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Abstract— In this paper we present an experimental evalu-
ation of automatic robotic assembly of complex planar parts.
The torque-controlled DLR light-weight robot, equipped with
an on-board camera (eye-in-hand configuration), is committed
with the task of looking for given parts on a table, picking them,
and inserting them inside the corresponding holes on a movable
plate. Visual servoing techniques are used for fine positioning
over the selected part/hole, while insertion is based on active
compliance control of the robot and robust assembly planning in
order to align the parts automatically with the hole. Execution
of the complete task is validated through extensive experiments,
and performance of humans and robot are compared in terms
of overall execution time.

I. I NTRODUCTION

The target application of the presented system is to
autonomously execute assembly operations of parts with
complex geometry. To this end, we propose a combination
of image processing, vision and force-torque control able to
fulfill the steps required for such a high-level task, namely,
visual object identification, fine robot positioning, picking
and insertion strategies.

There are several aspects of this task that make the au-
tomation difficult. The requirement of high sensor capability,
the complexity of the task programming, and the limited
autonomy and flexibility of industrial robots are certainly
some of them, leading to performance and success rates
much below those of humans.

Indeed, typical industrial settings rely on highly structured
environments like, e.g., dedicated part feeders for avoiding
uncertainties during the picking of the parts, fixed (and
known) locations of the mounting holes, or simple image
processing setups with carefully adjusted illumination con-
ditions. Chamfered parts and specially designed compliant
elements for a given task are typically used to simplify the
insertion problem. In contrast, the presented work aims at re-
alizing a more flexible and versatile system, with robustness
and insertion velocity superior to that of industrial setups. A
vision system using natural light conditions and the ability
to track even moving parts with the robot during assembly
brings a higher degree of flexibility. For assembling general
chamferless planar parts with tight tolerance, the presented
system utilizes joint torque sensing and Cartesian compliance
control. Therefore the system can be easily programmed for
new parts. The additional flexibility is relevant in reducing
the industrial costs when considering parts with new shapes
(which in general would need a new feeder and passive
compliance design), and in minimizing the failure rate if
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Fig. 1: The DLR light-weight robot equipped with an onboard
camera.

unexpected events occur (e.g., unexpected displacements of
parts/plate).

Use of vision information for pose control of robot systems
has been an active topic in the last decades [1], [2]. Increase
of flexibility, improvement of position accuracy, robustness
against sensor noise and calibration uncertainties, and re-
activeness to environmental changes are among the major
benefits. One powerful use of vision for robot pose control
is the approach known asvisual servoing. In this framework
the robotic task is directly specified in terms of some image
features extracted from a target object. These features are
then used to control the robot/camera motion through the
scene until the final robot pose is reached, see [1], [3], [4]
for a thorough overview. Visual servoing framework provides
the needed robustness w.r.t. external disturbances and envi-
ronmental changes, such as, for instance, the displacement
of parts/plate during the task execution. The resulting robot
positioning accuracy, however, may not be high enough to
accomplish tight assembly tasks, so that, depending on the
clearance of the parts, means to limit the contact forces
and strategies to overcome the uncertainties are necessary.
Industrial robots used for assembly are usually equipped
with a passive compliance element, the so-calledRemote
Center Compliance (RCC)[5]. As we used the DLR light-
weight robot equipped with joint torque sensors for our
experiments, we instead exploited the Cartesian impedance
control framework [6], [7] as a means to achieve an active
compliance behavior. This solution is more flexible compared
to a RCC while being faster and more robust than usual force
controlled industrial robots, due to the local torque feedback
and the low mass of the arm.

For the alignment of the parts, different strategies have
been proposed in literature, starting from a simple (since
model-free) but effective blind search [8], up to algorithms



with complex online monitoring of the contact state [9], [10].
Due to the complexity of the parts used in our experiments,
we relied on an off-line planning algorithm comparable
to [11] in order to generate robust insertion strategies.
In particular, by analyzing the parts geometry, the offline
planner generates a set of optimal assembly trajectories and
active compliance parameters that guarantee robustness w.r.t.
initial positioning uncertainties due to vision and robot.Apart
from achieving robustness, this planning stage also allowsa
fast setup of the system when parts with new shapes are
considered. Since the insertion strategy has already been
presented in [12], the focus of this paper will be on the vision
part and the experimental evaluation of the combination of
both vision and force feedback for successful assembly.

The paper is organized as follows: in Sect. II a description
of the overall experimental setup is given. Next, Sect. III
addresses the shape extraction and classification techniques
used for visual recognition of the parts. The algorithm for
robot pose control and the insertion strategy are outlined in
Sect. IV and Sect. V, respectively. Finally, Sect. VI presents
experimental results of the complete task execution and a
comparison to the performance of humans.

II. EXPERIMENTAL SETUP DESCRIPTION

A. Robot manipulator

The DLR light-weight robots (Fig. 1) are designed for
interaction with unstructured, everyday environments. They
are kinematically redundant arms with7 degrees of freedom
(dofs) and a load to weight ratio of1:1. Low weight and
inherent joint compliance limit the interaction forces, even
at high contact speed with the environment. Particularly rele-
vant to the present application is the torque sensing integrated
in each joint, allowing accurate, vibration free positioning
and velocity control in the presence of elasticity, and high
performance impedance control during contact phases. The
robot is able to switch within one control cycle (1 ms)
between position/velocity control (required for high motion
accuracy during the visual servoing phase) to impedance
control (required for limiting the interaction forces and
compensating the alignment errors during insertion).

B. Parts and plate

The 8 parts and the plate used in our experiments are
shown in Figs. 2(a–b). Each part has its shape marked with
black tags useful for visual recognition, and a clearance
of less than0.1 mm w.r.t. the corresponding hole on the
plate. Shapes of parts/holes range from simple geometrical
primitives to more complex and nonconvex structures. Let
P = {p1, . . . , p8} and O = {o1, . . . , o8} be the sets of
parts and holes, respectively. With reference to Fig. 2(b),
and starting from the upper left corner, we have the following
shapes in order:

• o1 (p1): an equilateral triangle;
• o2 (p2): a regular octagon;
• o3 (p3): a circle;
• o4 (p4): a star shape with15 teeth (Fig. 2(c));
• o5 (p5): a star shape with16 teeth (Fig. 2(d));
• o6 (p6): the DLR logo;
• o7 (p7): the PAPAS logo;
• o8 (p8): the KUKA logo.

(a) (b)

(c) (d) (e)

Fig. 2: The8 parts (a) and the plate (b) used in our experiments.
Figs. (c–e) show a detailed view of the star-shaped parts with15
and16 teeth, and of the KUKA part where the black tag used for
shape classification is highlighted.

C. The overall task

As explained in the introduction, the global high-level
task assigned to the manipulator is to locate, pick and
insert each part into the corresponding hole on the plate.
A suitable temporal decomposition of such a complex task
is the following: for each partpi ∈ P and corresponding
hole oi ∈ O

1) hover along a predefined trajectory untilpi is identified
and located;

2) move to a suitable pose in order to pickpi;
3) pick pi;
4) hover over the plate along a predefined trajectory until

oi is identified and located;
5) move to a suitable pose in order to insertpi;
6) insertpi in oi.

The algorithms needed to complete each step in the sequence
are illustrated in the next sections. In particular, duringsteps
1 and 4, the vision system task is to recognize a target
shape among the various parts/holes present in the images.
Robot motion in steps2 and5 is governed by visual servoing
techniques, while piece insertion in step6 is realized through
a robust force-torque controlled assembly strategy.

III. SHAPE RECOGNITION

This section deals with the techniques adopted to extract
and classify the shapes of parts and holes from the video-rate
camera images. An initial image preprocessing step, based
on standard color binarization, is first applied to the raw
camera images in order to mark pixels as belonging or not
to a hole/part. Holes are segmented by looking for their red
background color, while, for parts, we relied on the black
outer tags glued on each of them (see Fig. 2). The subsequent
steps of feature extraction and shape classification are based
on theaffine-invariant Fourier descriptorsand linear MSE
classification techniques and are detailed in the following
subsections.

A. Affine-invariant Fourier descriptors

Consider two closed curves in the image planeC0 and
C representing the boundary of a planar object under two
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Fig. 3: Superimposed values of the33 AIFDs chosen as features
for pattern classification. For each shape inS, we considered
80 observations taken from different camera views. The selected
AIFDs prove to be sufficiently insensitive w.r.t. noise and different
viewing angles (robustness), and show specific patterns from class
to class (selectivity).

different camera views. Assuming a parallel projection1,
C0 and C would be equivalent with respect to the affine
transformation group:C0 ∼ C. Under this hypothesis, the set
Qk, k = ±1,±2, . . ., of affine-invariant Fourier descriptors
(AIFDs) [13], [14] provide a solution to the problem of
finding a discrete, minimal, and complete set of features able
to univocally encode the common shape information shared
by C and C0 despite the different camera points of view.
Hence, AIFDs yield a suitable choice for shape classification
and, thanks to their ordered discrete nature, can be easily
compared in contrast to the initial contour representationwith
its inherent correspondence problem. Therefore, also because
of their easy implementation, we chose them as features to
solve our shape classification problem.

B. Contour classification

With the sole exception of partp8 (KUKA logo — see
Fig. 2(e)), the black tags on the parts match the shapes of
the corresponding red holes. Therefore, for what concerns
contour classification, all the segmented parts/holes shapes
can be collected in a set of9 classes

S = {tri, oct, cir, s15, s16, dlr, pap, kk1, kk2}, (1)

where the last two classes account for the distinct shapes of
the KUKA part/hole2. The goal of the classifier algorithm
is then to decide for one of these classes given as input a
feature vectorλ describing a candidate part/hole shape. Once

1Parallel projection model [1], sometimes calledweak perspectivemodel,
is the best linear approximation of the standard pin-hole camera projection
model. The approximation is very close if the mean distance along the
optical axis between the camera and the object is large compared to the
distance variation.

2Obviously, the introduction of the two distinct classes{kk1, kk2} could
be avoided by segmenting the whole KUKA part in place of the black tag
glued on it (see Fig. 2(e)), thus obtaining a single class forboth KUKA
part/hole. However, in this case we chose to tolerate this little “redundancy”
because of the generally higher reliability of the segmentation process for
the black tags.

a class is identified, the color information (black/red) of the
raw image allows to univocally disambiguate between those
holes and parts belonging to the same class inS.

We chose to considernλ = 33 different AIFDsQk for the
classification task, and to define vectorλ as

λ = [Q−18 . . . Q−2 Q2 . . . Q17]
T
∈ R

nλ .

Now assume that, for a classsi ∈ S, Ni distinct observations
are taken from different camera views, resulting inNi feature
vectorsλi. Let thenλ×Ni matrixλ[Ni] = [λ1 . . . λNi

] be the
collection of such feature vectors. Because of the invariant
properties of AIFDs, we expect the columns ofλ[Ni] to
match almost completely, with the only discrepancies due
to noise or lack of validity of the parallel projection model.
Figure 3 shows the superimposed values of the columns
of λ[Ni], with Ni = 80, for all the classes inS. From
these plots, we can verify the low variation of individual
feature elements within each class despite noise and different
viewing angles (robustness), and the presence of specific
patterns from class to class (selectivity). These preliminary
considerations motivated us to use a set of linear discriminant
functions, obtained by the so-called MSE (minimum squared
error) approach [15], in order to solve the classification
problem. This method is optimal in a least-square sense and
requires less computational effort than more sophisticated
techniques.

At the core of the linear MSE approach is a9 × (nλ +
1) matrix Θ, called weight matrix, which is used against a
given feature vectorλ in order to decide the class to which
it belongs. Suppose that a vectorλi, observation of a class
si, is considered. MatrixΘ is designed such that, by letting
γi = Θλi, γi ∈ R

9, the i-th component ofγi will (most
likely) be close to1 and the others close to zero. Hence,
classi can be decided through inspection ofγ.

In order to assess the performance of the linear MSE
approach, we tested it againstNi = 40 independent feature
sets for every classi, for a total of 360 samples collected
by varying continuously the camera pose. Figure 4 (left)
shows the responses of the9 linear discriminant functions
(the components ofγ) to the set of9 × Ni test samples. It
is then possible to verify that, for each classsi, only one
component ofγ is close to1 (the i-th one), while the other
components remain almost zero. Therefore, AIFDs allow to
unambiguously assess the correct class membership for the
candidate shapes inS.

As a comparison, we tested the same linear MSE approach
by relying on the popular7 Hu moments [16] often used for
pattern recognition of arbitrary shapes. The classification re-
sults are shown in Fig. 4 (right). It is interesting to note that,
for the{tri, dlr, pap, kk2} shapes, the outcome is substan-
tially equivalent to the previous case, i.e., the correct com-
ponent ofγ keeps close to1, the others are almost zero, and
class membership can be easily decided. On the other hand,
when considering the remaining{oct, cir, s15, s16, kk1}
shapes, results become ambiguous: the strong separation
obtained before is lost, and several components ofγ assume
intermediate values in the range[0 1], thus preventing a
robust classification of the shapes. Indeed, a finite set of
low order moments (such as the Hu’s one) does not allow to
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Fig. 4: The response of the linear MSE approach to a set of360 testing samples by using AIFDs (left) and Hu moments (right).

discriminate among a circle, an octagon, or the two stars:
in an integral sense such shapes share almost the same
circular-like contour, and any small deviation is dominated
by noise. AIFDs, on the other hand, prove to possess the
needed resolution for a robust classification of all classes
thanks to their high sensitivity to periodic patterns in the
input contour.

IV. ROBOT POSE CONTROL

As explained in Sect. II-C, during the part/hole approach-
ing phase motion of the robot is controlled by means of
visual servoing techniques. The goal is to position the
manipulator close and precisely enough to the selected
part/hole such that the part can be picked or the inser-
tion strategy can be started. An example representative of
both picking and insertion final poses is given in Fig. 1:
let FO : {XO, YO, ZO} be the inertial manipulator base
frame andFC : {XC , YC , ZC} be the moving camera
frame with ZC coincident with the optical axis, and let
vector [vT

C ωT
C ]T ∈ R

6 represent the camera linear/angular
velocity expressed inFC . The setup is arranged such that the
(parallel) planes where parts and plate lie are fixed inFO

and perpendicular toZO. In order to meet the assumption
of (almost) parallel projection needed by AIFDs, we chose
the final pose of the manipulator such thatZO = −ZC ,
i.e., with the camera optical axis normal to the parts/plate
plane and directed towards it. This choice also simplifies
the servoing scheme, since2 camera dofs (direction ofZC)
can be directly controlled in Cartesian space by exploiting
the robot forward kinematics. The remaining4 dofs (camera
translation and rotation aboutZC) are instead regulated by
means of visual information.

A. Task definition

Choice of which image features to exploit for visual con-
trol largely depends on the specific case one has to deal with,
and can range from point coordinates, line parameters, ellipse
centers and radii, etc., see [17] for a thorough analysis. When
considering complex shapes, solving the correspondence
problem, i.e., reliably tracking local structures like corners
or edges, may result in a hard task. In these cases, more

α

?

α

Fig. 5: Main orientationα is well-defined for a generic shape (left),
but is meaningless for a shape where minor and major axes are equal
(right).

general (integral) image features, such as Fourier descriptors
or image moments, may be used. Whatever the choice,
however, the availability of the so-calledinteraction matrix,
i.e., the differential link between ‘feature motion’ and camera
motion, is always required when devising visual control
schemes. While the explicit expression of the interaction
matrix for any image moment is known [18], a similar result
for generic Fourier descriptors (or combinations of them) is
not available except for special situations. On the other hand,
as highlighted in the previous section, Fourier descriptors
possess the ability to discriminate among the planar rotation
of all the considered shapes, as opposite to standard (low
order) image moments. Therefore, these considerations led
us to adopt both image moments and Fourier descriptors for
robot pose control.

Indeed, from [18], it is known that areaa, barycenter
(xg, yg) and main orientationα can be directly exploited
to control the needed4 camera dofs. However, in our case
the ‘circular’ symmetry of most shapes (o1/p1 . . . o5/p5)
prevented the use ofα to control rotations aboutZC .
Consider Fig. 5: for a generic shape,α gives the major
axis orientation of the ellipse which fits ‘best’ to the shape.
Clearly, if a circular-like shape is considered, no major axis
can be extracted andα becomes meaningless. This problem
can be overcome by replacingα with an equivalent quantity
obtained from Fourier coefficients, i.e., the relative rotation ρ
among two shapes belonging to the same class. Assuming a
camera optical axis almost perpendicular to the object plane,
angleρ can be determined from two Fourier coefficients up
to an ambiguity off , i.e., a rotation ambiguity of2π/f rad,



where f is the degree of symmetry of the selected shape
(with f = 1 for nonsymmetric cases). Therefore a ‘de facto’
unique solution for angleρ can always be found by exploiting
Fourier coefficients, andρ can be fully exploited for what
concerns control of the rotation aboutZC .

While the interaction matrix of areaa and barycenter
(xg, yg) has a closed-form expression in terms of image
moments, the interaction matrix ofρ can be obtained as
follows: whenZC is almost perpendicular to the object plane,
i.e., almost parallel toZO, ρ(t) behaves analogously to the
camera roll angle3 φ(t) in the sense thaṫρ = fφ̇. Hence, by
letting φ̇ = TφωC , where1 × 3 matrix Tφ is the standard
mapping from angular velocityωC to Euler angle ratėφ, we
have

ρ̇ = fTφωC = JρωC , (2)

where matrixJρ can be regarded as the Jacobian ofρ.
As for the direction ofZC , it can be controlled in Cartesian

space since, as explained before, parts and plate plane
orientations are fixed w.r.t. the manipulator base. Therefore,
it is possible to obtain the direction ofZC w.r.t. FO, and
thus w.r.t. the plane of parts and plate, directly through the
robot forward kinematics. In our case, the robot final poses
are designed with the camera optical axis perpendicular to
the parts/plate plane, i.e., withZC = −ZO = [0 0 − 1]T in
FO (see Fig. 1). Hence, a convenient choice is to regulate
to zero the first two components (ZCx

, ZCy
) of ZC through

the differential mapping
[

ŻCx

ŻCy

]

= JZC
ωC , (3)

where the JacobianJZC
can be obtained from standard

kinematics. Note that regulation of[ZCx
ZCy

]T to [0 0]T

through inversion of (3) admits the two stable equilibria
[0 0 1]T and [0 0 − 1]T for ZC , depending on the initial
vertical pointing direction of the optical axis. In our case,
this ambiguity is avoided because the initial camera pose is
always such thatZC points downwards (the camera looks
towards the parts/plate).

Having defined all the needed quantities, we let

s = [xg yg a ρ ZCx
ZCy

]T ∈ R
6 (4)

be the task vector used for robot pose control, and proceed
to illustrate the control algorithm used for regulation ofs(t).

B. Control algorithm

Regulation of task (4) to a desired values∗ is addressed
at the velocity level by inversion of the differential mapping
ṡ = Jsq̇, where q ∈ R

7 stands for the manipulator joint
configuration vector andJs represents the6×7 task Jacobian
matrix in terms of joint velocities. Note that our robot is
redundant w.r.t. tasks, with degree of redundancy1. Among
the various techniques available for velocity-level motion and
redundancy resolution [19], we chose theProjected Gradient
(PG) method which generates joint velocity commands in
terms of a reference task velocityṡr as:

q̇ = J†
s ṡr + σ(I − J†

sJs)u0, σ > 0, (5)

3Given a ZYX Euler angles representation of the orientation of FC w.r.t.
FO , roll angleφ is defined as the rotation about Z-axis.

whereJ†
s is the Moore-Penrose pseudoinverse ofJs, vector

u0 ∈ R
7 the gradient of a given criterionH(q) to be opti-

mized through the redundancy, andσ a suitable optimization
stepsize. Expression of the task JacobianJs can be obtained
from

ṡ =





Jm

0 Jρ

0 JZC





[

vC

ωC

]

=





Jm

0 Jρ

0 JZC



 Jcq̇ = Jsq̇.

(6)
Here,Jρ andJZC

are defined in (2) and (3),Jc, from forward
kinematics, gives the camera velocity(vC , ωC) in terms of
q̇, and the3 × 6 matrix Jm is the areaa and barycenter
(xg, yg) interaction matrix





ȧ
ẋg

ẏg



 = Jm

[

vC

ωC

]

.

In case of regulation tasks, vectorṡr in (5) is typically chosen
as

ṡr = K(s∗ − s), K > 0. (7)

This choice yields an exponential convergence to zero of
task errore(t) = s∗ − s(t) for any initial error e(t0) and
with convergence rate tuned by gain matrixK. In practical
implementations, however, because of neglected velocity
controller dynamics, external disturbances, limited actuator
capabilities, modeling errors, noise, etc., a large initial error
coupled with a bigK may lead to instability or, in the visual
servoing case, to the loss of visual features during the motion,
causing failure of the task. In our case, for instance, the
completely unmodeled robot dynamics proved to be a major
limiting factor when imposing fast transients. Apart from
reducingK, such effects can be attenuated by avoiding large
values fore(t), and in particular fore(t0). To this end, we
added a planning stage to the control law by defining an
artificial signal sd(t) which linearly interpolates the initial
task values(t0) with the final desired values∗, thus obtaining
e(t0) = sd(t0) − s(t0) = 0. In practice, we impose exactly
the same motion direction in task (and hence image) space as
in (7), but with the reference task trajectorysd(t) traveling
with constant velocity along the line connectings(t0) and
s∗.

With these settings, vectoṙsr becomes

ṡr = K(sd(t) − s(t)), (8)

yielding a linear exponentially stable closed-loop error sys-
tem driven byṡd

ė = −Ke + ṡd.

Finally, the optimization functionH(q), from which u0 =
∇qH(q) is derived and used in (5), is designed for joint limit
avoidance [19].

V. ROBUST ASSEMBLY STRATEGY

After the visual positioning task over the selected hole is
completed, the insertion has to be executed without vision
support, since in this phase, the target hole exits the camera
field of view. By exploiting sensitive Cartesian compliance
control, however, local convergence of the assembly task and
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Fig. 6: A typical region of attraction (ROA) for a sample part. The
inserted corner will be guided automatically to positionxa if the
alignment process starts anywhere within the ROA (e.g. fromxi,1

or xi,2). If it starts outside (e.g. fromxi,3), a successful alignment
cannot be guaranteed.

limitation of contact forces can be ensured under the re-
maining positioning uncertainty. The parts have no chamfers,
therefore insertion is not trivial and an optimized strategy is
needed in order to align and insert the parts robustly. This
section will outline the basic idea of the insertion strategy, a
detailed description of the algorithm can be found in [12].

The main idea of the insertion planning is visualized in
Fig. 6. Consider the compliance controlled robot having
inserted a corner4 of the part into the hole at the initial
configurationxi. The desired position of the controller is
now set toxd, and the stiffness value toK. For a certain
set of starting configurations (called theregion of attraction
ROA), the inserted part will converge to the desired alignment
position xa. In the given example,xi,1 and xi,2 belong
to the ROA,xi,3 does not. The alignment can be seen as
the settling of a nonlinear dynamical system with several
equilibria whereof one is the desired configuration. It is
possible to determine the ROA for any desired equilibriumxd

and for any stiffness matrixK. Its size can be used as a direct
measure for the robustness of the assembly trajectory, the
optimal robustness is achieved for those insertion parameters
that maximize the ROA.

Obviously, the ROA depends heavily on the inserted
corner, the selected desired and initial positionsxd and xi,
the parameters of the impedance control (in particularK),
and the shape of the hole. Whereas the latter is given, the
remaining parameters can be selected freely and are used
for offline optimization. Combined with a user interface for
providing the geometries from a CAD system or from sensor
data, this results in a toolbox for industrial robot program-
mers to generate robust assembly programs automatically.
The output of this toolbox, desired trajectories and control
parameters, can then be used in the execution phase without
any model knowledge about the parts. If the uncertainty of
the visual servoing and the robot positioning (leading to a
deviation of xi) is smaller than the best ROA, it is thus
possible to rely on this offline planning and execute the
planned motion starting from the final pose reached with
the visual servoing algorithm.

In Fig. 7, a complete example of an assembly sequence

4Corner in this context means the relevant part of the contour which is
involved in a one-point contact.

(a) Immerse first corner
(one-point contact).

(b) Align corner. (c) Immerse second cor-
ner (two-point-contact).

(d) Align whole part
along edge.

(e) Straighten up part. (f) Press in part.

Fig. 7: Example of the presented insertion strategy.

(a) Initial pose: raw
camera view.

(b) Initial pose: seg-
mented camera view.

(c) Initial pose: robot
configuration.

(d) Final pose: raw
camera view.

(e) Final pose: seg-
mented camera view.

(f) Final pose: robot
configuration.

Fig. 8: Initial and final poses during the picking of partp2.

relative to the KUKA logo is shown. The assembly starts
by slightly tilting the part and then by immersing a first
corner into the hole. In order have a smooth motion, the
desired position is interpolated fromxi to xd. Prerequisite
for the success is that the initial position of the immersed
corner lies within the ROA of the appropriate hole’s corner.
After the first corner is aligned properly, a second contact
point is needed to ensure the rotational alignment of the
part. Therefore, the same compliance based procedure can
be used. Having reached a stable two point contact, it is easy
to straighten up the part and insert it completely. Since the
parts considered are planar (their height is small comparedto
their lateral dimensions), jamming during the insertion isa
minor problem if the center of compliance of the impedance
control is chosen correctly.

VI. EXPERIMENTAL EVALUATION

In this section we present an experimental assessment of
the whole application. First, we analyze the visual control
law detailed in Sect. IV in terms of execution time and
control effort. Then, robustness and reliability of the overall
method are extensively tested on a run of20 complete
sequences. Finally, we propose a comparison among the
execution time needed by the robot and humans (children
of age5–7 and adults).
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Fig. 9: Experimental data during the approaching to holeo2.
Fig. (a): the6 components ofe(t). Fig. (b): Motion of barycenter
(xg, yg) on the image plane from•–start to N–end. Fig. (c):
Camera linear velocityvC . Fig. (d): Camera angular velocityωC .

A. Visual Control

We consider the approaching task to holeo2 (the octagon),
see Figs. 8(a–f) for screenshots of the initial and final poses.
As explained in Sect. IV-A, the circular symmetry of this part
poses a challenge for visual control, since main orientation α
cannot be used to control camera rotation aboutZC . On the
other hand, by using angleρ from Fourier coefficients, we
get ρ(t0) = 2.8 rad andρ∗ = −0.08 rad as initial and final
values (Figs. 8(b) and 8(e)). Recall thatρ measures shapes
rotation up to their degree of symmetryf , i.e., for an octagon
with f = 8 a physical rotation of2π/f rad results in a2π rad
rotation forρ. Figures 9(a–d) show some relevant quantities
collected during the experiment. As can be seen from the
plots, the overall motion is quite fast, lasting about1.3 sec.
with a peak value of||vC || ' 0.6 m/s and||ωC || ' 0.65
rad/s. In Fig. 9(a) the behavior ofe(t) = sd(t) − s(t) is
reported. Note that, as expected,e(t0) = 0 because of the
definition of the reference signalsd(t) (Sect. IV-B). As a
consequence, no initial jump is present in the commanded
camera velocity(vC , ωC) (Figs. 9(c), 9(d)). Avoiding ve-
locity jumps during fast transients, like in our case, has a
major relevance. Indeed, since robot dynamics is neglected,
a too high acceleration request, coupled with an high speed
profile, would violate this approximation and potentially
lead to failure of the visual task. Finally, Fig. 9(b) shows
the image plane motion of the octagon barycenter(xg, yg)
during the servoing, which results close to a straight line as a
consequence of the decoupling properties of control (5)–(8).

B. Complete sequence

Experimental results of the insertion strategy only (with-
out vision) have been published in [12]. For the complete
sequence, we recorded statistical data over20 cycles, that

Fig. 10: Top view of the distribution of parts and plate during the
statistical evaluation of the automated assembly. The small circles
represent the gripping handle for parts in the starting position (left)
and inserted in the plate (bottom).

is we collected data from160 assemblies (see Fig. 10 for
the distribution of the parts and the plate). Altogether, the
robot was able to insert154 parts successfully (96.25%).
In four cases the assembly failed because the vision system
was not able to detect the part or hole reliably (lost tracking
during motion three times, once the part was not found
initially). In the remaining two cases, visual servoing was
completed successfully, but the insertion failed because the
robot missed the ROA. No error recovery was implemented
for these experiments, in case of errors (like lost tracking) the
current part was dropped and the sequence continued with
the next part.

C. Comparison with humans

The most challenging test for any robot system is the
comparison with human performance. As a measurable
benchmark, we chose to compare the total time needed for
the whole task of inserting all the pieces. The untrained
participants were given the assignment to insert the8 pieces
as fast as possible with one hand. During the execution, the
overall time as well as the time needed for every piece was
recorded. Altogether,41 persons were tested, whereof35
were children of age5–7 and the rest were adults.

Robot Adults Children
avg. 132s 39s 94s
min. 130s 22s 40s
max. 138s 53s 220s

TABLE I: Comparison of average, minimum and maximum times
for the complete sequence.

Tab. I compares the total time for the complete sequence.
Adults needed roughly 30% of the robot’s time for the task,
while children needed about 70%. The variation of the robot
performance was quite low, since the only nondeterministic
part of the strategy was the searching for the pieces on the
table. Humans, instead, varied their strategy, trying firstto
solve the problem as fast as possible, and then refined the
strategy in subsequent attempts in case of failure. Some
children needed considerably longer than the robot and
were able to fulfil the task only with additional hints for
recognizing and assembling the star shaped parts.

Fig. 11 compares the times needed for the individual
pieces and shows that humans, especially children, had big
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Fig. 11: Average times needed for the individual parts. Whereas
the robot shows similar performance for all the parts, humans have
difficulties especially with the differentiation and insertion of the
star shapes. In this figure,̃p4 represents the star that is inserted
first (can bep4 or p5), p̃5 the other one. The octagonp2 and the
KUKA logo p8 are parts that jam easily which makes them difficult
to insert for children.

problems with the stars. The similarity of the parts and the
difficulty of the insertion confused not only children, but also
adults regarding the right correspondence. For simple parts,
however, the robot was not able to compete with the superior
performance of the humans. Three main differences could be
identified and should be addressed in further research:

• humans have an eye-to-hand configuration and can
therefore combine vision with fast movements of the
hand. Searching for the parts and the holes is done much
faster, as can been seen in the attached video;

• arm (and fingers5) of humans are still superior in terms
of speed and dexterous manipulation;

• intelligent error handling and refinement of strategies
lead to performance optimization.

VII. C ONCLUSIONS

In this paper we presented an integrated approach which
combines vision, impedance control and robust planning
for autonomous robotic assembly of complex planar parts.
The overall task is addressed by different points of view,
ranging from shape recognition, visual servoing, and active
compliance control for robust insertion of the parts. Effec-
tiveness and performance of the proposed approach are as-
sessed through extensive experimental testing on the torque-
controlled DLR light-weight robot. Live demonstration of
this setup was also presented during the ICRA’07 conference
in Rome as well as in the last Automatica’08 fair.

Concerning future developments, we are exploring the
possibility to use force and vision feedback altogether during
the insertion phase, so as to obtain a combined visual-
compliance controlled strategy that would significantly in-
crease robustness and performance of the assembly task.
The practical goal, for potential industrial applications, is to
obtain a robust visual software which requires tuning of few
parameters in order to adapt to new parts and illumination
conditions. Moreover, starting from CAD-data of the parts,
the emerging robust assembly toolbox will automatically
generate the controller parameters and desired robot motions.

5The three seconds needed for one part by the most skilled humans
correspond roughly to the time needed by the used industrial gripper to
open and close!
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