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Abstract— Recent analysis on the stability boundary for
haptic rendering assumed a stabilizing effect through a human
operator holding a haptic device, without considering his/her
dynamics directly. This paper derives stability boundaries of a
linear model of a haptic system including those dynamics. It
shows that all three elements of the human arm modeled as
mass-spring-damper system contribute to stability. The haptic
system itself is composed of a haptic device colliding with a vir-
tual wall modeled as time-delayed discrete-time spring-damper
system. Furthermore, the article proves that the recently found
linear stability condition for haptic devices of Gil et al. still holds
if a human is holding the haptic device. Finally, a relation to
Colgate’s passivity condition defining a robustly stable region
is given.

I. INTRODUCTION

An elementary prerequisite for haptic applications is to

preserve stability. Numerous theoretical and experimental

approaches have been presented in the past that have dealt

with ensuring stability for haptic interfaces. The passivity

condition of Colgate, et al. in [1] represents one of the

most cited theoretical studies towards a common stability

condition. Although ensuring passivity of haptic devices

is a general approach, it has the disadvantages of being

conservative in terms of stability and requiring the presence

of mechanical damping.

A more accurate approach was introduced by Hannaford,

et al. [2], [3], [4] with their time-domain passivity controller.

They introduced a variable damper which eliminates the

energy after it was generated by the haptic device.

The exact stability region for haptic walls represented

by a virtual spring-damper system was first determined by

Salcudean and Vlaar [5]. They considered their haptic device

as a simple mass which is actuated by an one sample-step

delayed force. For this simplified control loop, they found

the stability boundary inside a normalized parameter plane.

The human operator was ignored for the stability analysis,

as he/she tends to stabilize the system [6], [7].

This approach was enhanced by the authors of [8], con-

sidering also time delay as parameter. A more complex

model of the haptic system including physical damping was

investigated in [9]. It was observed that physical damping

is increasing the stable region. This result and the derived

stability boundaries are in accordance with previous experi-

ments [10], [11].
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Fig. 1. Simplified model of a human arm interacting with a 1 DoF haptic
device.

A similar approach [7] without normalized parameters and

time delay resulted in the same stability boundaries. Yet,

that article introduced a linear stability condition, which was

recently generalized in [12] to admit time delay.

In the stability analyses of the two articles [9] and [12]

human dynamics were not taken into account. The present

article analyses stability for a haptic system including a mass-

spring-damper model as human arm. It discusses its influence

on the stability boundaries of [9] and the linear stability

condition of [12].

Section II gives a detailed description of the investigated

haptic system. An exact discrete-time equivalent of this

system is derived in section III. Section IV investigates the

possible range of physical parameters of human arms and

haptic devices. On this basis, the exact stability boundaries

are presented in section V. Section VI linearizes these

boundaries resulting in a linear stability condition. This linear

condition is compared to the exact boundaries in section VII,

in order to qualify its valid range. Finally, the influence of

very high-frequency oscillations on the stability boundaries

is discussed in section VIII, finding a relation to Colgate’s

passivity condition. Finally, section IX summarizes the main

results of this article.

II. SYSTEM DESCRIPTION

This paper analyses stability for a system that consists

of a human operator grabbing an impedance type haptic

device. As illustrated in Fig. 1, a single degree of freedom

(DoF) mass-spring-damper system is supposed as simplified

model for the human arm, with mass mH , stiffness kH and

viscous damping bH . Although it is an approximation, this

linear model of the real human has been applied successfully

in many theoretical studies [7]. As the following stability

analyses describe a situation of the human arm that can be
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Fig. 2. Physical equivalent of the addressed system.
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Fig. 3. Control loop of the system.

considered as local in time and space, the linear model is a

valid simplification.

The haptic device is a 1 DoF mass mL which is damped

by bL. A possible compliance of the haptic device is ne-

glected. The human arm’s mass mH is directly coupled to

the device’s inertia mL. Therefore, the physical parameters

of the haptic device and the human can be combined to

m = mL + mH

b = bL + bH

k = kH ,
(1)

where m, b and k are respectively the effective physical

mass, damping and stiffness. Figure 2 shows the physical

equivalent of the addressed system.

The haptic device is displaying a virtual wall which is

composed of a virtual spring K and damper B (discrete-

time PD-controller). The force of the virtual wall is a

delayed discrete-time signal, with sampling time T and time

delay td = dT .

Nonlinear effects like static friction, or quantization and

saturation of sensors and actuators are not taken into account.

With these assumptions the control loop shown in Fig. 3 can

be set up easily. It contains continuous-time (physical stiff-

ness and damping) and discrete-time (virtual wall) elements.

Thus, before a stability analysis can be performed, all blocks

of the control loop have to be transformed into the same time

domain. In analogy to [9], the approach of the present paper

transforms the continuous-time blocks into the discrete-time

domain.

Remark 1: This paper analyses stability for virtual walls

modeled as bilateral spring-damper system. But, these anal-

yses hold also for the case of a human pushing against a

(unilateral) virtual wall, such that the position of the mass

is not leaving the wall, as this is equivalent to a system

TABLE I

DIMENSIONLESS PARAMETERS

Parameter Variable Dimensionless variable

Sampling period T -

Mass m -

Virtual stiffness K α = KT
2

m

Virtual damping B β = BT

m

Physical stiffness k γ = kT
2

m

Physical damping b δ = bT

m

Delay td d = td
T

with a bilateral spring-damper element. If bouncing occurs,

i.e. the mass is leaving the virtual wall during an oscilla-

tion cycle, the authors expect the found stability condition

to be conservative, because the destabilizing discrete-time

elements would not affect a whole oscillation cycle. Yet, this

case is not investigated in this article.

III. DISCRETE-TIME EQUIVALENT

The exact discrete-time equivalent of the continuous-time

block in the control loop in Fig. 3, including the zero-

order hold (ZOH) and the sampler, can be determined by

some calculations while assuming that the input force FH

is constant during one sampling step. The way to determine

the exact discrete-time equivalent is shown in detail in [9].

Here, only the result is given as

1/(ms2 + bs + k)

,
((c2+c3−2)z+(c2+c3−2e−bT/m))(b2−4km)+bc1(c3−c2)(z−1)

2k(z2
−(c2+c3)z+e−bT/m)(4km−b2)

(2)

with

c1 =
√

(bT/m)2 − 4kT 2/m
c2 = e−(bT/m+c1)/2

c3 = e−(bT/m−c1)/2.

(3)

The authors of [9] introduced also normalized parameters

to simplify their characteristic polynomial, see Table I. For

the system investigated in the present article an additional

normalized parameter is introduced, the normalized physical

stiffness

γ = k · T 2/m. (4)

As it is shown below, introducing this substitution simplifies

the resulting characteristic polynomial. With the normalized

parameters, (2) becomes

1/(ms2 + bs + k)

,

T 2

2m

((2−c2−c3)c1+(c2−c3)δ)z+(2e−δ
−c3−c2)c1+(c3−c2)δ

c1γ(z2
−(c2+c3)z+e−δ)

(5)

with

c1 =
√

δ2 − 4γ
c2 = e−(δ+c1)/2

c3 = e−(δ−c1)/2.

(6)



This exact discrete-time equivalent allows to derive easily the

closed-loop transfer function from force F ∗ to position x∗

(compare Fig. 3) as

Gx(z) =
T 2z1+d

m
·

n(z)

p(z)
(7)

with

n(z) = ((c2 + c3 − 2) c1 − (c2 − c3) δ) z
+

(
c2 + c3 − 2e−δ

)
c1 + (c2 − c3) δ

(8)

and

p(z) =
(
(c3 + c2 − 2)c1 + (c3 − c2)δ

)
(α + β) z2

+
((

(c3 + c2 − 2e−δ)c1 + (c2 − c3)δ
)
α

+ 2
(
(1 − e−δ)c1 + (c2 − c3)δ

)
β
)

z

−2
(
z2 − z(c3 + c2) + e−δ

)
c1γ z1+d

+
(
(2e−δ − c3 − c2)c1 + (c3 − c2)δ

)
β.

(9)

The normalized characteristic polynomial p(z) depends only

on the five dimensionless parameters α, β, γ, δ and d. The

mass m and the sampling time T dropped out due to the

applied normalization rules of Table I.

Remark 2: If k = 0, the discrete-time transfer function (2)

can be simplified to

Hx(z) =
x∗

F ∗
=

T

b(z − 1)
−

m(1 − e−Tb/m)

b2(z − e−Tb/m)
. (10)

This corresponds to the transfer function determined in [9].

IV. PARAMETER RANGE

This section investigates the ranges for the two normalized

parameters γ and δ for existing haptic systems. Gil et al. [7]

listed several values for mass, stiffness and damping of a

human arm that were used in literature. For all of them the

relations of stiffness to mass and damping to mass is located

inside the ranges

0 ≤ kH/mH < 710 s−2

0 ≤ bH/mH < 12.6 s−1,
(11)

if the case of an ungrabbed device kH = bH = 0 is also

permitted (s means seconds). To determine the ranges of

the normalized physical parameters γ and δ, recall their

definitions first:

γ = T 2 · kH/(mL + mH)
δ = T · (bL + bH)/(mL + mH).

(12)

It can easily be checked that the two inequalities

γ ≤ T 2 · kH/mH

δ ≤ T · (bL/mL + bH/mH)
(13)

hold for positive masses and dampers. Combining (11)

with (13), and taking into account that bL/mL is usually

smaller than 0.625 for existing haptic devices (see [13]),

yields

0 ≤ γ < T 2 · 710 s−2

0 ≤ δ < T · 13.225 s−1,
(14)
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Fig. 4. Exact stability boundary in the (α, β)-plane for d = 0 and for the
limits of the parameter range γ = [0, 0.001] and δ = [0, 0.015]. The effect
of γ on the stability boundary is not visible in this scale.

To account for the fact that reliable values for the physical

parameters of human operators and haptic devices are in

general quite imprecise values, the parameter range will be

extended. For example, the mass of both a human arm and a

serially-linked haptic device can vary remarkably depending

on their actual configurations.

Finally, it will be assumed that the sampling time for

haptic systems is limited from above at T ≤ 1 ms, because

this is a widely accepted limit. Therefore, the following

parameter range will be considered:

0 ≤ γ < 1 · 10−3

0 ≤ δ < 15 · 10−3.
(15)

The following section determines the stability boundary

for this parameter range.

V. STABILITY BOUNDARIES

A stability check of the investigated system can easily

be performed by computing the roots of the discrete-time

transfer function (7). The system is stable if all roots of

p(z) are located inside the unit circle. The stable region is

obtained if two parameters of p(z) are gridded, and all the

others are fixed.

For the limits of the possible ranges of the two physical

parameters γ and δ, Fig. 4 shows the stability boundaries

inside the (α, β)-plane for a fixed delay d = 0. The effect

of the physical damping δ is the same than it was observed

in [9] – physical damping increases the stable region. Yet, it

seems that the physical stiffness γ does not affect the stability

boundary at all. But, a close-up around the origin illustrates

that an increasing γ shifts the left vertical boundary of the

stable region to α = −γ, see Fig. 5. The lower boundary in

Fig. 5 is not visibly influenced by γ.

For larger delay the stable region becomes smaller [9].

Therefore, the influence of γ inside its bounds becomes

visible in the overall shape of the stable region for larger

delays, see Fig. 6 for d = 1 and d = 2.
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Fig. 6. Stability boundary in the (α, β)-plane for d = 1 (left) and d =
2 (right) for the limits of the parameter range γ = [0, 0.001] and δ =
[0, 0.015].

To conclude, physical stiffness and damping originated

from a human are increasing the stable region. Due to the

normalization rules, also the mass mH is contributing to

stability. Therefore, if modeled as linear mass-spring-damper

system, all three elements (the mass, the spring and the

damper) of a human operator are stabilizing an impedance

type haptic system.

VI. LINEAR STABILITY CONDITION

This section derives a linear stability condition for the

investigated system. In accordance with [12], the linear

condition will be obtained by applying the Routh-Hurwitz

criterion.

If the effect of sampling and hold is approximated by

a delay of half a sampling step T/2, for the characteristic

equation of the control loop in Fig. 3 yields

1 +
K + Bs

ms2 + bs + k
e−(td+T/2)s = 0. (16)

Further, substituting the effective delay tr = td + T/2 and

approximating e−trs ≈ 1
1+trs yields

mtrs
3 + (btr + m)s2 + (ktr + b + B)s + k + K = 0. (17)

By applying the Routh-Hurwitz criterion and assuming that

the physical parameters m,T, td, b, k are positive, three in-

equalities result,

b + B > −ktr (18)

K > −k (19)

btr(b + B + ktr) + m(b + B − Ktr) > 0. (20)

The last inequality can be rewritten as

b + B + btr(b + B + ktr)/m
︸ ︷︷ ︸

ǫ

> Ktr. (21)

Due to previous assumption T ≤ 1 ms, for small delay d,

and under condition (18), the summand ǫ can be neglected

and inequality (21) simplifies to

K <
b + B

tr
, (22)

which is exactly the linear stability condition found in [12].

The virtual stiffness K must be smaller than the sum of

damping b + B devided by the total delay td + T/2. Note

that physical stiffness k does not influence equation (22).

It shifts only the lower limit of the virtual stiffness to

K > −k. Furthermore, equation (18) is implied in (19)

and (22).

The two stability conditions (19) and (22) hold well

for haptic systems for which previous approximations and

assumptions are valid, i.e. the effective delay tr must be

small compared to the oscillation time of the mass m and

small compared to the fraction m/b.

VII. VALIDITY OF LINEAR STABILITY

CONDITION

Due to an exact conversion into the discrete-time domain

it was possible to determine the stability boundaries of the

system shown in Fig. 2. This section compares the linear

stability condition (22) to the exact boundaries. The linear

condition in normalized parameters reads

β + δ > α(1/2 + d). (23)

Similar to [12], the relative error of the virtual stiffness α
between both boundaries is considered. This error is defined

as

|(αlin − α)/(α + γ)|, (24)

for α and αlin located on the exact, respectively linear

stability boundary for the same β. Fig. 7 shows the exact

(solid) and the linear condition (dashed) in the same plots. It

visualizes also the points at which the relative error reaches

a level of 2% (circles) and 5% (squares).

The linear condition that was suggested in [12] for hap-

tic systems with physical damping, still holds if physical

stiffness of the human arm is introduced. Furthermore, the

valid range of the linear condition is nearly not affected by

physical stiffness (compare left with right plots in Fig. 7):

The values for α at which the limits of 2% and 5% are

reached differ less than 0.2% between γ = 0 and γ = 0.001
for the values used in Fig. 7. For larger delay, the relative

influence is stronger, as the stable region becomes smaller.

Although the valid range of the linear condition ends at

numerically small values on the α-axis, the non-normalized

values for the virtual stiffness at which the linear condition

holds are huge. This is due to the square of the sampling rate

in the normalization rule of α and the typically fast sampling

frequency (T ≤ 1 ms) in haptic systems.
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Fig. 7. Validity of the linear stability condition. Exact stability boundaries
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VIII. NYQUIST FREQUENCY

Previous sections assumed small values for physical stiff-

ness, γ ≤ 0.001, resulting in eigenfrequencies that are far

from Nyquist frequency. Although a human operator cannot

apply such high stiffness, it is still interesting to observe the

behavior of the stability boundaries for large γ, because a

connection to Colgate’s passivity condition [1] can be found.

If the mass’ oscillation exceeds Nyquist frequency ωN =
π/T , those oscillations cannot be observed correctly in the

discrete-time domain. Therefore, this section investigates the

stability of the haptic system for frequencies up to the

Nyquist frequency.

The oscillation frequency of a mass-spring-damper system

is

ω =

√

k

m
−

b2

4m
, (25)

for k > b2/4. Substituting the physical by the normalized

parameters yields

ω =

√

γ − δ2/4

T
. (26)

Thus, the system is oscillating with Nyquist frequency if

γ − δ2/4 = π2. (27)

A. No Time-Delay d = 0

Fig. 8 shows the stability boundaries for δ = 0, d = 0
and γ from 0 to 1

4π2 (left) respectively π2 (right), to reach

half or full Nyquist frequency. When increasing physical

stiffness up to half Nyquist frequency γ = 1
4π2, the stable

region moves completely to the left-half pane (α ≤ 0) for

half Nyquist frequency.
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full (right plot; 0 ≤ γ ≤ π2) Nyquist frequency.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

5

α

β

 δ=1, d=0 

γ=00.511.5
2

(0.5π)
2
+1/4

Passive

−10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

8

α

β

 δ=1, d=0 

γ=01
2

3
4

56789
π

2
+1/4

Fig. 9. Same case than in Fig. 8, but for δ = 1. Colgate’s passivity
condition is specifying the passive region, plotted as green triangle.

A further increase of γ results in a triangular stable region

exactly at the Nyquist frequency for γ = π2. It is interesting

that a maximum virtual stiffness α requires for negative

virtual damping β. A robustly stable region is the intersection

of the stable regions for all γ. For the values in Fig. 8, the

robustly stable region is the point of origin.

The stable region increases for larger physical damping,

as shown exemplarily in Fig. 9 for δ = 1. Again, at Nyquist

frequency, i.e. for γ = π2 + 1/4, the shape of the stable

region is a triangle. The robustly stable point in the (α, β)-
plane has increased to a robustly stable region. Apparently,

this robust region must contain or be equal to the passive

region.

The passive region is given by Colgate’s passivity con-

dition in [1] for d = 0, which can be written with the

normalized parameters:

δ >
α

2
+ |β| , (28)

for α ≥ 0, T > 0 and m > 0. The passive region is also

shown in Fig. 9. Although both are quite similar, the passive

region is located completely inside the robustly stable region.

Remark 3: Colgate used different dimensionless parame-

ters in [1] (e.g. τ , 1/γ). His results for — what he calls

— uncoupled stability correspond to the stable regions for

γ = 0, δ = 0 and d = 0 of the present article. Yet, the results

for his spring stability differ from those of the present article.
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Fig. 10. Same case as in Fig. 8, but for d = 1. For the two plots on the
top holds δ = 0, and for the two at the bottom δ = 1.

B. Time-Delay of one Sampling Step d = 1

For lager delays, the shape of the stable region differs from

previous case. Fig. 10 exemplarily shows the progression of

the stable region for d = 1 and increasing values of γ up to

the Nyquist frequency. Again, for systems with no physical

damping (δ = 0) exists only a robustly stable point in the

origin.

From the two plots at the top of Fig. 10 (δ = 0, d = 1),

it can be seen that the stable region moves to the left-half

plane (α ≤ 0) for smaller values of γ compared to previous

case of d = 0. For γ = (π/4)2 it is lying completely inside

the left-half plane.

Independent of the time-delay d (also for d = 0), the

whole stable region is limit stable for γ = π2 and δ = 0, as

the system has a pole at z = −1.

Remark 4: To reach Nyquist frequency for an exemplary

haptic device similar to the PHANToM device (m = 0.1 kg,

T = 0.001 s, b = 1.5 Ns/m, d = 0), a physical stiffness of

k = π2 m/T 2 + b2/4m ≈ 987.0 kN/m would be necessary.

This value can be reached for collisions of the haptic device

with the environment, but by far not through a human arm.

IX. CONCLUSIONS

The present article performed a stability analysis of a

haptic system interacting with a human arm that was modeled

as linear mass-spring-damper system. The haptic device was

colliding against a virtual wall that consisted of a time-

delayed discrete-time spring-damper system.

The paper derived a linear stability condition, which was

compared to exact stability boundaries. Inside the parameter

range of real haptic devices, this linear condition holds well.

The stiffness of the human arm has no effect on the linear

condition. Yet, as stated before all three elements of the

arm contribute to stability and increase the stable region.

As they are usually very small, the effect of human stiffness

and damping is negligible compared to the influence of the

human arm’s mass.

Finally, the influence of a very large physical stiffness on

the exact stability boundaries was discussed, and Colgate’s

passive region was found to be located inside a robustly

stable region. A minimum amount of physical damping is

needed to obtain a region which is robustly stable against

any physical stiffness, especially during collision between

the haptic device and a stiff real environment.

For future work, open issues would be worthwhile to

investigate. The most important topic would be to include

nonlinear effects like unilateral virtual walls (instead of its

bilateral spring-damper representation), static friction and

quantization effects, to obtain more precise results. Further-

more, more complex dynamics could be included in the

analysis, like a more realistic model of a human operator

or a model of the haptic device including motor dynamics.
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