
Learning Equivalent Action Choices from Demonstration

Sonia Chernova and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

{soniac,veloso}@cs.cmu.edu

Abstract— In their interactions with the world, robots in-
evitably face situations in which multiple actions are equiva-
lently applicable. These situations violate the common assump-
tion that for any world state there exists a single best action.
When learning from demonstration, this ambiguity frequently
results in inconsistent demonstrations from the teacher, how-
ever, the problem of action choices has been overlooked by
previous approaches for demonstration learning. In this paper,
we present an algorithm that identifies regions of the state
space with conflicting demonstrations and enables the choice
between multiple actions to be represented explicitly within the
robot’s policy. An experimental evaluation of the algorithm in
a real-world obstacle avoidance domain shows that reasoning
about action choices significantly improves the robot’s learning
performance.

I. INTRODUCTION

In their interaction with the world, robots must constantly
make decisions about what action to perform. Policies con-
trol the decision making process, providing a mechanism for
calculating which action must be taken given a particular
world state. Teaching by demonstration is a method for
interactively training robot policies through demonstrations
of the desired robot behavior by a human teacher.

Operating in rich environments, robots inevitably en-
counter situations in which multiple actions are equivalently
applicable. For example, a moving robot that encounters an
obstacle directly in its path has the option of moving left or
right to avoid it. If the space is empty, both directions are
equally valid for performing the desired task. Similar choices
can arise in many other situations, such as deciding among
objects of equal value. Faced with a choice of equivalent
actions, a human teacher often does not select the same
action consistently for demonstration. As a result, training
data obtained by the robot lacks consistency, with identical,
or nearly identical, states becoming associated with different
actions.

Existing demonstration learning algorithms have over-
looked the problem of action choices, making the common
assumption that for any world state there exists a single best
action [3], [5], [7], [11]. While it is possible to achieve
a non-deterministic state-action mapping with these algo-
rithms, special actions must be defined that abstract this
choice. For example, the action Random can be used to
represent the random selection among all available actions.
The appropriate use of Random must then be demonstrated
by the teacher in order to be incorporated into the robot’s

policy. While this approach achieves the desired randomized
behavior, the algorithm does not explicitly represent the
existence of multiple equivalently applicable actions.

In this paper, we enable the robot to reason about action
choices. We build upon two existing algorithms, Confident
Execution [5], [6] and Corrective Demonstration [4], which
enable us to obtain task demonstrations from the teacher
and learn the robot policy. Based on this information, we
present an algorithm for identifying regions of the state
space in which data from multiple classes overlaps as a
result of inconsistent demonstrations. For these regions,
we make the assumption that the robot’s action can be
selected at random among the conflicting data classes. The
choice between multiple actions is then modeled explicitly
within the robot’s action policy through option classes. This
automated approach does not require the teacher to predefine
or demonstrate special choice actions, extending instead from
the person’s natural demonstration technique.

In the following section we discuss related work in the
area of learning from demonstration. Section III presents a
description of the obstacle avoidance domain used through-
out this paper. Section IV presents the base demonstration
learning algorithm consisting of Confident Execution and
Corrective Demonstration and discusses its limitations with
respect to dealing with multiple equivalent actions. Section V
then presents our solution to the problem of action choices,
followed by experimental results and evaluation in Section
VI.

II. RELATED WORK

A wide variety of approaches for teaching robots through
demonstration have been proposed in recent work. Lockerd
and Breazeal [3], [8] present a robotic system in which
high-level tasks are taught through social interaction. Speech
and visual queues are used to guide the robot and perform
demonstrations, while the robot additionally expresses its
internal state through emotive cues, such as facial and body
expressions, to help guide the teaching process. Based on
these demonstration, a high level hierarchical task model is
learned using the Bayesian likelihood method.

Nicolescu and Mataric [10], [11] introduce a plan-based
framework in which training is performed by having the
robot follow a human and observe its actions. A high
level task representation is constructed by the algorithm by
analyzing this experience with respect to the robot’s abilities.



Fig. 1. Obstacle avoidance domain with Sony QRIO robot.

Several approaches utilizing classification and regression
for policy learning from demonstration have also been pro-
posed. Bentivegna et al. [1], [2] and Saunders et al. [12]
use the k-nearest neighbor (KNN) [9] algorithm to classify
instances based on similarity to training examples, resulting
in a policy mapping from sensory observations to actions.
Grollman and Jenkins apply Dogged Learning, a confidence-
based learning approach based on Locally Weighted Pro-
jection Regression, to teaching low level robotic skills such
as ball seeking and grabbing [7]. All of these approaches,
however, assume that for each state there exists a single best
action.

III. DOMAIN

A robot obstacle avoidance domain is used to compare and
evaluate learning algorithms throughout this paper. In this
domain, shown in Figure 1, a Sony QRIO humanoid robot
is taught to navigate around a colored post located in its path.
The robot has a choice of three actions, Forward (F), Left (L)
and Right (R), each of which moves it approximately 10cm
in the designated direction. The robot’s state is represented
by its relative position to the post in two-dimensional space
(x,y). A noisy estimate of the post’s position is obtained from
the robot’s onboard vision system.

The lines in Figure 1 represent example robot trajectories,
with each dash approximately equal to the length of a single
robot step. Note that when the robot is positioned directly in
front of the post, both avoidance directions, left and right,
are equivalently applicable. Once the robot has committed
to a direction and has shifted its position, however, it must
commit to this course to avoid oscillation. When faced with a
choice of directions during demonstration, the teacher selects
among the alternate actions at random.

IV. DEMONSTRATION LEARNING ALGORITHM

In this section, we present a summary of the Confident
Execution [5], [6] and Corrective Demonstration [4] al-
gorithms used to obtain teacher demonstrations and learn
the action policy. Figure 2 presents an overview of the
complete learning process. In Section IV-C we discuss how
the assumption of one-to-one state-action mapping made

Fig. 2. Diagram of the combined Confident Execution and Corrective
Demonstration learning process.

during policy learning presents serious limitations in domains
with multiple applicable actions.

A. Confident Execution

Confident Execution is an interactive learning algorithm in
which the robot must select demonstration examples, in real
time, as it interacts with the environment. At each timestep,
the algorithm obtains the current robot state and determines
whether a demonstration of the correct action in this state
will provide useful information and improve the robot’s
policy. If demonstration is required, the robot requests help
from the teacher and waits for the person to select an action.
Upon obtaining the demonstration, the algorithm updates the
robot’s policy using the acquired action label and performs
the demonstrated behavior. If a demonstration is not required,
the robot autonomously executes the action specified by its
policy without consulting the teacher.

The robot’s policy is represented and learned using su-
pervised learning based on training data acquired from the
demonstrations. The policy is represented by classifier C :
s → (a, c, db), trained using state vectors si as inputs, and
actions ai as labels. For each classification query, the model
returns the policy action a ∈ A, action selection confidence
c, and the decision boundary db with the highest confidence
for the query. In this work, the policy is represented by a
set of Gaussian Mixture Models (GMMs) with individual
Gaussian components forming the decision boundaries.

Given a new state, the algorithm selects between demon-
stration and autonomy based on the measure of action
selection confidence. Specifically, the state is classified, and
autonomous execution is selected if the value of classification
confidence c is above a threshold. The algorithm maintains
a set of thresholds, one per decision boundary, that are
customized to the underlying data distribution. The threshold
corresponding to the highest confidence decision boundary,
db, is used to determine autonomy for a particular query.

The confidence threshold for each decision boundary is
calculated based on the confidence scores of datapoints
misclassified by that boundary. For example, consider a
Gaussian component that mistakenly classifies a number
of points from a different data class. For this component,



the threshold is set to the average classification confidence
of the misclassified points. This technique is based on the
assumption that “future classifications with confidences at
or below this value are likely to be misclassifications as
well“. Using this technique, individual thresholds act to
isolate regions of the state space in which classification is
unreliable. Future robot states that fall within this region of
uncertainty trigger additional demonstration requests from
the teacher with the aim of obtain clarity through additional
data. Learning is complete once the robot is repeatedly able
to perform the correct behavior without requesting additional
demonstrations. Full details of the Confidence Execution
learning and threshold calculation algorithms can be found
in [5], [6].

B. Corrective Demonstration

The above Confident Execution algorithm enables the
robot to identify unfamiliar and ambiguous states and pre-
vents autonomous execution in these situations. However,
states in which an incorrect action is selected with high con-
fidence can still occur, typically due to over-generalization
of the classifier. When allowing the robot to select demon-
stration and regulate its own autonomy, it is important to
provide a mechanism for correcting unwanted behavior. The
Corrective Demonstration algorithm enables the teacher to
perform additional demonstrations and retroactively correct
execution mistakes.

As illustrated in Figure 2, Corrective Demonstration comes
into play each time the robot executes an autonomous action.
During the execution of an autonomously selected action, the
teacher has the option to perform a corrective demonstration.
This demonstration indicates to the robot that the wrong
action was selected, and specifies which action should have
been performed in its place. A training point consisting of
the original decision state coupled with the corrective action
is then used to update the robot’s policy. This approach gives
the teacher greater control over the learning process and
enables the robot to learn quickly from its mistakes.

C. Algorithm Limitations

The Confident Execution policy learning algorithm has
been shown to work effectively, enabling the robot to learn
from a small number of demonstrations. However, the algo-
rithm makes two strong assumptions: 1) that for each state
there exists a single best action, and 2) that the teacher is able
to demonstrate this state-action combination consistently.
Based on these assumptions, the algorithm further assumes
that a complete policy, one that classifies the entire state
space with high confidence and results in full robot autonomy
(no misclassified points and confidence thresholds of 0), can
be achieved if enough demonstrations are obtained.

However, these assumptions frequently fail for robots
operating in real-world environments. As described earlier,
one common reason is action ambiguity due to the existence
of multiple equivalent actions. Consider the obstacle domain,
for example, in which in addition to the direction of move-
ment, the teacher must also decide the distance from the post

(a) Consistent demonstrations lead to a complete policy.

(b) Inconsistent demonstrations result in non-separable data
classes and an incomplete policy with low confidence regions
(white).

Fig. 3. Policies in the obstacle avoidance domain.

at which to begin to avoid the obstacle. Should avoidance
actions be initiated at a distance of 1 meter, 0.5 meters, or
somewhere in between? In reality, a whole range of distances
are likely to provide the desired behavior, and over this
range multiple actions are equally valid (move forward a
little more, move left or move right). The result is that the
teacher’s demonstrations are likely to be inconsistent.

Another common reason for inconsistent demonstration
is robot sensor noise. Consider, for example, an obstacle
avoidance domain in which the teacher closely observes the
robot’s behavior and consistently selects the same actions to
perform. If these demonstrations are selected based on the
person’s observation of the robot’s position, they will not take
into account possible noise and bias present in the robot’s
sensors. As a result, these demonstrations may still appear
to be inconsistent to the robot.

In summary, despite the teacher’s best intentions, incon-
sistent demonstrations are extremely likely to occur. An
example in Figure 3 shows the effect inconsistent demon-
strations have one the Confident Execution policy. Images in



this figure show two example distributions obtained from
demonstration learning in the obstacle avoidance domain.
Each point in the figure represents a demonstration per-
formed when the robot was at that (x,y) position. Background
shading represents the most likely action class, with white
representing low-confidence (demonstration) regions.

In Figure 3(a), consistent demonstrations result in a
complete, fully autonomous policy with no low-confidence
regions. In Figure 3(b), inconsistent demonstrations in the
middle region of the graph result in non-separable, over-
lapping datapoints and an incomplete policy. As the robot
repeats the task, all states that fall within the low confidence,
white, region trigger additional demonstrations. However,
unlike the consistent demonstration case, acquiring additional
data points will not help the classifier. Instead, an infinite
number of overlapping demonstration points will be collected
by the algorithm. In the following section we present our
algorithm for identifying such regions of the state space and
modeling them explicitly as multi-action classes.

V. OPTION CLASSES

To address the problem of inconsistent demonstrations
stemming from the existence of multiple equivalent actions
or sensor noise we introduce option classes, which we define
as data classes that represent the choice between two or more
actions. In this section we present an algorithm for extracting
option classes from the underlying data distribution, enabling
action choices to be modeled explicitly by the robot’s policy.

Option classes represent the choice between any number
of available actions. For the obstacle avoidance domain, ex-
ample option classes include Option-Forward-Left (O-FL),
Option-Left-Right (O-LR), and Option-Forward-Left-Right
(O-FLR) in which any of the robot’s three available actions
are applicable. Figure 4 presents an example of the option
class algorithm applied to the distribution from Figure 3(b).
Note that the middle region of overlapping points now forms
the option class O-RL, representing the choice between two
valid actions, Right and Left. With the addition of this new
data class the task can be represented by a complete policy.

The goal of our algorithm is to identify regions of the
state space in which data from multiple classes overlaps
and is not separable. For any such region, we make the
assumption that the robot’s action can be selected at random
among the action classes represented by these datapoints.
The randomized selection is biased based on the distribution
of the action classes, so that more frequently demonstrated
actions are more likely to be selected.

Algorithm 1 presents the option class algorithm, which
is executed each time the classifier is retrained following
a demonstration. Given the complete set of demonstrations
D, the algorithm identifies the set of datapoints M that fall
within the low confidence region and can not be classified
with high confidence (line 2). Additionally, the algorithm
calculates the average nearest-neighbor distance over the
complete demonstration dataset (line 3). Nearest neighbor
distance is defined as the Euclidean distance from the query
point to the closest point in the data set. The average nearest

Fig. 4. Option class policy obtained from the inconsistent demonstration
distribution in Figure 3(b).

Algorithm 1 Option Class Algorithm
1: given demonstration dataset D
2: M ← PointsInLowConfidenceRegion(D)
3: d← MeanNearestNeighborDist(D)
4: C ← ConnectedComponents(M ,d)
5: for c ∈ C do
6: A← ActionClasses(c)
7: if Size(c) > 3 and Size(A) > 1 then
8: CreateClass(D, c, Option-A)
9: UpdateClassifier(D)

10: ResetClass(D)

neighbor distance over the complete dataset provides the
algorithm with a domain-independent method for evaluating
point proximity and identifying points that are located close
together.

Dataset M and mean nearest neighbor distance d are used
to identify clusters of closely located misclassified points.
Searching over set M , the algorithm identifies points that
form connected components with a maximum distance d
between points (line 4). The resulting set C contains clusters
of points that form the candidate option classes. For each
set of points forming a connected component, the algorithm
calculates the action classes A represented by the datapoints.

If the cluster contains more than three points and consists
of two or more action classes, points from the connected
component are used to form a new option class representing
the choice between the actions in A (lines 8). Action labels
for these points are temporarily changed from their original
demonstrated action to Option-A. Once all connected com-
ponents are analyzed, the classifier representing the robot’s
policy is relearned with the new option class labels.

Once a policy representing the new option classes has been
obtained, action labels for all datapoints in dataset D are
reset to their original demonstrated action. The option class
acts only as a temporary label and must be re-acquired at the
next policy update. This mechanism is used to ensure that
any unnecessary option classes that form early in the learning



process due to insufficient demonstrations are dissolved once
additional demonstrations are obtained.

In summary, while option classes enable the robot’s policy
to explicitly model action choices, they remain an abstract
internal representation within the algorithm. Actions repre-
senting option classes are not made available to the teacher
for demonstration. As a result, the algorithm never acquires
training points with option class labels, but must learn them
based on the underlying distribution of other action classes.

Additionally, we define special rules for option classes
with regards to classification. Based on the assumption
that option classes represent a choice between several valid
actions, we specify that a datapoint with label x can not
be misclassified by an option class representing the choice
between actions in A if x ∈ A. For example, points that
belong to class F or L and fall into class O-FL are not
considered to be misclassified. The opposite case also holds,
such that points in O-FL are not misclassified if they fall
into F or L. This rule helps to eliminate low confidence
regions that may be caused by such misclassifications.

The contributed option class algorithm is classifier in-
dependent and contains only a single variable, d, the av-
erage nearest neighbor distance. This variable is domain
independent because its value is calculated by the algorithm
based on the data distribution specific to the applied domain.
However, the behavior of the algorithm can be controlled by
scaling the value of d. Smaller values will require dense
clusters of points to form option classes, requiring a large
number of demonstrations. Larger values will lead to greater
generalization and the formation of large option classes from
relatively few points. Through experimental evaluation we
have found that scaling the mean nearest neighbor distance
value by 1.5 provides a good balance between generalization
and the number of demonstrations.

VI. EXPERIMENTAL RESULTS

In this section, we compare the performance of the Con-
fident Execution algorithm with and without option classes
in the obstacle avoidance domain. Corrective Demonstration
was applied for both algorithms as necessary.

For the evaluation, we recorded 50 complete demonstra-
tion trials of the obstacle avoidance task. Data from the
trials, shown in Figure 5, was used for algorithm compar-
ison, providing a consistent library of training points. For
each evaluation, demonstration trials from the library were
presented to the learning algorithm in random order.

The performance of each algorithm was compared with
respect to the number of demonstrations and the percentage
of complete policies at the end of the training sequence.
A count of the number of demonstrations requested by the
robot through Confident Execution (CE) and selected by
the teacher through Corrective Demonstrations (CD) was
also maintained, along with the number of demonstrations
falling within the circled option regions (OR) highlighted in
Figure 5. Since multiple valid actions exist for all option
regions, classification accuracy is not an informative metric

Fig. 5. Points from 50 demonstration trials used for algorithm evaluation
and comparison. Circles highlight areas of inconsistent demonstration.

for this evaluation. The following table presents the results,
averaged over 20 trials for each algorithm:

Demonstrations Com-
Total CE CD OR plete

Conf. Exec. 99.8 95.7 4.1 42.8 20%
Conf. Exec. + Opt. 67.2 55.9 11.3 15.1 90%

The results show a significant improvement in learning
performance due to option classes. Given the same library
of training points, the original Confident Execution algorithm
resulted in a complete action policy in only 20% of trials.
The larger number of demonstration requests seen with this
algorithm is attributed largely to the remaining 80% of trials
in which non-separable points formed low confidence regions
in which large numbers of demonstrations were requested.
The difference in the number of demonstrations performed
within the option regions accounts for most of the difference
in the total number of demonstrations between algorithms.

Using option classes, the Confident Execution algorithm
resulted in a complete action policy in 90% of experimental
trials, requiring an average of 67.2 demonstrations to cover
the state space. Figure 6 presents three example policies re-
sulting from the experiments. Each policy shows a different,
but equally valid combination of option classes.

Figure 6(a) presents a policy consisting of four option
classes. A small region centered near (520,0) represents
the option class O-FRL, in which any of the three robot
actions are valid. As the robot nears the obstacle, the option
class becomes O-RL, indicating that the Forward action
is no longer a valid option. Option classes O-FR and O-
FL represent the other option regions. In Figure 6(b) only
three option classes form, with a large O-RL as the robot
approaches the obstacle. In Figure 6(c), points within the
middle option region are fully separable, resulting in a policy
with a slight bias towards passing on the right and only
a single option class, O-FL. Each of these policies was
successfully applied to performing the obstacle avoidance
task using the real QRIO robot.



VII. CONCLUSION

Regions of the state space in which consistent demonstra-
tion is impossible due to the existence of multiple applicable
actions or noise are frequently encountered in learning from
demonstration. Existing demonstration learning algorithms
have overlooked this problem, making the assumption that
for any state the robot must learn the single best action to
perform. In this paper, we introduced a classifier-independent
algorithm that enables choices between multiple actions to
be represented explicitly within the robot’s policy through
the creation of option classes. Evaluation and comparison
of demonstration learning with and without option classes
was performed in a real-world, noisy robot domain. Option
classes were shown to significantly improve learning per-
formance, enabling the algorithm to converge to a complete
policy with far greater frequency and requiring fewer demon-
strations.

REFERENCES

[1] D. C. Bentivegna, C. G. Atkeson, and G. Cheng. Learning from
observation and practice using primitives. AAAI Fall Symposium
Series, ’Symposium on Real-life Reinforcement Learning’, 2004.

[2] D. C. Bentivegna, A. Ude, C. G. Atkeson, and G. Cheng. Learning to
act from observation and practice. International Journal of Humanoid
Robotics, 1(4), 2004.

[3] C. Breazeal, G. Hoffman, and A. Lockerd. Teaching and working with
robots as a collaboration. In 3rd Int. Joint Conference on Autonomous
Agents and Multiagent Systems, pages 1030–1037, Washington, DC,
USA, 2004. IEEE Computer Society.

[4] S. Chernova and M. Veloso. Teaching multi-robot coordination using
demonstration. In Under submission.

[5] S. Chernova and M. Veloso. Confidence-based policy learning from
demonstration using gaussian mixture models. In Proceedings of Int.
Joint Conference on Autonomous Agents and Multiagent Systems, May
2007.

[6] S. Chernova and M. Veloso. Multi-thresholded approach to demon-
stration selection for interactive robot learning. In Proceedings of
3rd ACM/IEEE International Conference on Human-Robot Interaction
(HRI’08), March 2008.

[7] D. Grollman and O. Jenkins. Dogged learning for robots. In IEEE
International Conference on Robotics and Automation, pages 2483–
2488, 2007.

[8] A. Lockerd and C. Breazeal. Tutelage and socially guided robot
learning. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2004.

[9] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[10] M. N. Nicolescu and M. J. Mataric. Learning and interacting in

human-robot domains. In IEEE Transaction on Systems, Man and
Cybernetics, pages 419–430, 2001.

[11] M. N. Nicolescu and M. J. Mataric. Natural methods for robot task
learning: instructive demonstrations, generalization and practice. In
Proceedings of AAMAS’03, pages 241–248. ACM Press, 2003.

[12] J. Saunders, C. L. Nehaniv, and K. Dautenhahn. Teaching robots by
moulding behavior and scaffolding the environment. In Proceeding
of the 1st Conference on Human-Robot Interaction, pages 118–125,
New York, NY, USA, 2006. ACM Press.

(a)

(b)

(c)

Fig. 6. Three option class policies for the obstacle avoidance domain.


