
Learning Task Specific Plans through Sound and Visually Interpretable
Demonstrations

Harini Veeraraghavan and Manuela Veloso
Computer Science Department
Carnegie Mellon University
{harini, veloso}@cs.cmu.edu

Abstract— Autonomous robots operating in human environ-
ments will need to automatically learn to perform new tasks
without requiring the implementation of task-specific actions or
time-consuming deliberative planning at run-time. In this work,
we contribute a demonstration-based approach for teaching a
robot task-specific planners involving complex sequential tasks
with repetitions. Complexity of tasks results from step repeti-
tions, execution failures and conditionally executing plans. Our
demonstration approach uses sound and visually interpretable
cues to guide and indicate the various actions and objects to a
robot. The robot in turn performs the actions and generalizes
its execution into a task-specific planner. We demonstrate the
successful plan learning for two different tasks implemented in
real-world settings.

I. INTRODUCTION

A majority of tasks in human environments involve repe-
tition of a complex sequence of actions. The computational
requirements of AI planners limits their use in robotics espe-
cially where the actions are non-deterministic. Furthermore,
the generality of actions with respect to a task can make it
challenging for a planner to correctly sequence the actions.
For example, Fig. 1 depicts a robot executing different actions
that can be sequenced in different orders for performing a
variety of dance sequences. However, with no demonstration,
it is virtually impossible for a planner to automatically reveal
the correct order of a specific dance sequence.

In this work, we contribute a learning by demonstration
approach to learning task-specific planners. A demonstration
is the execution of a successful solution plan for a given task
consisting of a sequence of actions. We focus on the problem
of generalizing the same execution into a task specific plan.
A task specific plan makes use of a small set of programming
like constructs, namely, if-statements, while-loops, when-
conditional branches, and repeatUntil-conditional loops. A
variety of plans arising from any domain can be represented
using the task specific plan. In other words, the plan gener-
alization algorithm is not restricted to any specific domain or
plan. Learning repetitions allows the robot to easily scale up
to problems with any number of repetitions.

To demonstrate a plan, the teacher indicates the appropriate
actions and its relevant objects while the robot performs the
same actions in the appropriate order. As the robot performs
the actions, the teacher can easily include appropriate re-
covery steps for any observed action failures. The robot’s

actions are abstract and generate task specific actions upon
instantiation on specific objects as indicated by the teacher.
This in turn allows the robot to scale to a variety of related
tasks using the same action library.

In this work, we contribute a demonstration-based approach
for learning task specific plans for complex tasks with step
repetitions, execution failures, and conditional executions. By
having the robot perform the actions during the demonstra-
tion, the teacher can include appropriate recovery steps for
the observed action failures.

This paper is organized as follows. After discussing the
related work in Section II, we present the task domains in
Section III. We then present our learning method in Sec-
tion IV, results of plan learning in Section V, and conclude
the paper in Section VI.

II. RELATED WORK

Planning based approaches such as in [1], [2], [3], [4]
suffer from the computational burden resulting from search
during run-time. Learning by demonstration approaches such
as in [5], [6], [7], [8], [9] learn generalized plans from an ob-
served demonstration of the task. Although the works in [5],
[6], [7] learn sequence of actions, repetitions are restricted
to single actions. The work in [9] addresses the problem
of learning complex looping plans applied only to simu-
lated domains with non-failing actions. The works in [10],
[11] learn sequential plans by generalizing routine behaviors
and by acquiring exact plans without any generalization,
respectively. With the exception of the works in [4], [7], all
the afore-mentioned works ignore non-deterministic actions.
The work in [4], [12] addresses non-deterministic domains
by planning at run-time or by employing transformational
planning with pre-specified transformation rules. On the other
hand, the work in [7] resolves non-deterministic outcomes by
associating a specific action that allows the robot to recruit
a human to help complete the task upon failure. Our work
adds to this work by learning conditionally executing plans
with repetitions due to execution failures. The work in [11]
addresses the problem of learning the conditional executions.
Our work complements the work in [11] by generalizing
conditional executions. Another important issue in robotics is
the ability to scale to a variety of tasks using the same set of
actions or behaviors. The work in [13] presents a hierarchical



snow-board gorilla airplane hip roll walk dance

Fig. 1. Example snapshots of dancing actions performed by the robot Task 2.

architecture for representing abstract behaviors that can be
instantiated for a variety of problems in the same class of a
task. In a similar vein, our work uses abstract actions that
instantiate into task-specific actions for different objects and
used as planning operators for task-specific plans.

III. REFERENCE EXAMPLE LEARNING TASKS

In this work, we make use of two different experimental
task domains to demonstrate plan learning. The two tasks
are Clearing the Table and Learning to Dance as depicted in
Fig. 2 and described in the following subsections.

A. Task 1: Clearing the Table

The task consists of applying a repeated sequence of
actions to move all the objects from a table into a destination
box. The robot is assumed to be able to perform some basic
actions such as Search, Pick, Carry, Drop, etc. However, the
robot does not know in what sequence the actions need to
performed to achieve the task or the association of appropriate
objects to an action. Additionally, actions such as Pick and
Carry non-deterministically result in the robot holding or
failing to hold an object at the end of the action. The robot
actions descriptions are in Fig. 3.

The main challenge in the task’s execution results from the
motion of the robot which gives rise to non-deterministic
execution of the various actions. For example, unless the
robot positions itself at a specific distance and angle with
respect to an object, it will fail to pick up the object.

(a) pick (b) carry (c) drop
Task1 : Clear Table

Task 2 : Learn Dance

Fig. 2. The example tasks and the snapshots of actions.

B. Task 2: Learning to Dance

This task consists of performing a specific sequence of
actions in response to an observed visual target. Fig. 2 shows

snapshots of an action sequence performed by the SONY
QRIO robot on observing a visual target (a red colored
SONY AIBO robot). The dance step actions do not change
the state of the world. Such actions are clearly challenging
for a robot to sequence automatically. A sequence of actions
are however associated with applicability conditions. Fig. 3
shows an example definition of a robot action for Task 2.

C. Elements of Plan Learning Domain

In this subsection, we define the basic terms used in
the learning. The robot actions are time extended abstract
robot behaviors composed of a pre-specified sequence of
atomic motions. By using the robot action descriptions and
the objects indicated by the teacher during demonstration
the robot instantiates the appropriate task specific action.
The difference between a task specific action and a robot
action is that the former is associated with a typed list
of arguments, preconditions and effects whereas the latter
is more general and applicable to any type of object as
depicted in Fig. 3. The preconditions and effects of a task
specific action are composed of predicates or propositions
where every predicate is a symbolic representation of a visual
observation expressing the relation of the objects in the
arguments of the predicate. Our earlier work in [14] presents
details of transforming the robot actions into task specific
actions.

IV. LEARNING TASK SPECIFIC PLANS THROUGH
DEMONSTRATION

A. Approach Overview

Our approach to learning task specific plans consists of
two phases, a demonstration phase and a learning phase. The
result of the demonstration phase is an instantiated sequence
of the executed task specific actions. The learning algorithm
uses the same execution sequence to obtain a generalized task
specific plan.

B. Demonstration Phase

The goal of demonstration is to (a) provide the set of task
specific actions and the relevant objects, and (b) provide a
correct example instantiation of the plan for accomplishing
the same task.

The Fig. 4(A) depicts the demonstration architecture used
in this work. Fig. 4(B) depicts the steps in instantiating
a single task specific action PickYBall(ID1 YBall) through
demonstration. As shown, the teacher indicates the various
objects and the actions to enable the robot instantiate the
task specific actions. Teacher uses sound to transition the



Fig. 3. Action definitions for Task 1 and Task 2.

(A) Demonstration architecture (B) Task specific action instantiation (C) Action sequence

Fig. 4. The demonstration architecture, an example instantiation of a task specific action, an example instantiated action sequence.

robot to different demonstration modes as well as to move
it to appropriate locations in the scene when required. The
robot in turn moves by localizing the sound directions and
stops on detecting appropriately colored “stop signal” card
when displayed by the teacher.

Rest State The rest state (step 1 in Fig. 4(B) ) precedes every
cycle of the task specific action instantiation. Upon sound
activation, the robot transitions to the object state as depicted
in step 2 in Fig. 4(B).

Object State In the object state, the robot instantiates the
objects that belong to the argument list of the current task
specific action. Fig. 4(A) depicts the various steps involved in
this state. The robot obtains the relevant objects by detecting
and tracking laser spots as highlighted by the teacher (step 3
in Fig. 4(B)) to obtain a region of interest (ROI). The ROI is
a bounding box enclosing all the tracked spots. Then using
a known model of the object such as color histogram or
RGB color thresholds, it identifies the object in the (ROI) as
depicted in step 4 in Fig. 4(B). After identifying the object,
the robot instantiates the object with an assignment index and
stores the object as a object type, object identification pair.
The object’s type is the symbolic name for the object’s model.

To consistently identify the object across different actions, the
robot maintains an internal store of the object identification
which is deleted based on the executed action. For example,
an action dropObject x1 y1will remove the object x from the
internal store.

Action State The teacher enables the transition of the robot
from the object state to the action state through sound.
Once in the action state, the teacher indicates the action
using a colored card as depicted in step 5 in Fig. 4(B)).
The robot identifies the action by applying color thresholds
on the observed image and instantiates the corresponding
task specific action. It then computes the appropriate action
preconditions by transforming the visual measurements into
predicates. Next, the robot executes the action (step 6 in
Fig. 4(B)), obtains the effect predicates (step 7 in Fig. 4(B)),
stores the action, and transitions back to Rest State. After
the demonstration, an entire sequence of instantiated actions
as depicted in figure C in Fig. 4 is obtained. The action 2
in figure C of Fig. 4 corresponds to the task specific action
depicted in figure B of Fig. 4.

C. Learning Phase
The goal of learning is to produce a generalized task-

specific plan for the demonstrated task. Learning proceeds



in two stages. In the first stage, the action sequence obtained
from the demonstration is analyzed to extract the partial step
ordering constraints using an algorithm as in [15]. The algo-
rithm links steps that share a producer-consumer relationship,
where the effect of the producer step is a precondition of
the consumer step. Additionally, the algorithm annotates the
links with the precondition linking the two steps as depicted
in Fig. 5.

Fig. 5. Annotated partial step orderings of action sequence

In the second stage of learning, the annotated partial step or-
derings of the demonstration is generalized into a task specific
plan. The extracted plan is represented using a domain spe-
cific planner language (dsPlanner) similar to the work of [9].
We represent the plan using programming like constructs such
as parameterized If statements for step preconditions, While
loops for parallel sequences of a loop, When statements for
representing the conditions of conditional plans, and Repeat
Until loops for plan recovery structures with repetitions.

Fig. 6. Example of a loop

Algorithm 1 Learning Task Specific Plans from Example
Input: Partial Order (PO) Graph
Output: Generalized Task Specific Plan

1: Transitively reduce PO Graph
2: Detect LOOPS(Actions a1, . . . ,aN )
3: COMBINE Conditional Actions
4: COMBINE loops(Loops L1, . . . ,Lm)
5: For all Loop and Conditional branches Sb do
6: Detect REPEAT UNTIL LOOPS(Sb)
7: MERGE Repeat until loops
8: Order Structures and steps by links.

Loops represent sequences of actions operating on different
instances of a loop variable. Hence, the branches of a loop
execute in parallel as depicted in Fig. 6. Two actions opA(o1),
and opB(o2) are said to be in a loop iff the actions opA, opB
do not have any producer-consumer links and are equivalent.
Two actions are equivalent (opA≡ opB) when they have the
same action names and argument types. The condition for a
loop can be expressed as,{

opA≡ opB∧LINK(opA,opB) = /0, then True
otherwise False

Similarly, two loops L1(?vi) and L2(?v j) can be combined
into a single loop iff the action instances make use of the
same values of the loop variables. In other words,{

vi = v j, then T RUE
otherwise FALSE (1)

When condition is associated with a conditionally executing
sequence. The condition consists of a conjunction of predi-
cates upon which a sequence of actions is executed. Fig. 7
represents two conditional plans that execute on different
conditions X1 and X2. A conditional plan is obtained by
combining actions or loops having the same applicability
conditions.

Fig. 7. Example of a conditional plan.

Algorithm 2 Learning Repeat Until Loops
Input: Execution Sequence Seq
Output: All repeat until loops

1: idx ←− 0
2: Repeat
3: {idx,opAt ,opAt+∆}←− Find Non-deterministic action (Seq,

idx)
4: If idx < Seq length then
5: Get Actions opX = {opxt+1, . . . ,opxt+∆−1} in Seq
6: Convert opX into parameterized operators
7: Order operators by ordering constraints and add to repeat

until loop
8: idx←− t +∆+1
9: Until idx < Seq length

Repeat Until Loops represent repetitions of one or more
actions occurring on the same instance of a loop variable
such that every repetition of an action has a strict ordering
constraint with respect to its previous occurrence in the loop.
The repeat until loop is associated with a terminal action
that starts and terminates the loop. For example, the action
P(o1) in Fig. 8 is the terminal action of the depicted loop. The
terminal action is a non-deterministic action and its effect that
terminates the loop is the condition for the repeat until loop.
Two repeat until loops can be merged when the condition
and the body of the loops match exactly. Two bodies match
when every action in the body of the two loops are equivalent.

Fig. 8. Example of a repeat until loop.

The algorithm for generalizing the action sequence into a task



specific plan is depicted in Alg. 1. As shown, in the Line 1
of Alg. 1 the partial order graph is first transitively reduced
to simplify the computation for plan extraction. In the next
step as depicted in Line 2 of Alg.1, loops are detected on the
individual actions using the definition as in Eqn. 1. In Line
3 of Alg.1 the actions are combined to obtain the longest
sequence of conditional action sequence. The actions are
combined by iteratively matching the applicability conditions
of the merged condition blocks and single actions. In Line
4 of the Alg.1, the different loops are combined using the
definition in Eqn. 1 to obtain the longest looping action
sequence. Finally, the repeat until loops are detected from
the branches of the loops and conditional plan sequences not
associated with any loop using the Alg.2. Individual branches
are tested for repeat until loops as the actions in a repeat until
loop correspond to the same instance of the loop variable. The
repeat until loops are merged in Line 7 of Alg. 1 by exactly
matching the conditions and bodies of the loops.

The algorithm for detecting repeat until structures is depicted
in Alg. 2. As shown, the algorithm successively searches the
sequence for repeat until structures. A repeat until structure is
detected using its definition as described earlier by first iden-
tifying the terminal action consisting of the earliest occurring
non-deterministic action (Line 3 of Alg.2) with at least two
occurrences. Lines[5-7] of Alg. 2 depicts the extraction of the
non-terminal actions in the repeat until structure. Actions are
instantiations of operators and by parameterizing the actions,
the algorithm merges the actions into operators in Line 6 of
Alg.2.

V. PLAN LEARNING EXPERIMENTS AND DISCUSSION

The goal of the experiments was to test the efficacy of the
learning from demonstration approach. All the demonstration
experimental runs were performed in an indoor environment
using an experimental setup as depicted in the Fig. 2. The
goal of task 1 was to test plan learning for tasks with
repetitions and non-deterministic action outcomes. The envi-
ronment was controlled to limit the amount of uncertainties
from vision. Uncertainties arise from both robot motion
and visual sensing. An example demonstration run and the
corresponding learned plan is depicted in Fig. 9. As shown,
the algorithm correctly transforms the robot actions into task
specific actions and learns the correct task specific plan.
The correctness of the learned plan was verified by manual
inspection. Despite different sequence lengths of the repeat
until loops, {AY (id1);PY (id1);AY (id1);PY (id1)} in the first
branch and {AY (id2);PY (id2)} in the second branch depicted
in Fig. 9, the algorithm correctly merges the two branches
into a single repeat until loop.
Fig. 10 depicts the demonstration trace and the generalized
plan for the Task 2. As shown, the algorithm correctly
identifies the conditional plan and the loop. Fig. 11 depicts
the demonstration trace and the generalized plan for the
Task 2 for two different conditional plans resulting from two
different visual percept.
The presented approach learns correct looping plans as long

Fig. 9. Task specific plan for a demonstrated solution for Task 1.

as the demonstrations include at least two instantiations of
the same sequence of actions (instantiated with different loop
variables). The approach also learns failure recovery plans
thereby making the learned planners robust to some of the
non-determinism in the environment. As the learned plans are
executable, there is no need to invoke a search based planning
algorithm during execution. Also, the ordering of actions in
sequence automatically constrain the visual percept that the
robot will attend to, thereby, ensuring that the robot executes
the task correctly. For example, when performing an action
to pick a yellow colored ball, the robot will not even process
the visual information corresponding to green colored balls.

Although we present the results of plan learning only for two
different domains, the algorithms are general and applicable
to a variety of domains. In a different work, we have
successfully applied the same plan generalization algorithms
to extract plans for scheduling using web services [16]. The
dsPlanner language used to represent the plans itself can be
specified easily ahead of time. The work that is closest to the
presented work is the work in [9] that learns looping plans
in domains where actions do not have any failed executions.
Our approach extends this work by analyzing plans that have
conditional branches as well as failed executions.



Fig. 10. Task specific plan with loop, conditional branch for Task
2.

Fig. 11. Task specific plan with conditional branches for Task 2.

VI. CONCLUSIONS

In this paper we presented an approach to learning task
specific plans from sound and visually interpretable demon-
strations. Our demonstration approach makes use of easy
to detect visual cues and correctly transforms the observed
demonstration into an execution sequence of instantiated task
specific actions and successfully generalizes the observed
execution sequence into an executable task-specific plan.
Our approach has been implemented and tested on two
different tasks with different plan structures under different
experimental settings and different visual objects.

VII. ACKNOWLEDGEMENTS

The authors would like to thank SONY corporation for
providing the SONY QRIO robots and the robot specific
software libraries for this research.

REFERENCES

[1] N. Nilsson, “Shakey the robot,” SRI International, AI Center, SRI
International, Menlo Park, CA, Tech. Rep. 323, 1984.

[2] M. Schoppers, “Universal plans for reactive robots in unpredictable
environments,” in In Proc. Intl. Joint Conf. AI, 1987, pp. 1039–1046.

[3] K. Haigh and M. Veloso, “Interleaving planning and execution for
asynchrnous user requests,” Autonomous Robots, vol. 5, no. 1, pp. 79–
95, 1998.

[4] M. Beetz, T. Arbuckle, T. Belker, A. Cremers, D. Schulz, M. Ben-
newitz, W. Burgard, D. Hähnel, D. Fox, and H. Grosskreutz, “Inte-
grated, plan-based control of autonomous robots in human environ-
ments,” IEEE Intelligent Systems, vol. 16, no. 5, pp. 56–65, 2001.

[5] N. Koenig and M. Mataric, “Demonstration-based behavior and task
learning,” in Working Notes AAAI Symposium To Boldly Go Where No
Human-Robot Team Has Gone Before, 2006.

[6] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching: ex-
tracting reusable task knowledge from visual observation of human
performance,” IEEE Trans. on Robotics and Automation, vol. 10, no. 6,
pp. 799–822, 1994.

[7] M. Nicolescu and M. Mataric, Models and Mechanisms of Immitation
and Social Learning in Robots, Humans, and Animals: Behavioral, So-
cial and Communicative Dimensions, 2006, ch. Task learning through
immitation and human-robot interaction, pp. 407–424.

[8] C. Breazeal, G. Hoffman, and A. Lockerd, “Teaching and working with
robots as a collaboration,” in Proc. Autonomous Agents and Multiagent
Systems, 2004, pp. 1028–1035.

[9] E. Winner and M. Veloso, “Loopdistill: Learning domain-specific
planners from example plans,” in In ICAPS Workshop on Planning
and Scheduling, 2007.

[10] S. Chernova and R. Arkin, “From deliberative to routine behaviors: a
cognitively inspired action-selection mechanism for routine behavior
capture,” Adaptive Behavior, vol. 15, no. 2, pp. 199–216, 2007.

[11] P.E.Rybski, K. Yoon, J. Stolarz, and M. Veloso, “Interactive robot task
training through dialog and demonstration,” in Proc. Human Robot
Interaction Conf., 2007.

[12] A. Müller, A. Kirsch, and M. Beetz, “Transformational planning
for everyday activity,” in Proc. Intl. Conf. Automated Planning and
Scheduling, 2007, pp. 248–255.

[13] M. Nicolescu and M.J.Matarić, “A hierarchical architecture for
behavior-based robots,” in Proc. Intl. Joint Conf. Autonomous Agents
and Multi-Agent Systems, 2002, pp. 227–233.

[14] H. Veeraraghavan and M. Veloso, “Teaching sequential tasks with
repetition through demonstration,” in (Short Paper) Proc. Intl. Conf.
on Autonomous Agents and Multi-Agent Systems, Paghadam, Parkes,
Muller, and Parsons, Eds., 2008.

[15] E. Winner and M. Veloso, “Analyzing plans with conditional effects,”
in Proc. Intl. Conf. Artificial Intelligence and Planning Systems, 2002,
pp. 23–33.

[16] H. Veeraraghavan and M. Veloso, “Learning looping plans for web ser-
vice composition from example execution of web services,” Carnegie
Mellon University, 5000 Forbes Ave, Pittsburgh, USA, technical report
CMU-CS-08-124, May 2008.


