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Abstract— This paper presents a novel technique to align
partial 3D reconstructions of the seabed acquired by a stereo
camera mounted on an autonomous underwater vehicle. Vehicle
localization and seabed mapping is performed simultaneously
by means of an Extended Kalman Filter. Passive landmarks
are detected on the images and characterized considering 2D
and 3D features. Landmarks are re-observed while the robot
is navigating and data association becomes easier but robust.
Once the survey is completed, vehicle trajectory is smoothed by
a Rauch-Tung-Striebel filter obtaining an even better alignment
of the 3D views and yet a large-scale acquisition of the seabed.

I. INTRODUCTION

The strong attenuation and scattering of light underwater
has limited the use of optical systems and acoustic sensors
have been chosen. However, video cameras are ubiquitous,
cheaper and video images are preferred for scientific explo-
ration and offshore man-made structures inspection, bringing
about researching in optical underwater imaging.

Nowadays, cameras can be mounted on underwater vehi-
cles acquiring high resolution video images of the seabed at
short altitudes. Relevant results have been obtained aligning
hundreds of images using the so-called photo-mosaicing
technique on flat terrains [1]. However, applications of inter-
est for scientific and offshore community concerns structures
with major 3D component. Examples are benthic habitats
such as coral reefs, hydrothermal vent fields, ancient and
modern shipwrecks and archaeologic settlements and man-
made underwater structures in need of regular inspection.
Mosaics performed in areas with significant 3D structure suf-
fer from misalignments and image artefacts that deteriorate
the mapping (parallax) [1].

Besides, Simultaneous Localization and Mapping (SLAM)
has an active community in land robots. Excellent research
is done in indoor using laser scanners [2], sonar [3] and
video [4]; and outdoor using laser scanners [5] and video
appearance based models [6]. Most algorithms assume dense
features in the environment and good data association. In the
case of video-based SLAM, most approaches use features in
the 2D video streams to perform the data association and the
recent development using appearance require prior learning
of the environment. 3D structure is normally not used. In
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an underwater scenario, features can be sparse, appearance
alone is normally not discriminant and data association is
difficult as images are corrupted by a more significant level
of noise and distortion. Unsurprisingly, very few papers have
tackled SLAM in underwater. The ones that tried, they have
always focused on acoustic data [7] [8] [9].

The key to a successful visual SLAM based system
underwater must lie in the selection of very robust features
so that data association is possible even under different view
points and illumination patterns. The second important factor
to take into account is the likely sparseness of the feature
maps, due to the environment and the necessary selection of
robust features.

This paper proposes a solution to recover the local 3D map
of the seabed structure by using a stereo camera mounted
on an underwater vehicle. Landmarks are detected in the
local 3D structure and characterized considering 2D and
3D features. This is a novel approach compared to existing
techniques. An Extended Kalman Filter (EKF) SLAM frame-
work is proposed to filter the navigation data given by the
Doppler Velocity Log (DVL) of the vehicle and remove the
drift thanks to the re-observation of landmarks. Finally, the
output of the Kalman filter is filtered using a Rauch-Tung-
Striebel (RTS) smoother obtaining a better alignment of the
sequence of local 3D maps and yet delivering a large-scale
3D acquisition of the seabed.

II. EKF-BASED SLAM

The vehicle is equipped with an ExplorerDVL of Teledyne
RD Instruments that measures DVL frame {D} absolute
orientation EΘ =E RD (roll, pitch and yaw) wrt (with respect
to) Earth {E} and linear velocity Dẋ wrt DVL frame {D}.
Note that DVL position is not measured and should be
obtained by integrating the velocity. Besides, the vehicle is
equipped with a stereo-vision system that measures landmark
position L pi wrt the left camera frame {L}, as shown in
Fig. 1. Right camera frame {R} wrt left camera frame LTR
and left camera frame wrt DVL frame DTL are fixed and
determined by calibration.

A Kalman filter is composed of three steps: Prediction,
Observation and Update. We have added a fourth step to
incorporate new landmarks to the state of the filter. The
filter is fed by the motion measurements (orientation and
velocity) provided by the DVL and landmark re-observation
determined by the stereo-vision system, as shown in Fig. 2
and explained in the following sections.
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Fig. 1. Layout of the underwater vehicle showing the stereo-vision
system and the Doppler Velocity Log and the coordinate systems involved
measuring vehicle orientation and linear velocity and potential landmarks.

Fig. 2. Flow diagram of the SLAM module.

A. Process Model

The state of the system consists initially of the orientation
EΘ, position Ex and linear velocity E ẋ of the vehicle wrt
Earth {E}. Note that vehicle position is unknown and
hence can only be measured incrementally. Consequently,
we assume for simplicity that the Earth frame is located
at the DVL initial position and oriented according to DVL
measures. Angular velocity was not considered since it is
not measured and would increase filter complexity without
improving accuracy. Note that orientation is measured in
absolute values and hence the DVL is not introducing drift.
Once a landmark is observed, the state is augmented with
the position E pi of the new landmark wrt Earth. Landmarks
are kept during the whole mission of the vehicle. Hence, the
state of the system at instant k is defined by the following
equation,

x(k) = [EΘ,E x,E ẋ,E p1, ...,
E pn]. (1)

B. Prediction Model

Assuming that the state at instant k is known, the predic-
tion of the next state is modelled by

x̂(k +1|k) = F(k)x̂(k|k) (2)

where F(k) is the state matrix. The orientation and ve-
locity of the vehicle and position of landmarks are assumed
constant. The position of the vehicle follows a standard linear
model. The predicted covariance matrix for state (k+1) that
it is computed as follows:

P(k +1|k) = F(k)P(k|k)FT (k)+Q (3)

where Q is the process noise matrix. It consists of a diago-
nal of 0 except in the terms of orientation, position and veloc-
ity of the vehicle, where the variances of the corresponding
process noises are added. Process noise variances are fixed,
determined off-line and define the reaction of the filter to
sudden changes of the ground truth orientation/velocity of
the vehicle; and the covariance matrix at the initial time
stamp P(1|1) is defined by the variances of the orientation
and velocity measuring noise given by the navigation data
and the variance of the landmark measurement noise given
by the video camera.

C. Observation Model

In the observation model we have to deal with the real
measurements obtained by the on-board DVL and stereo-
vision system at the real pose of the vehicle, together
with the predicted measurements performed by the filter
at the filter current vehicle state. Stereo camera noise has
been experimentally proved to be approximately Gaussian.
DVL noise is Gaussian. The difference between both mea-
surements is the innovation vector and it is the basis of
minimization. The DVL measurement zm(k + 1) = [EΘ,D ẋ]
is a 6×1 vector composed of the measurements of vehicle
orientation wrt Earth and the linear velocity wrt DVL frame.
We consider that all landmarks are stationary and due to
our data association process a single landmark is at the
most observed at a given instant of time (see section V-
B). Hence, when a landmark is observed the stereo-vision
measurement zl(k + 1) =D pi =D TL

L pi is a 3× 1 vector
defined by (X ,Y,Z) position of the observed landmark wrt
DVL frame. The measurement vector is finally given by
z(k +1) = [zm(k +1) zl(k +1)].

The predicted motion measurement ẑ(k + 1) = [ẑm(k +
1) ẑl(k + 1)] = H(x̂(k + 1|k)), where H is a non-linear
function defined as follows,

H =

 EΘ̂(k +1|k)
DR̂E

E ˆ̇x(k +1|k)
DT̂E

E p̂i(k +1|k)

 (4)
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D. Process Update

When a new measurement of the vehicle motion is given
by the DVL or a landmark is re-observed by the video
camera, the innovation vector is computed accordingly:
v(k + 1) = z(k + 1)− ẑ(k + 1); together with an associated
innovation covariance matrix S(k +1) given by,

S(k +1) = Ḣ(k +1)P(k +1|k)ḢT (k +1)+R(k +1) (5)

where Ḣ(k+1) is the jacobian matrix of function H(k+1)
evaluated at x̂(k +1|k).

Ḣ(k +1) =
∂H
∂x

| x̂(k +1|k) (6)

and depends on whether the orientation and velocity and/or
any landmark is observed at k + 1; and R(k + 1) is the
measurement noise matrix defined as a diagonal matrix
containing the vehicle orientation and velocity measurement
noise variances and the landmark position measurement
noise variance at time k +1, respectively.

The estimate of the state vector and its corresponding
covariance matrix are then updated according to:

x̂(k +1|k +1) = x̂(k +1|k)+W (k +1)v(k +1) (7)

P(k +1|k +1) = P(k +1|k)−W (k +1)S(k +1)W T (k +1)
(8)

where

W (k +1) = P(k +1|k)Ḣ(k +1)S−1(k +1) (9)

is known as the optimal Kalman gain at time k +1.

E. Adding New Landmarks

New landmarks are introduced in the filter state just
after the process update step, since all vectors and matri-
ces forming the filter have to be updated to use the new
landmark in the filtering process. When a new landmark is
observed: a) the observed position is added to the vector
state x(k +1|k +1); b) the covariance matrix P(k +1|k +1)
is enlarged by adding the rows and columns corresponding
to the new landmark. The vehicle orientation variance at that
time together with the landmark measurement noise variance
are used to initialize the variance of the landmark in the
filter; c) the state matrix F(k +1) is enlarged by adding 1’s
to the corresponding landmark position; and d) the process
noise matrix Q is enlarged adding 0’s, since landmarks are
stationary.

III. RAUCH-TUNG-STRIEBEL SMOOTHER

The Kalman filter uses all measurements up to the last
iteration to estimate the state at the last iteration. The Rauch-
Tung-Striebel (RTS) smoother uses all the measurements
before and after each iteration to estimate the state at each
iteration. It is a post-processing filter that works on the stored

outputs of the Kalman filter by re-processing them. The
smoother works by combining a forward pass filter with a
backward pass filter. It was originally designed to work with
fixed size state vectors. However, the stochastic map adds
new states to the state vector as it observes new landmarks.
The algorithm adapts the RTS fixed-interval smoother to
work with the stochastic map by fixing the size of the state
vector to the size of the stochastic map on the last iteration.
The output of the RTS has been shown to improve the
accuracy of the stochastic map solution as well as providing
smoother trajectories [8].

So, once the Kalman filter has finished, we fix k to the
instant of time n− 1 and we go backwards till we reach
instant of time 1. The predicted smoother state is computed

ˆ̃x(k +1|k) = F(k)x̂(k|k) (10)

and the predicted covariance matrix

ˆ̃P(k +1|k) = F(k)P(k|k)FT (k)+Q. (11)

Then, the smoother gain matrix J(k) is computed

J(k) = P(k|k)FT (k) ˆ̃P
−1

(k +1|k) (12)

and, hence, the filtered state is given by,

x̃(k|k) = x̂(k|k)+ J(k)
(
x̃(k +1|k +1)− ˆ̃x(k +1|k)

)
(13)

P̃(k|k) = P(k|k)+ J(k)
(

P̃(k +1|k +1)− ˆ̃P(k +1|k)
)

JT (k).
(14)

We initialize the smoother so that x̃(n|n) = x̂(n|n) and
P̃(n|n) = P(n|n).

IV. LOCAL 3D SURFACE ACQUISITION
The problem addressed here is to recover 3D structure

from a video stereo pair mounted on an underwater vehicle
with changing illumination and an unknown surface struc-
ture. We have decided to use a wide-baseline stereo approach
as depicted in Fig. 3.

First, a Homomorphic filter is used to normalize the
brightness across the image and compensate for non uniform
lighting patterns. This is followed by a Contrast-Limited
Adaptive Histogram Equalization (CLAHE) to enhance the
contrast of images. CLAHE operates on small data regions
of the image. A further bilinear interpolation is performed
to remove artificially induced boundaries between regions.
Finally, an Adaptive Noise-Removal Filtering is carried out
to remove the noise produced by the equalization especially
in those areas with small variance (constant brightness). The
resulting images are brighter, better contrasted and normal-
ized. This facilitates the comparison of two images acquired
at different times and viewpoints, enabling the matching
of image features. Applying this process the number of
features detected in the image is multiplied by ten times
and features are spread throughout the whole image, which
is quite satisfactory.
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Fig. 3. Flow diagram detailing Image Enhancement, Image Processing
and Surface Computation modules and their corresponding tasks to compute
surface structure from raw images.

In order to get the metrics from two stereo images, both
cameras need to be calibrated obtaining the intrinsic matrices
of both cameras KL and KR and the relative transformation
RTL = [RRL

RtL], where RRL is the rotation of camera L wrt
camera R and RtL is the position of camera L wrt camera R.
At this point, intrinsic matrices KL and KR are used to rectify
both images removing lens distortion.

Then, we use the Scale Invariant Feature Transform (SIFT)
proposed by Lowe [10] to extract distinctive image features.
The features are invariant to image scale and rotation, and
are shown to provide robust matching across a substantial
range of affine distortion, change in 3D viewpoint, addition
of noise, and change in illumination. This is ideal for wide-
base line stereo matching.

Once the matches between both images are obtained by
SIFT, we compute the Fundamental matrix to remove false
matches not detected by SIFT. Note that it is preferable
to be strict at this point removing some correct matches
instead of allowing false matches to proceed deteriorating
the 3D reconstruction. Since the whole system is calibrated,
the Fundamental matrix is computed so that mT

RFmL = 0
where: F = K−T

R
RRL T K−1

L ; mR and mL are the 2D points
of the form (x,y,1)T in pixels, respectively; and T is the
skew matrix of the translation vector RtL. Then, we remove
matches that do not lay on their corresponding epipolar lines.

Furthermore, we compute the disparity between the re-
maining 2D points and we remove those whose disparity is
larger than 3σ , where σ is the square root of the standard
deviation of the disparity distribution. This process permits
the removal of remaining outliers, since usually outliers
suffer large disparity discrepancies.

Once the set of correct matches has been obtained, the
3D structure can be extracted by using a linear triangulation.
So, first we transform the pixels to metric coordinates m̂L =
K−T

L mL and m̂R = K−T
R mR and then, we compute matrix Ai

for every pair i of points as follows,

Ai =


0 −1 ŷLi 0
−1 0 x̂Li 0

(−R2 + ŷRiR3)− ty + ŷRitz
(−R1 + x̂RiR3)− tx + x̂Ritz

 (15)

where RRL = (R1 R2 R3)T and RtL = (tx, ty, tz)T . Finally,
the singular value decomposition of matrix Ai is computed so
that Ai =UiDiV T

i . The 3D point Mi corresponds to the fourth
column of Vi before normalization [11]. Mi are measured wrt
camera L.

Finally, we remove isolated 3D points as the ones that have
less than 2 neighbours in a certain range distance. Isolated 3D
points are not desirable since they introduce large residues in
the re-observations of landmarks. The whole process permits
the acquisition of a local 3D surface of the imaged seabed
measured wrt the current vehicle position.

V. DATA REPRESENTATION

Let X(k) be the position of the vehicle at time k in its six
degrees of freedom. Assuming a rigid body motion for the
vehicle, the position of the vehicle wrt a fix reference is a
the combination of a rotation R(k) and a translation t(k). A
partial reconstruction S(k) of the surface can be associated
to each vehicle position X(k). If a partial reconstruction is
not possible at this time (bad visibility, lack of structure in
image), a void surface is stored. The 3D large scale S can
be computed as the union of the partial reconstructions in a
global reference frame as: S =

⋃
[R(k) t(k)]S(k).

A. Landmark Characterization

A landmark is represented by the cloud of 3D points and
their corresponding 2D SIFT descriptors in camera L. Once
the landmark is stored, we also compute landmark position
as the gravity centre of the cloud of 3D points. A partial
reconstruction S(k) is selected as a landmark only if the
number of 2D points is significative and well spread in the
image. This criterion avoids the detection of landmarks in
poor textured images. Note that the amount of features per
landmark is important in data association. Finally, a new
landmark can only be detected if it is at a certain distance
of already stored landmarks ensuring that at maximum one
landmark is detected per image, keeping the algorithm simple
but yet reliable.

B. Data Association

Each time a new partial reconstruction is obtained, we first
check if there are any landmarks in the vicinity. Vicinity
is determined as a function of the camera field of view
(range and aperture), the navigation data uncertainty and
the covariance matrix of the Kalman filter that determines
the uncertainty of vehicle position and of every landmark
position. For every detected landmark, we match the SIFT
descriptors of the current 3D local reconstruction to those of
the detected landmark obtaining a number of matches. Then,
we compute the Fundamental matrix (F) to remove false
matches not detected by SIFT. Note that in this case we need
to use a F estimator since although the relative transformation

1014

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on June 04,2010 at 07:36:01 UTC from IEEE Xplore.  Restrictions apply. 



between both images is given by the Kalman filter, it is very
imprecisely known to be used in such computation. We have
used as F estimator the technique of Least Median of Squares
(LMedS) based on Singular Value Decomposition and point
data normalization, which has been proved to perform well
compared to other F estimators [12].

Then, we remove false matches and, finally, we keep as
a potential re-observation the landmark in the vicinity that
maximizes the number of inliers. For every 2D matches, its
corresponding 3D point is known. So, we now have two
clouds of 3D points and we can compute the transformation
between the two clouds. First, the landmark points are trans-
formed to the vehicle current frame so that now both clouds
are in the same reference. Then, the relative transformation
[R t] between both clouds of points is computed using the
method proposed by Mian [13], which proceeds as follows.

Consider M and S the two clouds of 3D points in 3× n
matrix form, consider m̂ and ŝ their corresponding gravity
centers and n the number of 3D points in any of both clouds
(n1 = n2). Compute the matrix M̂ and Ŝ with zero translation
subtracting m̂ and ŝ to every point, respectively. Compute
K = ŜM̂T /n and perform a singular value decomposition
to obtain K = UAV T . Then, compute the rotation matrix
R1 = VUT . Finally, the desired rotation matrix R is R = R1
if det(R1) > 0 and

R = V

 1 0 0
0 1 0
0 0 det(VUT )

UT (16)

if det(R1) < 0; and the translation vector t is t = m̂−Rŝ.
The re-observed landmark position DLi in the current vehicle
(DVL) frame is DLi = R DLs + t, where DLs is the stored
landmark gravity center in the current vehicle frame.

VI. SIMULATION RESULTS

In the experiment we have simulated a virtual 3D scenario
of an underwater environment composed by a 3D surface
which can be either introduced by an user or imported. The
user can select a real underwater (or aerial) image which is
stuck on the 3D surface conforming a virtual 3D scene but
yet with a real texture. Note that the texture is deformed
according to the shape of the surface. Then the user is asked
to introduce the trajectory of the vehicle in 6 degrees of
freedom. The algorithm interpolates the introduced trajectory
generating the navigation data that is measured by the
Doppler Velocity Log. The vehicle is equipped with two
virtual stereo cameras. Virtual images are rendered at every
vehicle position by means of ray tracing simulating image
acquisition.

At every instant of time the Doppler Velocity Log is
measuring vehicle orientation wrt Earth and vehicle linear
velocity wrt the vehicle frame. Orientation measurement is
absolute so a zero-mean Gaussian noise (σ = 0.01rad.) has
been added. Velocity may suffer error propagation and hence
a biassed Gaussian noise (µ = 0.05m/s,σ = 0.08m/s) has
been considered. The experiment will show how the SLAM
approach is able to readjust vehicle trajectory even in the

Fig. 4. SLAM Results (from left to right and up to left). Fig.a: Ground
truth 3D surface and vehicle trajectory in 6-DOF; Fig.b: the unfiltered
trajectory performed by the vehicle (red) compared to ground truth (green)
without using SLAM; Fig.c: the filtered trajectory (red) compared to ground
truth (green) obtained by the EKF-SLAM algorithm (trajectory jumps are
not due to filter inconsistency but to the fact that we are detecting few
landmarks to simplify data association); and Fig.d: the smoothed trajectory
(red) compared to ground truth (green) obtained by the RTS.

presence of large bias. Besides, the stereo head is capturing
two images and the algorithm explained in section IV and
depicted in Fig. 3 is executed, obtaining a 3D local map of
the imaged scene wrt vehicle frame. Eventually, local maps
are considered landmarks and data association as explained
in section V-B is carried out. Landmarks are introduced
in the EKF wrt Earth and used to filter the trajectory of
the vehicle and consequently re-aligning the local maps.
Once the whole mission is accomplished the trajectory of
the vehicle is smoothed using RTS obtaining an even better
alignment of the local maps.

The ground truth 3D surface and vehicle trajectory is
depicted in Fig. 4a. The trajectory is composed of 1398
positions. Fig. 4 compares ground truth trajectory (in green)
to the unfiltered trajectory (without using SLAM); to the
filtered trajectory obtained by SLAM; and, finally, to the
smoothed trajectory obtained by RTS.

In order to assert filter consistency, we can check the
innovation sequences against the innovation covariance esti-
mates. Fig. 5a shows how the covariance of a given landmark
is reduced every time any landmark is re-observed by the
vehicle which means that the covariance matrix is fully
correlated as desired. Fig. 5b shows the discrepancy of the
estimated trajectory to the ground truth and the different
landmarks that have been re-visited during the journey.

Fig. 6 shows the interpolated and resampled surface
obtained by the EFK-SLAM algorithm and by the post-
processing of the RTS smoother, demonstrating qualitatively
and quantitatively that our approach obtains an accurate
alignment of the 3D surfaces even in the presence of large
noises and biases.

Finally, Table I shows the computing time spent in the
computation of every task module of the SLAM algorithm
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Fig. 5. SLAM Results (from left to right). Fig.a: Discrepancy of the
estimated vehicle trajectory with respect to ground truth. The figure shows
how the discrepancy is reduced while any landmark is re-observed during the
journey; and Fig.b: Covariance estimates of landmark 2. The figure depicts
how the covariance is reduced every time any landmark is re-observed.

Fig. 6. Alignment of the 1398 local maps corresponding to 93,275 3D
points (from left to right and top to bottom): The surface aligned by the
EKF-SLAM: 3D view (Fig.a) and Top view (Fig.b); The discrepancy to
ground truth shown in Fig. 4 is µ = 4.28m. and σ = 2.80m. The surface
aligned by the RTS-smoother: 3D view (Fig.c) and Top view (Fig.d). The
discrepancy to ground truth shown in Fig. 4 is µ = 0.84m. and σ = 0.78m.

shown in Fig. 2. Results have been obtained in a Pentium M
1.20GHz with 1GB of RAM, executing Matlab 7.0.4(R14)
under Windows XP. Table I shows for every task the time
required to complete a loop and the total time the computer
spent in that task during the whole mission (1398 loops). The
hardest task concerns the synthetization of the two virtual
images of the stereo pair basically cause of the ray tracing
of the 80×80 pixels of every image. The computation of the
local 3D is quite computing expensive due to the number of
iterations concerning the computation of the Fundamental
matrix and the many checks performed to remove outliers,
but still is quite computing efficient. The rest of tasks require
far less computing time.

VII. CONCLUSIONS

This paper has presented an approach to perform the 3D
reconstruction of the seabed from the alignment of hundreds
of partial reconstructions thanks to EKF-SLAM and benefit-
ing from the navigation data of the underwater vehicle and
the re-observation of landmarks by using a unique stereo
camera. RTS smoothing is convenient as a post-processing

TABLE I
COMPUTING TIME

Task t̂ (seconds) ∑ t (seconds)
State prediction 0.02577 36.01
Motion measurement 0.00056 0.78
Synthetize images 3.83609 5,359.02
Compute Local 3D 1.21995 1,704.27
Landmark matching 0.05076 70.91
Compute Kalman Gain 0.11390 159.12
Filter update 0.00070 0.98
Add landmark 0.00003 0.05
Total time 5.2478 7,331.17

step to filter backwards the trajectory computed by EKF-
SLAM obtaining a better estimation of the vehicle trajectory
and consequently an even better alignment of the seabed.
To the best of our knowledge, this paper is the first that
proposes SLAM + RTS to deal with the 3D reconstruction
of the seabed by just using video cameras.

Although results have been obtained in a virtual scenario,
computational cost shows that a local map is computed in
few seconds and, hence, it is readily applicable to land and
air robotics. However, we should move to a Compressed EKF
and/or hierarchical SLAM to keep computing time bounded
if the number of landmarks increase drastically. Besides,
Kalman smoothing could be implemented fix-lag on-line if
the 3D map is required while the vehicle is navigating.
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