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Abstract—In this paper we present an experimental evalu-
ation of automatic robotic assembly of complex planar parts.
The torque-controlled DLR light-weight robot, equipped with
an on-board camera (eye-in-hand configuration), is committed
with the task of looking for given parts on a table, picking them,
and inserting them inside the corresponding holes on a movable
plate. Visual servoing techniques are used for fine positioning
over the selected part/hole, while insertion is based on active
compliance control of the robot and robust assembly planning in
order to align the parts automatically with the hole. Execution
of the complete task is validated through extensive experiments,
and performance of humans and robot are compared in terms
of overall execution time.

|. INTRODUCTION

The target application of the presented system is tg;%]elrg-The DLR light-weight robot equipped with an onboard

autonomously execute assembly operations of parts with
complex geometry. To this end, we propose a combination
of image processing, vision and force-torque control able tunexpected events occur (e.g., unexpected displacemgnts o
fulfill the steps required for such a high-level task, namelyparts/plate).
visual object identification, fine robot positioning, piogi Use of vision information for pose control of robot systems
and insertion strategies. has been an active topic in the last decades [1], [2]. Inereas

There are several aspects of this task that make the anf-flexibility, improvement of position accuracy, robussse
tomation difficult. The requirement of high sensor capapili against sensor noise and calibration uncertainties, and re
the complexity of the task programming, and the limitedactiveness to environmental changes are among the major
autonomy and flexibility of industrial robots are certainlybenefits. One powerful use of vision for robot pose control
some of them, leading to performance and success raisghe approach known agsual servoinglin this framework
much below those of humans. the robotic task is directly specified in terms of some image

Indeed, typical industrial settings rely on highly strueh features extracted from a target object. These features are
environments like, e.g., dedicated part feeders for amgidi then used to control the robot/camera motion through the
uncertainties during the picking of the parts, fixed (angcene until the final robot pose is reached, see [1], [3], [4]
known) locations of the mounting holes, or simple imagéor a thorough overview. Visual servoing framework prowde
processing setups with carefully adjusted illuminatiom-co the needed robustness w.r.t. external disturbances and env
ditions. Chamfered parts and specially designed compliamnmental changes, such as, for instance, the displacement
elements for a given task are typically used to simplify the@f parts/plate during the task execution. The resultingptob
insertion problem. In contrast, the presented work aims-at rpositioning accuracy, however, may not be high enough to
alizing a more flexible and versatile system, with robustnesaccomplish tight assembly tasks, so that, depending on the
and insertion velocity superior to that of industrial setup  clearance of the parts, means to limit the contact forces
vision system using natural light conditions and the apilit and strategies to overcome the uncertainties are necessary
to track even moving parts with the robot during assemblindustrial robots used for assembly are usually equipped
brings a higher degree of flexibility. For assembling geheravith a passive compliance element, the so-calRemote
chamferless planar parts with tight tolerance, the presentCenter Compliance (RC{p]. As we used the DLR light-
system utilizes joint torque sensing and Cartesian comgdia weight robot equipped with joint torque sensors for our
control. Therefore the system can be easily programmed fexperiments, we instead exploited the Cartesian impedance
new parts. The additional flexibility is relevant in redugin control framework [6], [7] as a means to achieve an active
the industrial costs when considering parts with new shapesmpliance behavior. This solution is more flexible compare
(which in general would need a new feeder and passite a RCC while being faster and more robust than usual force
compliance design), and in minimizing the failure rate ifcontrolled industrial robots, due to the local torque feskb

" _ and the low mass of the arm.
(DLR‘)?’ augt?erfpfaﬁ%fﬁhofe"r”]"th tS?SZZéEA'ermar:Nesél‘ier:g,spaceGer%ZT;r For the alignment of the parts, different strategies have
{paol o. r obuf f ogi or dano, andr eas. st emer , been proposed in literature, starting from a simple (since
kl aus. arbter, alin.albu-schaeffer}@lr.de model-free) but effective blind search [8], up to algoritim



with complex online monitoring of the contact state [9], 10

Due to the complexity of the parts used in our experiments,

we relied on an off-line planning algorithm comparable

to [11] in order to generate robust insertion strategies.

In particular, by analyzing the parts geometry, the offline

planner generates a set of optimal assembly trajectorigés an @ (b)

active compliance parameters that guarantee robustness w.

initial positioning uncertainties due to vision and robpart

from achieving robustness, this planning stage also allws

fast setup of the system when parts with new shapes are

considered. Since the insertion strategy has already been

presented in [12], the focus of this paper will be on the visio

part and the experimental evaluation of the combination of © (d) ©)

both vision and force feedback for successful assembly. Fig. 2: The8 parts (a) and the plate (b) used in our experiments.
The paper is organized as follows: in Sect. Il a descriptioRigs. (c—e) show a detailed view of the star-shaped parts 1fith

of the overall experimental setup is given. Next, Sect. |Ifnd 16 teeth, and of the KUKA part where the black tag used for

addresses the shape extraction and classification teemigg"aPe classification is highlighted.

used for visual recognition of the parts. The algorithm for

robot pose control and the in_sertion_strategy are outlimed ¢ The overall task

Sect. IV and Sect. V, respectively. Finally, Sect. VI prdsen

experimental results of the complete task execution and aAS €xplained in the introduction, the global high-level
comparison to the performance of humans. task assigned to the manipulator is to locate, pick and

insert each part into the corresponding hole on the plate.
Il. EXPERIMENTAL SETUP DESCRIPTION A suitable temporal decomposition of such a complex task
A. Robot manipulator is the following: for each parp; € P and corresponding
The DLR light-weight robots (Fig. 1) are designed forholeo; € O
interaction with unstructured, everyday environmentseylh 1) hover along a predefined trajectory umpiilis identified
are kinematically redundant arms withdegrees of freedom and located;
(dofs) and a load to weight ratio af:1. Low weight and 2) move to a suitable pose in order to pigk
inherent joint compliance limit the interaction forceseav  3) pick p;;
at high contact speed with the environment. Particuladig-re  4) hover over the plate along a predefined trajectory until
vant to the present application is the torque sensing iatedr o0, is identified and located;
in each joint, allowing accurate, vibration free positiomi 5) move to a suitable pose in order to insgst
and velocity control in the presence of elasticity, and high 6) insertp; in o;.

performance impedance control during contact phases. Thgq gigorithms needed to complete each step in the sequence
robot is able to switch within one control cycld MS)  gre jllustrated in the next sections. In particular, duriteps
between posmon/veloc!ty control (_requwed for hlg_h nooti 1 and 4, the vision system task is to recognize a target
accuracy during the visual servoing phase) to impedanggape among the various parts/holes present in the images.
control (required for limiting the interaction forces andgopot motion in stepg ands is governed by visual servoing
compensating the alignment errors during insertion). techniques, while piece insertion in stés realized through

B. Parts and plate a robust force-torque controlled assembly strategy.

The 8 parts and the plate used in our experiments are
shown in Figs. 2(a—b). Each part has its shape marked with
black tags useful for visual recognition, and a clearance This section deals with the techniques adopted to extract
of less than0.1 mm w.r.t. the corresponding hole on theand classify the shapes of parts and holes from the video-rat
plate. Shapes of parts/holes range from simple geometricgdmera images. An initial image preprocessing step, based
primitives to more complex and nonconvex structures. Lain standard color binarization, is first applied to the raw
P = {p1,...,ps} and O = {oy,..., 0g} be the sets of camera images in order to mark pixels as belonging or not
parts and holes, respectively. With reference to Fig. 2(b)o a hole/part. Holes are segmented by looking for their red
and starting from the upper left corner, we have the follgwvin background color, while, for parts, we relied on the black

IIl. SHAPE RECOGNITION

shapes in order: outer tags glued on each of them (see Fig. 2). The subsequent
e 01 (p1): an equilateral triangle; steps of feature extraction and shape classification ardbas
e 02 (p2): a regular octagon; on the affine-invariant Fourier descriptorgind linear MSE
o 03 (p3): a circle; classificationtechniques and are detailed in the following
e 04 (p4): a star shape with5 teeth (Fig. 2(c)); subsections.
e 05 (ps): a star shape with6 teeth (Fig. 2(d));
« 05 (ps): the DLR logo; A. Affine-invariant Fourier descriptors
« o7 (pr): the PAPAS logo; Consider two closed curves in the image platteand
« o5 (ps): the KUKA logo. C representing the boundary of a planar object under two
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a class is identified, the color information (black/red) loé t
raw image allows to univocally disambiguate between those
holes and parts belonging to the same clas$.in

We chose to consider, = 33 different AIFDsQ),, for the
classification task, and to define vectoras

A=[Q-15... Q2Q2...Qu7)" €R™.

oo 02 Now assume that, for a classe S, NV; distinct observations

01 A/\ are taken from different camera views, resulting\infeature

vectors);. Let theny x N; matrix A\lVil = [\, ... Ay, ] be the

collection of such feature vectors. Because of the invarian
properties of AIFDs, we expect the columns »f¥:l to
match almost completely, with the only discrepancies due
to noise or lack of validity of the parallel projection model
Figure 3 shows the superimposed values of the columns
20 40 of AVl with N; = 80, for all the classes inS. From
Fig. 3: Superimposed values of tB88 AIFDs chosen as features these plots, we can verify the low variation of individual
for pattern classification. For each shape 3n we considered feature elements within each class despite noise andefitfer

80 observations taken from different camera views. The selectgﬁewing angles (robustness), and the presence of specific
AIFDs prove to be sufficiently insensitive w.r.t. noise and differen '

viewing angles (robustness), and show specific patterns from Clabgtte.rns frpm CIaS$ to class (selectivity). T.hese p.re“’."l‘.”
to class (selectivity). considerations motivated us to use a set of linear discantin

functions, obtained by the so-called MSE (minimum squared

) ) ) ~ . error) approach [15], in order to solve the classification
dg‘ferent camera views. Assuming a parallel projection proplem. This method is optimal in a least-square sense and
C” and C would be equivalent with respect to the affinerequires less computational effort than more sophistitate
transformation groupc® ~ C. Under this hypothesis, the set techniques.
Qk, ]C = il,i2, ey Of i_iffine-invariant Fouriel’ descriptors At the core Of the |inear MSE approach |Sgax (TL)\ +
(AIFDs) [13], [14] provide a solution to the problem of 1) matrix ©, called weight matrix which is used against a
finding a discrete, minimal, and complete set of features abjiven feature vectoh in order to decide the class to which
to univocally encode the common shape information sharqplbemngs_ Suppose that a vectdy, observation of a class
by C and C° despite the different camera points of view.s; is considered. Matris® is designed such that, by letting
Hence, AIFDs yield a suitable choice for shape classificatio,, — @);, 4, € R?, the i-th component ofy; will (most
and, thanks to their ordered discrete nature, can be easjfely) be close tol and the others close to zero. Hence,
compared in contrast to the initial contour representaith  ¢|ass; can be decided through inspection-of
its inherent correspondence problem. Therefore, alsaiseca |, order to assess the performance of the linear MSE

of their easy impIemel_’l'tatiqn, we chose them as features &Pproach, we tested it against = 40 independent feature
solve our shape classification problem. sets for every class, for a total of 360 samples collected
B. Contour classification b?]/ var;gir?g continuouslyf tgglicameéq pose. Figfure té_l (left)
. . shows the responses o inear discriminant functions
With the sole exception of payis (KUKA logo — see rf)e components of) to the set of x N; test samples. It

. {
Fig. 2(e)), the black tags on the parts match the shapes?g then possible to verify that, for each class only one

the corresponding red holes. Therefore, for what concerr&%mponem ofy is close tol (the i-th one), while the other

contour cIassifica;ion, all the segmented p""rts'/h‘)lesEﬂh"’lpcomponents remain almost zero. Therefore, AIFDs allow to
can be collected in a set ofclasses unambiguously assess the correct class membership for the
S = {tri, oct, cir, s15, 16, dir, pap, kk1, kk2}, (1) candidate shapes if.

. As a comparison, we tested the same linear MSE approach
where the last two classes account for the distinct shapeskgf relying on the populaf Hu moments [16] often used for
the KUKA part/holé. The goal of the classifier algorithm pattem recognition of arbitrary shapes. The classificatin
is then to decide for one of these classes given as iNpulsgis are shown in Fig. 4 (right). It is interesting to notatth
feature vecton describing a candidate part/hole shape. Oncg), the {tri, dir, pap, kk2} shapes, the outcome is substan-

1 o , . tially equivalent to the previous case, i.e., the correchco
Parallel projection model [1], sometimes calledak perspectivenodel,
is the best linear approximation of the standard pin-hole camepjection ~ Ponent ofy keep$ close ta, the_ Others_: are almost zero, and
model. The approximation is very close if the mean distancegatbie  class membership can be easily decided. On the other hand,

gg:gﬁl;‘f};gﬁgﬁee” the camera and the object is large codhparéhe  \yhen considering the remaininfpct, cir, s15, 516, kk1}
2Obviously, the introduction of the two distinct clasgés:1, kk2} could shapes, results become ambiguous: the strong separation

be avoided by segmenting the whole KUKA part in place of thellmg obtained before is lost, and several components aésume
glued on it (see Fig. 2(e)), thus obtaining a single classbiith KUKA  intermediate values in the rangé 1], thus preventing a
part/hole. However, in this case we chose to tolerate tttis fredundancy” e . .

because of the generally higher reliability of the segméniaprocess for robust classification of the shapes. Indeed, a finite set of
the black tags. low order moments (such as the Hu's one) does not allow to
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Fig. 4: The response of the linear MSE approach to a s&toftesting samples by using AIFDs (left) and Hu moments (right).

discriminate among a circle, an octagon, or the two stars:
in an integral sense such shapes share almost the same
circular-like contour, and any small deviation is domimhte

by noise. AIFDs, on the other hand, prove to possess the
needed resolution for a robust classification of all classes
thanks to their high sensitivity to periodic patterns in the

input contour.

Fig. 5: Main orientationy is well-defined for a generic shape (left),
but is meaningless for a shape where minor and major axes are equal

IV. ROBOT POSE CONTROL (right).

As explained in Sect. 1I-C, during the part/hole approach-
ing phase motion of the robot is controlled by means of
visual servoing techniques. The goal is to position thgeneral (integral) image features, such as Fourier descsip
manipulator close and precisely enough to the selectedt image moments, may be used. Whatever the choice,
part/hole such that the part can be picked or the insehowever, the availability of the so-callédteraction matrix
tion strategy can be started. An example representative 0., the differential link between ‘feature motion’ andwara
both picking and insertion final poses is given in Fig. 1motion, is always required when devising visual control
let 7o : {Xo, Yo, Zo} be the inertial manipulator base schemes. While the explicit expression of the interaction
frame andFc : {X¢, Yo, Zc} be the moving camera matrix for any image moment is known [18], a similar result
frame with Zo coincident with the optical axis, and let for generic Fourier descriptors (or combinations of thes) i
vector [v} wh]” € RS represent the camera linear/angulanot available except for special situations. On the othedha
velocity expressed itF. The setup is arranged such that theas highlighted in the previous section, Fourier descrgptor
(parallel) planes where parts and plate lie are fixedFin  possess the ability to discriminate among the planar wotati
and perpendicular t&y. In order to meet the assumptionof all the considered shapes, as opposite to standard (low
of (almost) parallel projection needed by AIFDs, we choserder) image moments. Therefore, these considerations led
the final pose of the manipulator such thdt = —Zo, us to adopt both image moments and Fourier descriptors for
i.e., with the camera optical axis normal to the parts/plateobot pose control.
plane and directed towards it. This choice also simplifies |ndeed, from [18], it is known that area, barycenter
the servoing scheme, sin@ecamera dofs (direction afc)  (z,, y,) and main orientationn can be directly exploited
can be directly controlled in Cartesian space by exploitingy control the needed camera dofs. However, in our case
the robot forward kinematics. The remaininglofs (camera the ‘circular symmetry of most shapes:(p: ...os/ps)
translation and rotation abouf.) are instead regulated by prevented the use ofv to control rotations aboutZc.
means of visual information. Consider Fig. 5: for a generic shape, gives the major
_ axis orientation of the ellipse which fits ‘best’ to the shape
A. Task definition Clearly, if a circular-like shape is considered, no majoisax

Choice of which image features to exploit for visual concan be extracted and becomes meaningless. This problem
trol largely depends on the specific case one has to deal wittgn be overcome by replacingwith an equivalent quantity
and can range from point coordinates, line parameterpselli obtained from Fourier coefficients, i.e., the relative tiotap
centers and radii, etc., see [17] for a thorough analysis.\WWh@among two shapes belonging to the same class. Assuming a
considering complex shapes, solving the correspondenceamera optical axis almost perpendicular to the objecteplan
problem, i.e., reliably tracking local structures like mers anglep can be determined from two Fourier coefficients up
or edges, may result in a hard task. In these cases, macean ambiguity off, i.e., a rotation ambiguity ofr/f rad,



where f is the degree of symmetry of the selected shapehere.J! is the Moore-Penrose pseudoinverse/of vector
(with f = 1 for nonsymmetric cases). Therefore a ‘de factou, € R” the gradient of a given criteriof/ (¢) to be opti-
unique solution for anglg can always be found by exploiting mized through the redundancy, amé suitable optimization
Fourier coefficients, ang can be fully exploited for what stepsize. Expression of the task Jacohiartan be obtained

concerns control of the rotation aboit . from
While the interaction matrix of area and barycenter J J
(x4, y,) has a closed-form expression in terms of image . m Vo m . .
9> 79 . . . . =10 J, =0 J, Jeq = Jsq.
moments, the interaction matrix gf can be obtained as 0 J we 0 J
follows: whenZ is almost perpendicular to the object plane, Zo Zo 6

i.e., almost parallel t&Zp, p(t) behaves analogously to the
camera roll angfeg(t) in the sense thai = f¢. Hence, by inemagics, gives the camera velocityc, we) in terms of

letting ¢ = Tywe, wherel x 3 matrix Ty is the standard  anq the3 x 6 matrix .J,, is the areas and barycenter
mapping from angular velocity- to Euler angle rate, we (x4, y,) interaction matrix

Here,J, andJ,, are defined in (2) and (3)., from forward

have
p= fTywe = Jpwe, (2) a ve
where matrix.J, can be regarded as the Jacobiarpof ;39 —om { we }
g9

As for the direction o7, it can be controlled in Cartesian
space since, as explained before, parts and plate plaimecase of regulation tasks, vectgrin (5) is typically chosen
orientations are fixed w.r.t. the manipulator base. Theegfo as
it is possible to obtain the direction dfo w.rt. 7o, and 5, =K(s* —s), K>0. (7
thus w.r.t. the plane of parts and plate, directly through th
robot forward kinematics. In our case, the robot final posekhis choice yields an exponential convergence to zero of
are designed with the camera optical axis perpendicular t8sk errore(t) = s* — s(t) for any initial errore(to) and
the parts/plate plane, i.e., withe = —Zo = [00 — 1]7 in with convergence rate tuned by gain matfix In practical
Fo (see Fig. 1). Hence, a convenient choice is to regulaiéplementations, however, because of neglected velocity
to zero the first two component€4,, Zc,) of Zc through controller dynamics, external disturbances, limited attiu

the differential mapping capabilities, modeling errors, noise, etc., a large ihdiaor
. coupled with a big’ may lead to instability or, in the visual
{ Zac, } = Jy.we, 3) servoing case, to the loss of visual features during theanpti
Zc, c causing failure of the task. In our case, for instance, the

where the Jacobian/,. can be obtained from standard completely unmodeled robot dynamics proved to be a major
kinematics. Note that regulation 6Zc, Zc |7 to [0 0]T limiting factor when imposing fast transients. Apart from
through inversion of (3) admits the two stable equilibrid®ducingX, such effects can be attenuated by avoiding large
0017 and[0 0 — 1]T for Zc, depending on the initial values fore(t), and in particular fore(to). To this end, we
vertical pointing direction of the optical axis. In our case@dded a planning stage to the control law by defining an
this ambiguity is avoided because the initial camera pose tificial signalsq(t) which linearly interpolates the initial
always such thatZc points downwards (the camera lookstask values(o) with the final desired valug®, thus obtaining

towards the parts/plate). e(to) = sa(to) — s(to) = 0. In practice, we impose exactly
Having defined all the needed quantities, we let the same motion direction in task (and hence image) space as
in (7), but with the reference task trajectosy(t) traveling
s =[zgy5apZo, Zo,)" €RO (4)  with constant velocity along the line connecting,) and

be the task vector used for robot pose control, and proceé*d' i ) .
to illustrate the control algorithm used for regulations¢f). With these settings, vectas. becomes
B. Control algorithm $r = K(sa(t) — s(t)), (8)
Regulation of task (4) to a desired value is addressed yielding a linear exponentially stable closed-loop errgs-s
at the velocity level by inversion of the differential mapgi tem driven bys,
5 = Jy4, whereq € R7 stands for the manipulator joint 6= —Ke+ 3y
configuration vector and, represents théx 7 task Jacobian
matrix in terms of joint velocities. Note that our robot isFinally, the optimization functior (¢), from which vy =
redundant w.r.t. task, with degree of redundandy Among V,H(q) is derived and used in (5), is designed for joint limit
the various techniques available for velocity-level motamd ~ avoidance [19].
redundancy resolution [19], we chose Pjected Gradient
(PG) method which generates joint velocity commands in
terms of a reference task velocity as: After the visual positioning task over the selected hole is
T gt completed, the insertion has to be executed without vision
¢=Jisr t ol = J;Js)uo, >0, ©) support, since in this phase, the target hole exits the amer
3Given a ZYX Euler angles representation of the orientatibtFe w.r.t. field of view. By exploiting sensitive Cartesian compliance
Fo, roll angle¢ is defined as the rotation about Z-axis. control, however, local convergence of the assembly tadk an

V. ROBUST ASSEMBLY STRATEGY
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(one-point contact). ner (two-point-contact).
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. . . . d) Align whole part(e) Straighten up part. (f) Press in part.
Fig. 6: A typical region of attraction (ROA) for a sample part. The gk))ng e%ge_ part(e) 9 PP ® P

inserted corner will be guided automatically to positien if the . ) .
alignment process starts anywhere within the ROA (e.g. fiom Fig. 7: Example of the presented insertion strategy.
or x; 2). If it starts outside (e.g. from; 3), a successful alignment
cannot be guaranteed.

limitation of contact forces can be ensured under the r
maining positioning uncertainty. The parts have no chaspfer
therefore insertion is not trivial and an optimized strategy
needed in order to align and insert the parts robustly. Th'@) Initial pose: raw (b) Initial pose: seg- (c) Initial pose: robot
section will outline the basic idea of the insertion strgtey camera view. mented camera view. configuration.
detailed description of the algorithm can be found in [12].
The main idea of the insertion planning is visualized i
Fig. 6. Consider the compliance controlled robot havin
inserted a cornérof the part into the hole at the initial
configurationx;. The desired position of the controller is
now set toxy, and the stiffness value t&. For a certain
set of starting configurations (called thegion of attraction (d) Final pose: raw (e) Final pose: seg- (f) Final pose: robot
ROA), the inserted part will converge to the desired alignmerit™ ¢ V"¢ mented camera view. - configuration.
position z,. In the given exampleg;; and z;» belong Fig. 8: Initial and final poses during the picking of past
to the ROA, z; 3 does not. The alignment can be seen as
the settling of a nonlinear dynamical system with several
equilibria whereof one is the desired configuration. It igelative to the KUKA logo is shown. The assembly starts
possible to determine the ROA for any desired equilibrigm by slightly tilting the part and then by immersing a first
and for any stiffness matriX_. Its size can be used as a directcorner into the hole. In order have a smooth motion, the
measure for the robustness of the assembly trajectory, tHesired position is interpolated fromy to z4. Prerequisite
optimal robustness is achieved for those insertion paemet for the success is that the initial position of the immersed
that maximize the ROA. corner lies within the ROA of the appropriate hole’s corner.
Obviously, the ROA depends heavily on the insertedfter the first corner is aligned properly, a second contact
corner, the selected desired and initial positiagsandz;, Point is needed to ensure the rotational alignment of the
the parameters of the impedance control (in partici@r part. Therefore, the same compliance based procedure can
and the shape of the hole. Whereas the latter is given, the used. Having reached a stable two point contact, it is easy
remaining parameters can be selected freely and are udegstraighten up the part and insert it completely. Since the
for offline optimization. Combined with a user interface forparts considered are planar (their height is small compiared
providing the geometries from a CAD system or from sensdheir lateral dimensions), jamming during the insertiorais
data, this results in a toolbox for industrial robot programminor problem if the center of compliance of the impedance
mers to generate robust assembly programs automatica@ntrol is chosen correctly.
The output of this toolbox, desired trajectories and cdntro
parameters, can then be used in the execution phase without
any model knowledge about the parts. If the uncertainty of
the visual servoing and the robot positioning (leading to a
deviation of z;) is smaller than the best ROA, it is thus
possible to rely on this offline planning and execute th

?Aaen\l;:(sas almsoélr(\)/girf g]a;tlgc?ritfrzcr)nm the final pose reached WItcontrol effort. Then, robustness and reliability of the male
In Fig. 7, a complete example of an assembly sequengéethOd are gxtenswely tested on a run Qﬁ complete
Séquences. Finally, we propose a comparison among the

4Corner in this context means the relevant part of the contchiclwis execution time needed by the robot and humans (children

involved in a one-point contact. of age5-7 and adults).

VI. EXPERIMENTAL EVALUATION

In this section we present an experimental assessment of
the whole application. First, we analyze the visual control
aw detailed in Sect. IV in terms of execution time and
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05 06 Fig. 10: Top view of the distribution of parts and plate during the

04 05 statistical evaluation of the automated assembly. The small circles
_ 03 - 04 represent the gripping handle for parts in the starting position (left)
E 02 Bos and inserted in the plate (bottom).

is we collected data fromi60 assemblies (see Fig. 10 for

02 i - 1 ol Y - 1 the distribution of the parts and the plate). Altogetheg th
" tme s ' " tmels ~  robot was able to insert54 parts successfully96.25%).
(c) (d) In four cases the assembly failed because the vision system

Fig. 9: Experimental data during the approaching to hoje was not able to detect the part or hole reliably (lOSt tr@kln
Fig. (a): the6 components of(t). Fig. (b): Motion of barycenter during motion three times, once the part was not found
(zg, yg) ON the image plane from—start to A—end. Fig. (c): initially). In the remaining two cases, visual servoing was
Camera linear velocityc. Fig. (d): Camera angular velocityc.  completed successfully, but the insertion failed becabse t

robot missed the ROA. No error recovery was implemented
A. Visual Control for these experiments, in case of errors (like lost trackihg

We consider the approaching task to helgthe octagon), ;:#errﬁg(tps;trtwas dropped and the sequence continued with

see Figs. 8(a—f) for screenshots of the initial and final pose
As explained in Sect. IV-A, the circular symmetry of thisfpar C. Comparison with humans

poses a challenge for visual control, since main orientatio  The most challenging test for any robot system is the
cannot be used to control camera rotation abiut On the  comparison with human performance. As a measurable
other hand, by using angle from Fourier coefficients, we benchmark, we chose to compare the total time needed for
getp(ty) = 2.8 rad andp* = —0.08 rad as initial and final the whole task of inserting all the pieces. The untrained
values (Figs. 8(b) and 8(e)). Recall thatmeasures shapes participants were given the assignment to insertstipéeces
rotation up to their degree of symmetfyi.e., for an octagon as fast as possible with one hand. During the execution, the
with f = 8 a physical rotation ofr/ f rad results in @ rad  overall time as well as the time needed for every piece was
rotation for p. Figures 9(a—d) show some relevant quantitiefecorded. Altogether4l persons were tested, whereds

collected during the experiment. As can be seen from thgere children of agé—7 and the rest were adults.
plots, the overall motion is quite fast, lasting abdut sec.

with a peak value of|vc|| ~ 0.6 m/s and||wc|| ~ 0.65 F;ggm Agdgu'ts Cgldfe”
. . - . avg. S S S

rad/s. In Fig. 9(a) the behavior ef(t) = s4(t) — s(t) is min. 130s  929s 108

reported. Note that, as expectedt,) = 0 because of the max. 138s  53s 220s

definition of the reference signal;(t) (Sect. IV-B). As a ) . o : )
. . . TABLE |: Comparison of average, minimum and maximum times
consequence, no initial jump is present in the commandeg} e complete sequence.

camera velocity(ve, we) (Figs. 9(c), 9(d)). Avoiding ve-
locity jumps during fast transients, like in our case, has a Tab. | compares the total time for the complete sequence.
major relevance. Indeed, since robot dynamics is neglgctefidults needed roughly 30% of the robot's time for the task,
a too high acceleration request, coupled with an high spe#¢hile children needed about 70%. The variation of the robot
profile, would violate this approximation and potentiallyperformance was quite low, since the only nondeterministic
lead to failure of the visual task. Finally, Fig. 9(b) showspart of the strategy was the searching for the pieces on the
the image plane motion of the octagon barycertey, y,) table. Humans, instead, varied their strategy, trying fiost
during the servoing, which results close to a straight lmaa Solve the problem as fast as possible, and then refined the
consequence of the decoupling properties of control (5)—(&trategy in subsequent attempts in case of failure. Some
children needed considerably longer than the robot and
B. Complete sequence were able to fulfil the task only with additional hints for
Experimental results of the insertion strategy only (withrecognizing and assembling the star shaped parts.
out vision) have been published in [12]. For the complete Fig. 11 compares the times needed for the individual
sequence, we recorded statistical data ®fercycles, that pieces and shows that humans, especially children, had big
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first (can beps or ps), ps the other one. The octaggn and the
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