, allowing to easily recover the relation
among any set of variables. The key point of our approach
is to consider the problem from an unsupervised point of
view, where data points consist of vectors containing both
input and output variables. These vectors define a surface
that can be seen as the graphic of a function. Consider Dc

the number of controlled — or independent — variables and
Do the number of observed variables. A point x belonging
to the manifold in a D = Dc + Do dimensional space will
lie in a sub-space of dimension Dc. This manifold can be
represented by the implicit function

H(x) = 0 , (1)

where H(x) imposes the D − Dc restrictions arising from
kinematics considerations. Note that the dimension of the
manifold is Dc because this corresponds to the number of
independent variables. The observed variables are generic
smooth, frequently non-injective functions of the indepen-
dent variables. In almost all cases these manifolds are highly
nonlinear, hard to parameterize without any a priori knowl-

edge. However, they are smooth and so can be approximated
by local linear parameterizations estimated from sample data.

Unsupervised learning of a Dc-dimensional manifold in a
D-dimensional space can be interpreted as a probability den-
sity estimation problem: given a set of (possibly corrupted
with noise) sample points xi belonging to the manifold,
i = 1 . . . N , estimate the probability of a point x belonging
to the manifold, i.e.,

p(H(x) = 0 |x1,x2, . . . ,xN ) . (2)

For small regions the manifold can be approximately
described by a hyperplane with dimension Dc. The
covariance of a set of data points belonging to a small
neighborhood provides a description of the manifold around
that location. The Dc first principal components (in the
sense of Principal Component Analysis (PCA)) of the
covariance span a hyperplane given a local estimate of the
manifold in that point. The remaining PCA dimensions can
be neglected as they represent the noise affecting data.

In this paper a generic forward-backward model will be
approximated by a collection of M models, where each
model describes the manifold in the vicinity of its center
µm by a local covariance matrix Cm. This gaussian mixture
representation provides a good estimate of the manifold if
there are sufficient local models to appropriately cover the
entire manifold, so that in the domain of each model the true
manifold is approximately linear.

IV. LEARNING

A popular method to estimate a mixture of Gaussians
is the expectation-maximization algorithm (EM) [20]. It
is a method prone to local minima, specially if the data
dimensionality is high. The number of Gaussians must also
be defined beforehand, although some variations of EM exist
that dynamically allocate new models [21].

A. Parameter update

Given a fixed number of models and assuming fixed
and equal priors for each model, the EM algorithm iterates
between the expectation step

p(m|xj) =
p(xj |m)∑M

m′=1 p(xj |m′)
=

p(xj |µm,Cm)∑M
m′=1 p(xj |µm′ ,Cm′)

(3)
and the maximization step

µm =

∑N
j=1 p(m|xj)xj∑N

j=1 p(m|xj)
(4)

Cm =

∑N
j=1 p(m|xj)(xj − µm)(xj − µm)T∑N

j=1 p(m|xj)

=

∑N
j=1 p(m|xj)xjxT

j − µmµT
m

∑N
j=1 p(m|xj)∑N

j=1 p(m|xj)
(5)

until convergence.



In its original formulation EM is a batch algorithm. The
sequential nature of data acquisition in real robots suggests
modifying it to an online version, making it able to provide
estimatives while acquiring new data.

Since the memory traces
∑

j p(m|xj),
∑

j p(m|xj)xj

and
∑

j p(m|xj)xjxT
j provide sufficient statistics to make

online corrections for each model, this algorithm can be
implemented with very low memory consumption. Whenever
a new data point xi arrives, these quantities are updated
according to:∑

j p(m|xj) ←−
∑

j p(m|xj) + p(m|xi)∑
j p(m|xj)xj ←−

∑
j p(m|xj)xj + p(m|xi)xi∑

j p(m|xj)xjxT
j ←−

∑
j p(m|xj)xjxT

j + p(m|xi)xixT
i

These quantities can then be used in expressions (4)
and (5).

B. Structure update

The proposed online version of the EM algorithm allows
an easy scheme to dynamically allocate new models. The
algorithm is initialized with only one model, with center
and covariance given, respectively, by the sample mean and
sample covariance of the first D + 1 points acquired (more
points may be needed if the first D+1 points don’t span the
entire space). Each time a new data point xi is acquired, the
models µm and Cm are updated according to expressions (4)
and (5). A new model is created if, for a new data point xi,
the probability p(xi|m) is smaller than a threshold pgen for
all existing models. The center of this new model becomes
µ = xi, while the covariance is equal to the covariance of
the model that maximizes p(xi|m).

C. Topology

From the collection of models obtained by the learning
process we can also estimate the topology of the manifold,
which gives a rough measure of the distance between points
along the manifold.

Two different models m1 and m2 are considered adjacent
(neighbors) if the point x that maximizes the likelihood
product p(x|m1)p(x|m2) is not a very unlikely one when
considering each model.

Maximizing p(x|m1)p(x|m2) is equivalent to minimize

J2 = (x−µ1)T C−1
1 (x−µ1)+(x−µ2)T C−1

2 (x−µ2) , (6)

which can be accomplished by the value x that satisfies

dJ2

dx
= 0 .

With some straightforward algebra the point x is given by:

x = (C−1
1 + C−1

2 )−1(C−1
1 µ1 + C−1

2 µ2) . (7)

If the quantity p(x|m) remains above a given threshold
for both models m1 and m2 a neighborhood relation is
considered to exist between models m1 and m2. If this
procedure is repeated for every possible pair of models a
neighborhood matrix can be constructed whose entry {ij}
equals 1 if models mi and mj are neighbors and 0 otherwise.

V. QUERY

Last section presented a method to estimate a manifold
representing a generic input-output map restriction. This
section shows how can be obtained, given a partial set of
input-output variables (query), an estimate of the remaining
ones.

Suppose data points x are divided into a query component
and an answer component, x = [xT

q xT
a ]T , such that Dq +

Da = D, where Dq is the query dimension and Da is the
answer dimension, not necessarily equal to Dc and Do. The
answer component is the set xa of elements of x to be
estimated given a specific value of the remaining elements
xq. For instance, for a forward kinematics problem xq

corresponds to the actuation variables, while for an inverse
kinematics problem xq matches the observed variables.

Note that if the dimension of the query exceeds Dc,
the manifold dimension, the estimation problem is overde-
termined and a solution may not exist. Conversely, if the
dimension of the query is lower than Dc, the estimation
problem is under-determined and a continuum of solutions
exist — in this case, as will be explained later, our algorithm
will provide multiple answers that can be interpreted as a
sampling of that continuous solution.

The M local models that describe the learned manifold can
be used to provide an estimate x̂a for a specific query xq. For
a single model m, we can choose the estimative x̂a to be the
value that maximizes the likelihood of the data point x given
model m, i.e., that maximizes p(x|m). Maximization of this
likelihood can be achieved by minimizing the corresponding
Mahalanobis distance to the center of the model m1:

J1 = (x− µ)T C−1(x− µ) . (8)

To do this, consider x̄q = xq − µq and x̄a = xa − µa,
where µ = [µT

q µT
a ]T . Consider also the decomposition

C−1 =
[

Cqq Cqa

Caq Caa

]
,

where Cqq , Cqa, Caq and Caa are respectively Dq × Dq,
Dq ×Da, Da ×Dq and Da ×Da. Then expression (8) can
be written as

J1 = [x̄T
q x̄T

a ]
[

Cqq Cqa

Caq Caa

] [
x̄a

x̄a

]
= x̄T

q Cqqx̄q + x̄T
q Cqax̄a + x̄T

a Caqx̄q + x̄T
a Caax̄a

= x̄T
q Cqqx̄q + 2 x̄T

a Caqx̄q + x̄T
a Caax̄a , (9)

where the simmetry of C−1 implies Cqa = CT
aq.

With x̂q fixed, the estimate x̂a satisfies:

dJ1

dxa
= 0 ,

and after some simple calculations we get the estimate

x̂a(xq) = −C−1
aa Caq(xq − µq) + µa . (10)

1for the sake of simplicity the model indexes are omitted.



Note that each estimate x̂a can associated with a
corresponding “degree of confidence”, given by p(x̂|m),
where x̂ = [xT

q x̂T
a ]T . In this way, models that produce high

probability estimates have a higher degree of confidence.

After obtaining an estimate x̂am for each model m a
question that remains to be addressed is how to combine
these estimates in order to arrive to a definitive solution.

Combining the models answers — for instance, using a
weighted average — won’t work when a query can produce
multiple answers: the planar robot described in section VI,
for instance, usually has two different actuator configurations
that cause the same end effector position, and an average of
these configurations can lead to a point not belonging to the
kinematics manifold. Note that a weighted average does not
take into account the manifold distance between different
models. The correct solution can, however, be produced if
models are grouped according to their neighborhood, thus
preventing multiple solutions, when they exist, from being
mixed into a unique solution.

Using the neighborhood relations between different mod-
els we can devise a simple procedure to obtain a better so-
lution by combining several local estimates. First, estimates
x̂am are ordered according to p(x̂|m), discarding models
whose “degree of confidence” are below a given threshold.
The remaining models are then grouped according to their
neighborhood. The procedure starts by considering only one
set S1 containing the first model of the ordered list of models.
Then each other model, starting from the second, checks if
it is a neighbor of the first element of each set Sk, being
appended in each set for which the neighborhood relationship
holds. A new set is created and initialized with a particular
model m if m was not inserted in any existing set.

After this procedure is finished the number of sets gener-
ated, NS , corresponds to the number of different answers
that can be estimated for the given query. Since models
are now arranged according to their neighborhood, it is
straightforward to obtain the set of possible answers: for the
kth answer, with 1 ≤ k ≤ NS , we have

x̂k
a =

∑
m∈Sk

x̂amp(x̂|m)∑
m∈Sk

p(x̂|m)
. (11)

A “degree of confidence” for each answer x̂k
a can also be

found using the following relationship:

pk =

∑
m∈Sk

p(x̂|m)∑NS

j=1

∑
m∈Sj

p(x̂|m)
. (12)

This quantity can be used, for instance, to discard esti-
mates originated by a deficient manifold learning — these
will typically have a low value of pk.

In this section we presented a way to extract information
from the parametric representation of the data manifold. Next
section presents numerical simulations to verify the proposed
algorithm.

VI. EXPERIMENTS

We performed several simulations to assess the quality
of the proposed algorithm, starting with a one-dimensional
manifold embedded in a two-dimensional space. This man-
ifold is the curve (cos(t/10), t) parametrized by t ∈
[−1 . . . 1]. 200 points were randomly generated from the
function and thereafter we run our algorithm with this
dataset. Figure 1 shows the learned manifold. We can easily
confirm that the curve is well approximated with the given
local models. More models were assigned to regions of high
curvature (regions corresponding to t = π/2±π) to correctly
approximate the curve.
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Fig. 1. Learned manifold (D = 2, Dc = 1). Red circles represent
model centers, red lines represent the principal components of the covariance
for each model, black lines represent the neighborhood relations between
models and blue dots stand for the sample points.

The learned local models can be used to recover both the
forward and backward models, i.e., the cosine or the inverse
cosine relation. Assuming the latter one, figure 2 shows the
resulting predictions for xq = 0, xq = 0.5, xq = 0.9 and
xq = 1.1. The algorithm presented in Section V correctly
estimates the output variable, although, for xq = 1.1, it still
provides an answer when none exist. This situation is, of
course, a consequence of the probabilistic approach to the
description of the manifold, and vanishes as the number of
models increases, allowing a better representation of high
curvature zones of the manifold. For a value of xq > 1.3 the
algorithm does not provide an answer anymore, as would be
expected.

Figure 3 shows a one dimensional manifold embedded
in a three dimensional space. As we can observe, after
the learning step the distance along the manifold prevails
over the Euclidean distance between model centers when
defining the neighborhood relationships. Figure 4 illustrates
the estimation of multiple outcomes for a query point given
by q = 0.5. Any of the remaining two dimensions, of course,
could instead be used as the query variable.

The final example depicts a simple planar robot with two
rotational degrees of freedom. In this particular case each
link length is given by L1 = 1 and L2 = 1. If we consider
the end effector cartesian coordinates (x, y) as observed
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Fig. 2. Recovering the forward model embedded in the manifold. The
several predictions corresponding to each query are represented by black
asterisks.
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Fig. 3. Learned manifold (D = 3, Dc = 1). Red circles represent
model centers, red lines represent the principal components of the covariance
for each model, black lines represent the neighborhood relations between
models and blue crosses stand for the sample points.

variables and the rotational variables (θ1, θ2) as the actuation
variables, the following relations hold:{

x = L1cos(θ1) + L2cos(θ1 + θ2)
y = L1sin(θ1) + L2sin(θ1 + θ2)

These relations define a two dimensional manifold in a
four dimensional space. Figure 5 plots the observed variable
x against the actuation variables, representing also the mod-
els obtained after learning the manifold over 8 000 random
data points. The topology for this problem is successfully
learned, as it is illustrated in Figure 6. Although not clearly
visible in Figure 5, there are two centers in the central region
of Figure 6 for which no neighborhood is defined: these
correspond to erroneous models that in the beginning of the
learning process have grown too much; usually its covariance
matrix has a much larger determinant compared to the correct
models, and so it can be easily identified. Another way to

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. Recovering the forward model embedded in the manifold. With
xq = 0.5 the six possible outcomes are successfully estimated (represented
in the figure by black asterisks).

detect such outliers is to inspect the neighborhood relations,
since these points usually become isolated ones.
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Fig. 5. Learned manifold (D = 4, Dc = 2). For convenience only the
x variable is shown. Red circles represent model centers, while rectangles
represent the two principal directions of each covariance matrix.

The proposed learning scheme is also able to tolerate a
reasonable level of noise in the sample data. For the previous
problem, illustrated in Figure 5, several experiments were
conducted, with increasing levels of noise, and the mean
square error of the estimative was obtained. The results are
shown in Table I.

VII. CONCLUSIONS

We presented a general algorithm to learn the sensory-
motor manifold resulting from robotic kinematic structures.
This algorithm is computationally very efficient: the most
time consuming operations are the local models covariance
matrices inversions after the update of equation (5), i.e., M
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Fig. 6. Resulting topology of the manifold. The red circles represent the
local models and the black lines represent the neighborhood. The model
without neighbors correspond to outliers.

TABLE I
MEAN SQUARED ERROR FOR DIFFERENT LEVELS OF NOISE IN THE

TRAINING SET.

noise 0.0001 0.001 0.01 0.1
mse 0.00003 0.00004 0.00005 0.0148

N×N matrix inversions must be performed each time a new
point is incrementally incorporated by the learning mecha-
nism. Considering only a subset of the nearest models in
this update step can significantly speed up the process when
the number of models starts to grow. Note also that in high
dimension spaces the inversion of the updated covariance
matrix can be done efficiently using the Woodbury identity.

This online learning algorithm can provide a robot with
real-time learning without a previous acquisition of data, and
it does not need any previous information about the underly-
ing manifold. It can also be easily modified to incorporate a
forgetting factor in the updates described in Section IV, thus
potentially being able to track slow time-varying data.

The convergence of this modified EM algorithm is a key
issue when dealing with high dimension data. So far, the
proposed learning algorithm can only deal efficiently with
low dimension data. As N increases, the solution tends to be
stuck in poor local maxima of the likelihood function. Also,
it becomes increasingly difficult to tune the few parameters
of the algorithm. Work is currently being done to deal with
these severe limitations. It should be stressed, however, that
the major claim of this work is the way we can efficiently
use a learned mixture of gaussians in the product space of
the actuated and observed variables to infer both the forward
and backward kinematics. Such a scheme can even be used
to infer a mixture of both controlled and observed variables,
and has enough flexibility to be easily replaced by any other
mixture of gaussians learning method (see, for example,
[22]).

The proposed method deals naturally with the classical

problem of redundancy and non-injectivity in the forward-
backward maps, being able to extract multiple solutions
when multiple answers do exist. These solutions can then
be used by a higher level algorithm to choose the final
solution, e.g., taking into account obstacle avoidance or
energy minimization schemes.
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