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Abstract—In this paper, an integrated multi-camera person
tracking system for virtual reality television studios (VR-TV)
is presented. The system robustly tracks the moderator while
freely moving, sitting or walking around the studio, and the
estimation result can be used in order to drive the main broad-
casting camera mounted on a large robotic arm. Application
of the proposed tracking system to real-time VR-TV results in
an autonomous robot cameraman, able to keep the moderator
inside the screen with jitter-free viewpoint adjustments, as
required by the scene rendering engine.

I. INTRODUCTION

Virtual TV studios (Fig. 1) provide a very impressive vir-
tual reality experience for educational, documentary movies,
as well as weather or financial forecast transmissions, only
to name a few. However, the quality of the result depends
on the real-time robustness and accuracy of three major
components of the system, namely: 1. The camera tracker,
that recovers the absolute 3D pose of the camera (usually
from external infrared sensors), 2. The rendering software,
that uses the estimated camera pose in order to generate a
synthetic background or additional scene items, 3. The video
mixer, which combines the synthetic image with the real
camera input, in order to produce the final VR scene.

Therefore, the whole system requires a smooth and precise
motion input, in order to produce synthetic images with the
correct overlap and without undesired jittering effects. How-
ever, currently in most situations the camera is still controlled
by a cameraman, that may not achieve the smoothness and
precision of motion required; therefore, in such cases the
camera has been mounted on a robot arm, with a few pre-
planned key movements available (zoom, fly-by, etc.), which
on the other hand limit the moderator freedom of motion.

By using auxiliary video inputs looking at the scene,
together with real-time computer vision tools, the system
would instead be able to localize the moderator and keep
her/him within the screen while sitting or freely walking
inside the studio, at the same time performing smooth camera
adjustments through robot control and filtering tools, with
almost no need for human intervention.

For this purpose, in this paper we propose a multi-camera,
model-based person tracking system integrating color and
motion modalities, that achieves a robust real-time localisa-
tion of the moderator. In order to obtain a reliable localiza-
tion over the whole area, we employ a distributed system
consisting of two or more cameras with different viewpoints
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over the scene, with an overall modular and scalable system
design.

Fig. 1. A Virtual Reality TV Studio with manually operated TV Camera
(image courtesy: RTL Television Studio Koln, Germany)

Fig. 2. Proposed model of the VR-TV studio with camera operated by
a vision-assisted robot arm: A) Frontal Firewire camera for 2D person
localization and tracking, B) Overhead camera for computing the moderator
distance from the robot C) Broadcasting TV camera, D) Robot manipulator,
E) Moderator

The present paper is organized as follows: Sec. II briefly
reviews the current related state-of-the-art; Sec. III presents
the system overview and provides afterwards more details,
focusing on the user-interface for modeling (Sec. III-B), the
tracking methodology (Sec. III-C) and the robot controller
(Sec. III-D). Experimental results are given in Sec. IV, and
conclusions with proposed system developments are finally
given in Sec. V.

II. STATE-OF-THE-ART COMPARISON

To the knowledge of the authors, currently no vision-based
robot cameraman software has yet been developed for VR-
TV applications; however, the literature concerning single or
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multiple people tracking for application in video surveillance,
mobile robotics and related fields, already counts several
well-known examples, that we briefly review here.

Multiple people trackers, as also the literature shows
[11[2][3], have the common requirement of using a very
little and generic offline information concerning the person
shape and appearance, while building and refining more
precise models (color, edges, background) during the on-
line tracking task; this unavoidable limitation is due to the
more general context with respect to a known, single-target
tracking task, for which instead specific models can be built
off-line.

Many popular systems for single-target tracking are based
on color histogram statistics [4][5][6][7] and employ a base,
pre-defined shape and appearance model during the whole
task, providing more robustness and precision as well as a
relatively high speed of the tracker.

In particular, [6] uses a standard particle filter with color
histogram likelihood with respect to a reference image of
the target, while [5] improves this method by adapting
the model on-line to light variations, which however may
introduce drift problems in presence of partial occlusions;
the same color likelihood is used in the well-known mean-
shift kernel tracker [7], that follows the pose of an object
in 2D by optimizing the kernel function from frame to
frame; although reliable and fast, this method again suffers
from drift problems in presence of occlusions, since the cost
function may show false local minima and distract the tracker
that afterwards needs to be manually re-initialized.

The person tracking system [4] employs a complex model
of shape and appearance (color and shape blobs modeled by
multiple Gaussian distributions, with articulated degrees of
freedom), which require a difficult modeling phase as well
as several parameters specification.

Some of the above mentioned systems [4][1][2][3] also
employ background subtraction methods, which limit the
application to the case of fixed cameras, and therefore cannot
be applied to the main input from a VR-TV setup.

By comparison, in our system the off-line modeling part is
kept to a minimum extent, while at the same time retaining
a more detatiled information than a single color patch can
provide, which makes the system more robust to unpredicted
occlusions; and a robust fusion with the motion history image
[8] is provided, which replaces the background subtraction
modality that cannot be used for the mobile front camera.

III. THE INTEGRATED PERSON TRACKING SYSTEM

As stated in the Introduction, the goal of our system is to
robustly provide real-time information about the current 3D
position of the moderator in the scene, as well as controlling
the robot camera and zooming in a fully automatic way.

Fig. 2 shows the overall setup in the VR-TV scenario; the
corresponding system architecture is depicted in Fig. 3, and
hereafter described.

A. System overview

The hardware setup consists of an industrial robot arm, on
which the main TV camera is mounted, and two additional
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cameras for tracking. The first camera is mounted as a piggy
back over the main TV broadcast camera, both solidal with
the robot arm; this camera sees the same video scene but
with a slight offset, that later on is corrected by registering
the 3D output pose to the main camera frame. The tracker
uses this input stream in order to obtain information about the
frontal 2D image position of the moderator. The other camera
is placed over the area where the moderator is supposed
to move, and it is calibrated with respect to the robot base
frame, in order to estimate the current distance with respect
to the robot (see Fig. 2); in the current experimental setup,
a single overhead camera has been sufficient, although the
system can be scaled in order to cover larger floor areas, by
providing the calibration parameters for each camera.

In particular, the visual system combines color and motion
cues from multiple cameras, through dynamic data fusion
and Bayesian filtering, in order to localize and track the
moderator in real-time. This system estimates the (z,y)
coordinates of the moderator through the robot-mounted
camera, along with his/her distance d from the robot with
the overhead cameras, and provides output visualization of
the estimated 3D pose; the estimation result is sent as a
feedback for the robot controller, which constantly keeps
the moderator in focus (apart from occasional, pre-planned
motion trajectories).

Concerning the choice of the filter, we choose in the
present work a multi-patch Particle Filter, that offers a num-
ber of advantages over standard Kalman Filtering techniques.

First, particle filters more robustly deal with multi-modal
likelihoods due to clutter background and other people which
occasionally interact with the moderator, while a KF keeps
only one Gaussian hypothesis. Therefore when additional,
smaller peaks of the likelihood are present near the main
one, some particles are shifted onto this region, while most
of the sample remains on the correct peak.

When the temporary disturbance disappears, the sample
set focuses again on the main one, and no track loss occur.
A KEF, instead, looks for one hypothesis only, so it may lock
erroneously onto the false peaks, and never recover the right
track.

Moreover, particle filters can initialize and re-initialize
very easily, by means of a diffuse prior distribution of
a higher number of particles, that also acts as a target
detector; when detection converges to the target, the number
of particles is reduced and normal tracking takes place. The
reduced particle set reduces the computation cost. A KF
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based on local optimization would instead require a Gaussian
prior, not too far from the real target location, for which an
additional detection module should be implemented.

On the other hand, particle filters are usually considered
slower because of the multiple hypotheses to evaluate; but
in order to implement a KF measurement, a local likelihood
optimization must be performed (e.g. using kernels, like
mean-shift) possibly requiring state-space derivatives, so
that in the end the single measurement step can be quite
complex. Instead, a particle filter can be well-optimized
and parallelized, so that each measurement can be quickly
evaluated, without any requirement for differentiability.

Concerning computational resources, the tracking software
runs on a single PC, to which both Firewire cameras are
interfaced, while the robot controller runs on a seperate
machine with real-time OS capabilities; the two machines
communicate through a standard Ethernet link. In the fol-
lowing sections we describe the system in more detail.

B. Graphical user interface for modeling

In order to realize a simple and robust tracking system, we
employ a minimal modeling information about the particular
person to be tracked. For this purpose, a single picture is
manually taken from each view, and the following informa-
tions are obtained (Fig. 4):

=" sl

Fig. 4.

User interface and selected model patches

o Shape: for each camera view a generic, planar shape
model is given by a user-defined set of rectangular
patches (preferably two or more) enclosing different,
meaningful color regions. On each view, the main region
enclosing the person is manually selected by drag-
ging the mouse, and within this region the rectangular
patches are selected as well.

o Appearance: The appearance model is represented by
the underlying color pixels; from each reference patch,
a joint histogram in 2D hue-saturation (HS) color space
is collected and normalized.

Our multi-patch model can be defined in a flexible way
for each view, and with an arbitrary number of patches; for
example, from the frontal view of a standing, unoccluded

person the three regions of head, torso and legs are typically
defined, whereas for a sitting moderator other meaningful
regions can be defined.

Both for the modeling and tracking phases, our system
provides a simple and user-friendly GUI, that allows quickly
obtaining the reference images and interactively defining the
individual rectangular patches (Fig. 4). We design the GUI in
a platform-independent way using Trolltech-QT and OpenGL
rendering contexts, in order to provide the user with the main
functionalities: accessing each camera and visualizing the
video stream; taking a screenshot of the reference images;
selecting the main region and the individual patches; setting
system parameters like as motion covariance, particle filter
size and jitter filter bandwidth. During tracking, over the
same window the result is visualized in the form of a
bounding rectangle or a cross hair, and parameters can be
on-line tuned before feeding the result to the robot controller.

C. Tracking methodology

The tracking software is designed and implemented in an
architecture inspired to a recently developed general-purpose
framework [9], following a tracking pipeline concept (Fig.
5). Fig. 5 describes the complete pipeline for both cameras.

Each tracker holds a state-space representation of the 2D
model pose, given by a planar translation (z,y) and scale h
of the respective rectangular model in the image plane. Two
particle filters provide the sequential prediction and update
of the respective 2D states s1 = (21,91, h1) and (22, y2, ha),
by combining color and motion informations. Only three
out of the six estimated variables are returned to the robot
controller, namely the horizontal and vertical position in the
first image x1,y1, and the distance from the robot in the
overhead view d.

1) Image pre-processing: The sensor data is obtained
from each firewire camera in a raw RGB format. The image
is pre-processed in order to generate two pixel maps, related
to the respective visual modality: an RGB to HSV conversion
Zeol 18 performed for the color-based likelihood, while for the
motion-based likelihood the absolute motion history image
Zmot [8] is computed.

2) Tracker prediction: The particle filter generates several
prior state hypotheses si from the previous particle distribu-
tion (s%,w'),_; through a simple dynamical model

si=s_, +ol ()

with v a white Gaussian noise of pre-defined covariance
in the (x,y,h) state variables. A deterministic resampling
strategy [10] over the previous weights wi_; is employed
every time in order to keep a good distribution of the particle
set.

For each generated hypothesis, the tracker asks for a
computation of the likelihood values P(z.01|5%), P(2mot|s%),
from both modalities.

3) Color likelihood: The rectangular boxes defining the
person shape model are warped onto the HSV image at the
predicted particle hypothesis s¢; for each patch p, underlying
H and S color pixels are collected in the respective 2D
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histogram g, (si) that is compared with the reference one
q, through the Bhattacharyya coefficient [6]

{12 @ (n) g SN)]

where the sum is performed over the (N x N) histogram
bins (in the current implementation, N = 10).
The color likelihood is then evaluated under a Gaussian
model in the overall residual
Z B / )‘Lol

2

B, (Q;u (s),q (2)

P(zeo15t) = exp(— 3)
with given covariance A.,;

4) Motion likelihood: The same multi-patch model is
applied also to the motion image, and the matching residual
E is computed as the overall number of non-motion pixels
inside the covered area

P(2mot|s) = exp(=E?/Amot)

with Ao+ the respective covariance.

5) Dynamic data fusion: The overall likelihood is finally
obtained by multiplying the two independent likelihoods and
updating the weights w’

“

(&)

that afterwards are normalized, in order to ensure ), w; = 1.
This corresponds to a dynamic data fusion scheme
[11][12], where the two image measurements Zz.o;, Zmot are
combined at the tracker level, under temporal state predic-
tions st.
By fusing complimentary visual modalities, both trackers
obtain more robustness in presence of unexpected occlusions

u}é = P(Zcol|3i)P(Zmot|si)

g \

@m—

Tracking pipeline and estimated variables for the robot controller

or light changes, although the latter seldom occur in a
controlled studio environment.
6) Output: The average state s;

E wtst

is computed for both trackers, and the depth d is computed
from the two overhead variables (Z2,7,) using the cali-
bration model. The three components (Z1,7;,d) are finally
returned to the robot controller.

Another improvement, in order to ensure jitter-free op-
erations, is obtained by filtering the tracking output by a
further temporal low-pass filter, with higher cut-off frequency
with respect to the expected covariance of motion parameters
(Vg Uy, Va)-

The multi-patch likelihood function is already quite target-
specific, and its values around the correct peak are usually
much higher than the other modes; therefore, the weighted
average keeps a correct position. However, in order to
achieve a very stable output for the robot controller, in the
present work we further filter our small noise fluctuations; for
future developments, a more robust evaluation of the particle
average can be considered.

7) Loss detection and re-initialization: An important fea-
ture of our system is the possibility to automatically detect a
track loss when the person leaves the scene or gets occluded,
and to re-initialize the system in such situations. In principle
there are two main techniques to determine loss of target, 1)
Covariance check for the particle set, 2) Likelihood check. A
covariance test would be independent on the actual likelihood
value, but it may fail to detect a loss when the particle
set concentrates on a small peak (a false positive) which
has a low covariance as well. This is very undesirable in

(6)
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a TV studio application, where the only target that should
be detected is the moderator, and never other people or
objects to which the robot could drift. On the other hand, the
likelihood test is dependent on the likelihood value, which
may detect a loss for example in presence of light variations
(false negative). However, in a TV studio the light conditions
are strongly controlled, and an occasional false negative is
acceptable, as long as the re-initialization is successful since
it can be done in the last estimated position. During the
search, the robot does not drift but simply keeps the last
estimated position.

Therefore, we employ the likelihood test on the estimated
state 5; from both trackers, and declare a loss whenever
P(zc01|S¢) decreases below a minimum threshold value
P,;n- This threshold is set as a percentage (e.g. < 10%) of a
reference value P, , initially set to the maximum likelihood
value.

In order to provide adaptivity to variable postures (e.g.
when the moderator turns on a side), as well as light or
shading variations, P,..y itself is slowly adapted if the last
likelihood P(2¢oi|5:—1) is comparable to P,y (e.g. > 60%).
When a track loss occur, the Particle Filters are re-initialized
with the diffure prior, until the subject becomes again visible
and the likelihood increases above the threshold. This is also
demonstrated in the second experiment of the next Section.

D. Robot controller

The control system we propose for the robot cameraman
keeps the moderator in sight by translating the camera along
the three directions (x,y, z), by keeping the error vector as
small as possible while, at the same time, avoiding jittering
and abrupt accelerations.

The error vector is computed both in frontal image coor-
dinates

_ _ T
ef=[@—-2"y—y )
with respect to the target image location (z*,y*), and in the

depth direction
d—d* ®)

€d

with respect to a target depth d*.

We also notice that the choice of (z*, y*) is not limited to
the image center, since in many cases (e.g. weather forecasts,
documentary movies) the moderator should sometimes stand
in a fixed, lateral position while talking about the main
background scene, virtually rendered by the VR-TV engine.
The image error (7) can be used in order to drive the robot
in the respective directions through a standard Cartesian
controller, with suitable safety thresholds in order to limit
the acceleration values, as well as to keep the robot far from
singular configurations during all of the tracking operation;
this can be achieved since the operational space for the end-
effector is reduced only to a translational motion, occurring
within a relatively limited space with respect to the large
robot size. The depth error (8) instead can be used in order to
control the zoom of the main TV camera, and keep a constant
size on the screen. We also note here that the tracking camera

has no zoom capabilities, but keeps always a large FOV in
order to keep the target in sight and avoid tracking loss.

IV. EXPERIMENTAL RESULTS

We tested the person tracking system live and on se-
quences obtained in a real TV studio, using the above
described hardware and software architecture. In particular,
a standard Desktop PC with 2.4G H z Intel Pentium IV and
standard graphics hardware has been used for both camera
acquisition and processing pipelines, running on Linux OS
and communicating with the main server through a TCP/IP
link.

The model has been obtained as shown in Fig. 4, and
100 particles have been used for tracking with both Particle
Filters; the input images have a resolution of 640 x 480 pixels
and are obtained from a Guppy Firewire camera. With this
configuration, we achieved a speed around 20 fps, which we
found more than sufficient for the robot controller in most
VR-TV applications.

Fig. 6 shows some experimental results of the visual
tracker, obtained in a real TV studio environment. The result
of both camera trackers with respect to both modalities is
shown by the main rectangular frame and the individual color
patches. In the first sequence (first two rows), when another
person enters the scene and interacts with the moderator,
the motion images tend to merge and provide clutter motion
noise around, that however is not sufficient to distract the
tracker because of the multi-patch likelihoods and the use of
dynamic fusion.

The tracker keeps track of the person during this sequence,
despite the far position with respect to the camera, the poor
lighting, as well as the clutter background due to the nearby
moving person.

Another example is shown in the last two rows of Fig. 6,
this time involving a moving subject that occasionally stands
up and leaves the field of view. The tracker here employs
the automatic track loss detection criterion mentioned in
the previous Section, and we can see how the system
automatically re-initializes when the person comes back in
the field of view. The loss detection technique requires fine
tuning of the thresholds as it can be seen that in one of the
images a target loss is detected even when the target is in
the screen. This occurs mainly due to sudden change of pose
and inconsistent illumination arising from shadows. This is
a false negative and is acceptable as re-initalization is easy
rather than the tracker converging to a false target. The loss
detection threshold adaptibilty needs to be made more robust
in the future to cope with such scenarios.

As we can see, another important feature of our multi-
patch approach is to be able to successfully cope with
inaccuracies in the defined model: for example, when only
the head and torso regions are selected from a picture where
the moderator is sitting behind the desk, the system still
works correctly when the person stands up and walks inside
the studio, and vice-versa. This property is enforced by the
data fusion methodology described in the previous Section.
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Tracalng Target Tracaing Target

Fig. 6. Experimental results of the person tracking module. First and second rows: frames from the frontal camera, with color and motion processing
result. Third and fourth row: another sequence, with a moving person and a different multi-patch color model; when the person is leaving the scene, a
track loss is detected. Green rectangles: average 2D pose estimate; Blue rectangles: corresponding color patches.

Fig. 7. Sequence with the robot controller in action. Top left: model acquisition. The sequence shows the system successfully handling mutual occlusions
in a cluttered environment.

Overall, these results show how the integration of color 6dof robot arm, has been tested and successfully demon-
and motion cues gives a stable and relatively precise result, strated in public; the snapshots in Fig. 7 show the robot
that can be reliably used in order to steer the robot camera-  following the person in presence of mutual occlusions, and
man. a heavily cluttered background.

A prototype of the control system, involving an industrial
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V. CONCLUSIONS AND FUTURE DEVELOPMENTS

We presented a model-based visual tracking and robot
control system for Virtual-Reality TV applications, that ef-
ficiently integrates multiple visual cues and multiple camera
inputs in order to keep the moderator inside the main
video field while freely moving, sitting or walking. The
system provides a user-friendly GUI in order to specify a
minimal model information for tracking a specific person,
and requires a very small user intervention while at the same
obtainining smooth position adjustments through the robot
controller for the VR-TV rendering engine.

A current limitation of the system is that it allows freedom
of movement for the moderator only within the single
overhead camera field of view, which is sufficient when the
field of view is wide enough to cover the whole floor area.
If this is not the case, due to the modular nature of the
tracker (Fig. 5) the overhead system can easily be scaled to
an array of calibrated cameras, mounted in a regular grid that
covers the whole area while keeping minimally overlapping
fields of view. A simple input switching between cameras for
tracking can then be implemented, whenever the moderator
crosses two adjacent fields of view.
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