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Abstract— Recently, a novel solution to the Simultaneous
Localization and Map building (SLAM) problem for complex
indoor environments was presented, using a set of splines for
describing the geometries detected by a laser range finder
mounted on a mobile platform. In this paper, a method for
exploiting the geometric information underlying in these maps
in the data association process is described. The proposed
approach uses graphs of relations between simple features
extracted from the environment, and a bit encoded implemen-
tation for obtaining a maximum clique that relates observations
with previously visited areas. This information is used to update
the relative positions of a collage of submaps of limited size.

I. INTRODUCTION

The Simultaneous Localization and Map Building problem

(SLAM) has been the focus of attention of the mobile

robotics research community for more than two decades.

Today, very impressive implementations of a wide range

of solutions to the problem can be found in the literature.

Some of the most successful approaches are based on the

use of an Extended Kalman Filter (EKF) for the concurrent

estimation of the robot pose and the features locations in the

environment.

The main disadvantage of EKF-SLAM implementations,

along with the unavoidable appearance of inconsistency [1],

is its computational cost, quadratic with the number of

features in the map. Much work has been done to overcome

this problem [2], [3], while the most straightforward solution

seems to be the decomposition of the whole map into

different submaps of limited size [4], [5].

However, the search of a correspondence between the

different maps built during the modeling of a large scale

environment is yet a poorly solved problem. Mechanisms for

establishing correspondences between landmarks contained

in different submaps that correspond to the same environment

features are necessary for the obtaining of a consistent

global map that accurately represents the reality as a whole.

Considering every map as a set of landmarks positioned in

a different frame for each of them, the goal is to find the

correct set of associations between a set of observations

and a set of reference landmarks. The cost of this search

is exponential in time with the number of observations and

landmarks considered. A suboptimal solution that deals with

this computational cost can be obtained using an approximate

representation of the environment and a voting algorithm [6].
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The search of a correspondence between a set of obser-

vations and a different set of landmarks stored in a map

can be formulated as the solution of a maximum clique

problem (MCP) [7]. This is known to be a NP-Hard problem

[8], that found a very efficient solution in [9] using a

formulation based on encoding the information in bit strings

and exploiting bit-level parallelism in hardware to boost the

operations up. This bit-encoded solution to the MCP (BE-

MCP) was successfully implemented in [10] for solving the

global localization problem using maps composed of simple

point features. Results outperformed existing algorithms such

as branch and bound heuristic over the associations space

[6] in up to two orders of magnitude. More importantly,

the solution for a maximum clique search between a set of

observations and a set of landmarks is exact, not relying

on simplifications, and does not require of an initial relative

position estimation.

In this paper it is proposed the use of BS-SLAM [11]

for building submaps using data gathered by a mobile

robot equipped with a laser range finder for sensing its

environment. The computational cost of building these units

is bounded by limiting their size in the number of control

points. In this local approach, features are modeled as cubic

splines, allowing the exploitation of much more laser data

than traditional feature based SLAM algorithms can handle.

Relative positions of these submaps are updated using a BE-

MCP algorithm for establishing correspondences amongst

the constellation of submaps in the form of relative spatial

relationships. This way, global maps of large environments

can be generated using a collage of accurate local represen-

tations.

The paper is organized as follows. Section II presents an

overview of the fundamentals of using splines as a tool for

describing complex indoor environments. Section III briefly

explains how to addresses the computational problem of an

EKF-SLAM algorithm by decomposing the full environment

into more manageable submaps of limited size. Sections IV

and V put forward the procedures for establishing corres-

pondences between features contained in different submaps

and some experimental results with real data, exemplifying

the contributions of this article. Finally, in section VI some

conclusions and future research lines are summarized.

II. SLAM WITH SPLINES

In [11], a novel method for Simultaneous Localization and

Mapping was presented. In that work, it was proposed the

use of splines for representing complex geometries in indoor

environments. Up to that moment, feature based SLAM had
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been undertaken using simple geometric entities such as

points [12], segments [13], [14] or polylines [15].

A. B-splines Definition

Splines are powerful mathematical entities, capable of

describing complex geometries in a powerful and computa-

tionally efficient manner. Letting s (t) be the position vector

along the curve that describes an environment feature as a

function of the parameter t, a spline curve of order κ (degree

κ − 1), with control points xi = (xi, yi)
T ∈ ℜ2, i = 0 . . . n

and knot vector Ξ = {ξ0, . . . , ξn+κ} can be expressed as:

s (t) =

n
∑

i=0

xiβi,κ (t) (1)

being βi,κ (t) the normalized B-spline basis functions of

order κ [16].

The knot vector is any nondecreasing sequence of real

numbers (ξi ≤ ξi+1 for i = 0, . . . , n + κ − 1). They define

the locations of the parameter where two polynomial pieces

join together, defining piecewisely the global shape of the

curve. Spline curves are a computationally efficient way

to handle complex geometries, and allow the mathematical

analysis of the features, computing characteristics such as

distances, lengths or curvatures. For example, the derivative

of a B-spline of order κ is a B-spline of order κ− 1, whose

coefficients can be obtained differencing the original ones

[17].

ds (t)

dt
=s

′ (t)=(κ − 1)

n−1
∑

i=0

xi+1 − xi

ξi+κ − ξi+1

βi,κ−1 (t) (2)

B. State vector in BS-SLAM

BS-SLAM addresses the task of describing the environ-

ments using the control points defining a set of splines.

Considering the robot as the only non-static element, the

state vector to be estimated is:

x =
[

x
T
r ,xT

s1
, . . . ,xT

sN

]T
(3)

where the pose of the robot and the N features contained in

the map are modeled as:

xr = [xr, yr, φr]
T

(4)

xsi
= [xi,1, . . . , xi,ni

, yi,1, . . . , yi,ni
]
T

, i = 1, . . . , N

The main strength of BS-SLAM is that it does not rely on

a specific geometry to be detected from the data provided

by the sensors. The goal is to represent the environment as

accurately as possible, exploiting the flexibility that B-spline

curves provide for describing both segments and curves.

Our previous work in [11] provides very detailed descrip-

tions and formulations for (a) the segmentation of the raw

laser scan into separate pieces of information describing

different objects, (b) initializing new objects and extending

current objects when new parts of the environment are

discovered, (c) formulating a suitable observation equation

based on a ray-tracing algorithm between every single laser

beam position and the parametric curves contained in the

map, and (d) evaluation of appropriate Jacobians for easy

implementation of Kalman filter equations.

One major drawback of this solution is the computational

cost of the update stage of the EKF, limiting its real time

implementation to maps of up to a few hundreds of control

points. As mentioned before, one successful way to alleviate

this problem is the simple limitation in the number of control

points contained in each submap, and maintain a spatial

structure relating the positions of all of them.

III. DEALING WITH THE COMPUTATIONAL

COST: BREAKING THE MAP UP INTO PIECES

One of the main drawbacks of EKF based approaches to

the solution to the SLAM problem is its computational cost,

quadratic with the number of features (control points in our

case) present in the map. As the size of the state vector

is a major problem for this formulation, many solutions

have recently appeared addressing the task of building maps

of large environments by simply decomposing the whole

problem into pieces; i.e. building maps of limited size,

corresponding to different visited areas [4], [5], and trying

to merge or stitch them all together following some sort

of joining process [18]. An alternative is to work with a

graph of different submaps, whose poses are updated and

corrected forming a constellation of local representations

that, altogether, conform the whole environment.

In the work here presented, it is proposed the use of

different small submaps, limited in size with the number

of control points. This way, whenever a map reaches a

certain maximum number of control points, a new map

is initialized using the last sensor observation, and a new

Kalman Filter algorithm is started for building the new map.

The spatial relationship [19] of the newly born submap

respect its predecessor (parent) is simply the robot pose at

the map transition instant.

The simple approach proposed in this paper deals with

the set of submaps as the elements of a state vector to be

estimated by an extended Kalman filter. Hence, the state

vector for M + 1 submaps is composed by the absolute

position of every local frame in the global reference frame

(which is coincident with the first submap generated):

x =
[

x
T
0 ,xT

1 , . . . ,xT
M

]T
(5)

where the pose of every single submap is defined by:

xi = [xi, yi, φi]
T

, i = 0, . . . , M (6)

Now the problem is to obtain accurate relations between

the elements of this set of submaps, providing information

to be used for updating the estimation. This information

is given in the form of spatial relationships that can be

obtained whenever the robot revisits and area previously

described by a map already contained in the state. Hence, the

goal is to obtain correspondences between common features,

present in both representations. Once this correspondence

is obtained, relative position can be computed as a simple

pose differences minimization problem. This scenario is

schematically depicted in Fig. 1.
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Fig. 1. Relative observation between two matched maps. Once a matching
is obtained between features contained in different submaps, it is possible
to obtain an observation x

′

j
which will differ from the expected relationship

between both submaps xj . This information is used for updating the global
map.

IV. MAP MATCHING AS A MAXIMUM CLIQUE

PROBLEM

Obtaining a correspondence between two sets of features

contained in two different submaps is equivalent to matching

two sets of landmarks L1 and L2. In this work, the proce-

dure for obtaining the maximum correspondence between

elements in both sets, is formulated as the obtaining of a

maximum clique in the graph composed by the compatibility

between generalized distances between every pair of features

in both sets.

A. The Maximum Clique Problem

Given a undirected graph G = {V, E}, where V is a set

of vertices and E is a set of edges, two vertices are said to

be adjacent when they are connected by an edge. The graph

is called complete if any two of its vertices are adjacent,

and informally is also called a clique. A typical problem

is the obtaining of the maximum subset of vertices in V

conforming a clique.

Following our previous work on bitboard search models,

we adapted our general purpose bit encoded algorithm [9]

to the specific scenario of a graph generated in a global

localization problem [10]. This same approach is adapted in

this work for solving the problem of establishing correspon-

dences between two submaps. Our approach is bit-encoded

oriented, and exactly solves the MCP exploiting the paralle-

lism between a computer architecture and the logic that arises

when comparing two sets of landmarks.

The search of a correspondence between features con-

tained in two different sets (submaps) can be formulated as

the search of a maximum clique in a graph where:

• Each vertex is a pair of landmarks, each of them

corresponding to a different submap.

• Each edge indicates the compatibility between the two

pairs of associations considered.

More formally, let |L1| = m, |L2| = n be the car-

dinalities of both sets of landmarks, with elements L1 =
{l1,1, l1,2, . . . , l1,m}, and L2 = {l2,1, l2,2, . . . , l2,n}. A

bit-graph model G = {V, E} is generated with V =
{v1, v2, . . . , vm×n}, where the elements are all possible

combinations containing one element from each set.

Vertices in this graph are connected using a generalized

distance D, independent from the global localization of the

sets of landmarks, that considers only relative position and/or

relative orientation. This distance is a function applied to

every pair of vertices in V , returning 1 when distances

between pair of observations are similar to distances between

pairs of landmarks. Specifically, having two vertices vi =
{l1,p, l2,q} , vj = {l1,r, l2,s} ∈ V, i 6= j, we define a function

D : {V, V } → {0, 1} such that:

D (vi, vj) =

{

1 if d (l1,p, l1,r) ≈ d (l2,q, l2,s)
0 otherwise

(7)

Every element of the adjacency matrix M of G encodes

the potential matching of every pair of elements belonging

to each of the considered submaps, with the rest of possible

pairings. A maximum clique found in the graph this way

generated finds an optimum solution to the correspondence

search. Using a bit encoded formulation, exploiting the

architecture of current computers, very impressive results can

be obtained for the solution of this problem, outperforming

classical solutions such as the GCBB [6], making possible

real time implementations. A detailed description of the BE-

MCP solution can be found in [10].

B. Features Used in Map Matching

What features will be used in the matching process?

The direct use of control points does not seem to be a

good option, as the same geometry can be described using

different sets of control points, depending on the chosen

parameterization. Presence of occlusions, or the simple fact

that features are built using different sets of data for different

submaps, makes the direct utilization of these points a risky

option. Nevertheless, the availability of a parametric repre-

sentation is once more an advantage more than a drawback,

as the geometric analysis of the features can provide rich

information, allowing the extraction of simpler features to

be used in the matching process, as we will see. Moreover,

the number of these simple entities is in general much lower

than the total number of control points defining the original

spline.

In complex indoor environments, no matter how curved

the architectural elements are, it is always possible to ap-

proximate their appearance by sets of sampled points, or

concatenations of simpler features:

• Points: A rough map representation can be obtained

by sampling every spline with a given spacing along

the parameter of the curve. This representation, though

quite simple, implies an unnecessary growth in the num-

ber of features used in the matching process. However,

points can be very useful where the complexity of the
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environment makes unfeasible the extraction of more

compact entities. They can also be used for representing

elements such as corners, not considered in this work.

• Points with curvature. Points with curvature are simple

points that have associated the curvature of the feature

at that specific location. This obviously provides rich

information for the matching process, as a point present

in a concave location, for example, will never be associ-

ated with a point in a flat (segment) or convex location.

This can eventually avoid ambiguities in the matching

result.

• Segments: The analysis of the curvature can reveal the

presence of simple straight elements. In our experi-

ments, a curvature threshold of 0.01m−1 was used for

segment detection.

• Arc circles. Points of a feature whose curvature is over

the previously mentioned threshold, can be assumed as

belonging to a curved span. Defining intervals of cur-

vature, these points can be grouped into sets, and used

for generating an arc circle which roughly describes the

element in that particular area.

In [10] simple point features were used in the experiments.

In this work, we rely on the extraction of segments and arcs

as the basic feature to be used in the matching process.

C. Extracting Simple Features from Splines

All previous simple features can be easily obtained from

the analysis of the curvature of every spline. An example of a

simple hand drawn map, containing one long curve and two

straight elements, and the corresponding arcs and segments

obtained from the analysis of its geometry can be observed

in Fig. 2. The computation of the curvature of a spline at

a given point is a simple derivative process, using the well

known formula for the curvature. For a spline curve given

parametrically as s (t) = [sx (t) , sy (t)] the curvature at any

given location t can be computed as:

Control points

Segment

Circular arc

Fig. 2. Sample map composed by three splines defined by a total of 31
control points. The analysis of the map reveals the presence of 12 simple
features (2 segments and 10 circular arcs) that accurately describe the map.

C (t) =
s′xs′′y − s′ys′′x
(

s′2x + s′2y
)3/2

(8)

This features extraction is done for each submap, right

after its maximum size has been reached, using a fixed

parameter step for sampling along each curve, and a binary

search for fine location of the terminal points of segments

and arcs.

D. Invariant relationships

The construction of an adjacency matrix requires of some

rules to define whether two relations are compatible or not.

The basic procedure for obtaining it is to compare the main

metrics that define each relation, and to test whether they are

below a certain threshold or not.

a) b)

c) d)

( ) ( ), , S Sd P S d P P P P= = −

SP

P

S

1S

2S

α

( ) ( )1 2 1 2, ,d S S S Sα=

1A
2A

1C
MC

1M

2M

( )
( )

( )
1 2

1 2

1 1 2 2

,
,

,

d M M
d A A

angle C M C M


≡ 
A

M

S

SM

C

( )
( )

( )
,

,
,

Sd M M
d A S

angle CM S α


≡ 

=

α

Fig. 3. Several examples of relations established between simple features.

An example with real data of the matching obtained

between the features detected during an observation, and the

features contained in a map of the environment, is presented

in Fig. 4.

Fig. 4. Matching Example. A set of 26 observations (blue, flat repre-
sentation) matched against a set of 68 landmarks (red, 3D representation).
Most of the observations are successfully paired with their corresponding
landmarks in just 0.06 seconds.
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a) b) c)

Matching detail

Fig. 5. Map of the Intel Research Lab in Seattle. Submaps are limited to 80 control points. a) Situation just before the first loop closure and features
matching detail. Each submap is represented in a different color. b) Submaps positions are updated with the information obtained from the first loop closure
matching. c) Final map configuration after three exploring loops.

Fig. 6. Map of the Museum “Prince Felipe” in the City of Arts and Sciences, Valencia (Spain). Each submap contains 60 control points. Odometric
trajectory is displayed in blue.

V. EXPERIMENTAL RESULTS

Concepts and methodologies presented in this paper have

been tested with several real data sets, and very promising

results have been obtained. Fig. 5 shows a map of the

Intel research lab. (data set was obtained from [20], thanks

go to D. Fox for providing this data) using submaps with

80 control points and updating their relative positions as

described before. The quality is comparable to he map

obtained using a single map, but the time required for its

constructions is clearly much lower, allowing a real time

implementation. Detail view in Fig. 5.a shows the results

of the matching process right after the first loop has been

completed in the upper-left corner of the map, and Fig.

5.b displays the results after updating the local maps with

this observation. Fig. 5.c shows the global map after three

exploring loops, updating the submaps positions whenever a

good data association is obtained.

Fig. 6 shows a map of large size, covering an area of about

180x50 m2. The final result offers a structure topologically

coherent with the real configuration of the environment. For

using these maps the robot would simply transition from one

submap to another, using the small pieces for its localization.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper has presented a method for building maps of

large environments using a collage of maps of limited size.

This way, the computational cost of an extended Kalman fil-

ter used for building every single map is bounded. Individual

maps are built using spline curves as a mathematical tool for

describing complex geometries present in the environment.

In this local representations, the state vector of each submap

is composed by the robot pose and the set of control points
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defining the splines that accurately represent the shapes

detected by a laser range finder.

It has been shown the usefulness and importance of para-

metric representations, allowing the analysis of the shapes

contained in each submap, making feasible the subsequent

extraction of simpler features such as segments, or arc

circles. The use of splines in the map building process avoids

the need of relying on the search of specific geometries,

while the obtaining of these latter features is always possible

and efficient once the map is available.

Sets of points, segments, or circular arcs are extracted from

every submap, and used for establishing correspondences

between maps with similar appearance. This search is opti-

mized using a bit-encoded formulation of the relations graph,

outperforming current algorithms used with similar purposes,

and making possible real time implementations. The search

of a maximum correspondence between the associations in an

observation, and the associations established between the el-

ements of each the rest of submaps successfully enhances the

solution to the difficult problem of data association. Solution

obtained for the MCP is exact, and does not rely on previous

assumptions or knowledge about the relative positions of

landmarks and observations. However, this information could

improve the results, specially when the amount of common

features in two different submaps is reduced.

Correspondences between maps are used for generating

spatial relations that, used as observations of the relative

poses of the maps being matched, are used for updating the

whole structure of the map. Hence, a real time implementa-

tion of a SLAM algorithm in environments of increasingly

large dimensions is possible.

B. Future Works

The exploitation of the geometric possibilities that a map

representation in parametric form offers has just begun. We

believe that this reasoning over the maps built by an au-

tonomous robot can greatly contribute to the knowledge and

understanding the machine has of its environment. Further

work will address the advantages of this representation for

extracting more complex information from the world as the

robot observes it.

Once the spatial information about the environment is

available as a set of segments, arcs, corners or any other

geometric entity easily parameterizable, it is possible to es-

tablish relations between them. Distances, relative positions,

lengths... can be used to infer the existence of even higher

level objects such as corridors, rooms, doors, windows or

stairs. This could eventually contribute to the enhancement

of a knowledge modeling of the environment and other areas

of robotics research such as autonomous exploration.

Future research will address the problem of updating the

relative positions of the constellation of submaps using novel

methods recently appeared [21], [22]. Finally, these results

are currently being extended to 3D scenarios.
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