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Abstract— In this paper, we present a new method that uses
random search for online planning of biped walking, given a
feasible footstep plan. The Linear Inverted Pendulum dynamic
model and the Zero Moment Point concept are employed to
solve the walking problem. We consider walk planning as the
choice of a sequence of ZMPs leading to a stable walk that
satisfies all the dynamic and mechanical constraints of the
robot. We contribute a novel online sampling algorithm to
efficiently search for such ZMP sequence. We demonstrate the
effectiveness of the algorithm by successful combined walking
tasks in a faithful simulation of a full-body humanoid robot .

Index Terms— Humanoid robot, walking planning, sampling
search, online planning, linear inverted pendulum (LIP), zero
moment point (ZMP)

I. I NTRODUCTION

Biped motion planning is a challenging problem in hu-
manoid robotics research, because of nonlinear dynamics
and the high dimensionality of the state space. Sampling-
Based Planning[1] was introduced to solve footstep planning
and has enjoyed much success in robot motion planning.
However, it is still difficult to apply random search to online,
low-level planning because of solution efficiency.

This paper presents a new method, which we name ZMP
Sampling Search, as a universal solution for the planning
of biped motions with constant torso height. Our approach
employs a random search algorithm to choose the ZMP
sequence for our simplified walking. Our algorithm is able to
achieve online planning for any given feasible footstep plan.

The rest of the paper is organized as follows: Section II
gives an overview of related work. Section III introduces a
simplified model of biped walking and the dynamic models
which are used for our walk planning. Section IV describes
the ZMP sampling search algorithm that solves the walking
problem. Section V presents the performance of our algo-
rithm and experimental results. We conclude in Section VI.

II. RELATED WORK

In recent biped motion research, adaptability, online, uni-
versality and intelligence are addressed. RRT and other
search techniques have been introduced to solve global
footstep planning problems [7][8][9]; this demonstrates the
possibility of using online search in biped motion planning
to improve walking flexibility.

However, in lower level planning, such as walking pattern
generation, the dynamics of the robot need to be taken
into account. Offline planning is widely applied to these
problems[6]. The Linear Inverted Pendulum (LIP) model
[2][3] approximates the dynamic process of biped motion;
Zero Moment Point (ZMP) [4] is a powerful constraint that
ensures a stable walk. In practical applications, different
kinds of motions are predefined by different trajectory plan-
ners; the robot is able to achieve the motions and keep
its balance using the feedback from its sensors. Although
genetic algorithms [11] and Monte Carlo methods [12] have
already been used for offline optimization, it is difficult to
employ an adaptive solver based on random search in the
planning, because biped walking is a complex nonlinear
dynamic process.

RRT search has been successfully applied in footstep
planning and other motions of humanoid robots [10]. RRT
employs a random method to find a solution effectively;
it also reduces the dimension of the planning problem by
using a universal ”AutoBalancer” [13] as a dynamic filter. In
this work, we employ an online random search algorithm to
find a motion plan that satisfies the mechanical and dynamic
constraints of biped walking.

III. D YNAMIC MODELS

A. 3D-LIP and ZMP

We use the Linear Inverted Pendulum (LIP) to describe
the approximate movement of a biped walking when the
robot is supporting its body on one leg. A 3D linear inverted
pendulum is an inverted pendulum which moves in a specific
plane. If the constraint plane is a horizontal plane, the physics
model shown in Figure 1. can be described as follows [5]:
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whereg is the acceleration due to gravity,h is the given
height, m is the mass of the pendulum,(x, y), (ẍ, ÿ) is
the position and the acceleration of the pendulum in the
constraint plane, andτx, τy are the torques around thex-
axis andy-axis, respectively.



Fig. 1. 3D Linear Inverted Pendulum

The Zero Moment Point (ZMP) is another important
concept in biped walking. The ZMP is defined as a point on
the ground where the sum of all the moments (due to gravity
and inertial forces) equals zero [6]. When the ZMP is within
the convex hull of the contact points between the feet and
the ground, the robot can walk in a stable manner; the feet
of the robot will fully contact the ground. For bipedal robots
with touch sensors attached under their feet, it is especially
important to adjust the balance using the feedback provided
by these sensors.

In a 3D LIP, as shown in Figure 1, the ZMP can be
calculated by

px = −
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where(px, py) is the ZMP. We can rewrite (1) and (2) as
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Solving (5) as a differential equation, we get the relation-
ship between a final state and an initial state in x-axis of a
LIP including the position and the velocity:
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where (xi, vi) is the initial state, (xf (t), vf (t)) is the final
state at timet, I is a 2×2 identity matrix andA(t) is a state
transition matrix which only depends on the durationt:
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q is the constant:
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By defining the state of 3D LIP at timet as:

X(t) =

[

x(t) y(t)
ẋ(t) ẏ(t)

]

(10)

and the control input as:

U =

[

px py

0 0
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(11)

we obtain:

X(t) = A(t)X(0) + [I − A(t)]U (12)

B. Biped Robot

The humanoid robot Nao (Figure 2) is used for our
research and simulation experiments. Nao is a new type of
full-body humanoid robot produced by Aldebaran Robotics
[14]. The height of the robot is about 60 cm and the weight
is about 4.5 kg. The robot has 21 degrees of freedom (DOF).
There are two DOFs in the head, four DOFs in each arm, five
DOFs in each leg, and one in the pelvis (shared between the
legs). This robot model is able to provide enough flexibility
for our research.

Fig. 2. Model of the humanoid robot Nao and its joints.

C. Simplified Walking

Biped walking is a complex nonlinear dynamic process.
It can be considered as a periodic phenomenon. A whole
walking cycle consists of two phases: thedouble-support
phaseand thesingle-support phase. Although the double-
support phase is only about 20% of the duration of a walk
cycle [6], it is important for making the walk more stable
and reducing the impact between the swing foot and the
ground. However, the single-support phase is the key part
of biped walking. During the single-support phase, the robot
must place its swing foot in position for the next step while
keeping its balance.

In this paper, we simplify biped walking by considering
it as a series of single-support phases for the sampling
search algorithm, and focus on choosing the ZMPs in these
phases. The double-support phase can be planned according
to the ZMP decisions in a lower-level planning to achieve a
complete walking. Our simplified model of biped walking is
defined as follows:

1) The robot is considered as a linear inverted pendulum
which is supported by one of its feet. The mass of the robot
is distributed on the Center of Mass (CoM) which moves
in a horizontal plane with a constant height. The effects of
inertia are ignored.

2) The walking process only consists of a series of
single-support phases. The robot uses each of its legs as
the supporting leg in turn. Theoretically, one single-support
phase is able to switch to the next one immediately.

3) While in the single-support phase, we only use a single
ZMP decision instead of a ZMP trajectory.

Figure 3 shows our biped walking planner approach based
on ZMP sampling search. The inputs of the planner consist
of a footstep plan, the initial state, and the final state of the
CoM. A footstep plan, including the pose and the duration
of each footstep, comes from higher-level planning, such as
an RRT path search [7], A-star search [8], a static footstep
library, or as created by hand by a human. The output of this



walking planner is a sequence of ZMP decisions. A detailed
description of the algorithm will be given in the next section.

Fig. 3. Our biped walking planner approach.

The ZMP sampling search planner is supported by lower-
level algorithms which provide CoM trajectory generation,
trajectory modification for the double-support phase, and
calculation of the desired joint angles by using inverse
kinematics. Due to the limitations on paper length, the details
of these lower-level functions are not described in this paper.

IV. ZMP SAMPLING SEARCH ALGORITHM

We introduce two ZMP sampling search algorithms to find
the ZMP sequence as the solution of a biped walk. One is
the unidirectional search which works when the robot does
not have a specific final state, the other is the bidirectional
search which can achieve a given final state.

A. Definitions

The following definitions are used in the algorithm de-
scription:

1) Foot PoseFk: A tuple with a 2D position on the
ground and a direction to describe the gesture of the sup-
porting foot in the global reference frame. In this paper, we
assume that the shape of the underside of a foot is a rectangle.

2) States: The position and velocity of the CoM in the
constraint plane in the global reference frame.

3) Kinematic RangeRk: A convex polygon which can be
any shape inside the reachable area of the CoM as large as
possible.

The CoM of the robot has a 2D reachable area in the
constraint plane because of the leg shapes and the joint
angle limits of the robot. Generally, the reachable area has
an irregular shape. For the humanoid robot Nao, the shape
only depends on the poses of the robot’s feet because of
the decrease of DOF by the shared joint in pelvis. For other
bipedal robots with 6 DOFs in each leg, the orientation of
the torso should be specified or related with the poses of feet
for us to obtain the reachable area.

For the purpose of algorithm efficiency, rectangles are used
to represent the kinematic range, as shown in Figure 4. We
build a lookup table to store the kinematic ranges offline;
this table can be used online for our search.

Fig. 4. Reachable area and kinematic range.

4) K-Steps Sampleπk: A tuple πk = (p1, p2, · · · , pk, s).
It includesk 2D points and a final state. Thekth point is
a ZMP decision to control the walking in thekth step. The
final state is the ending state of the CoM of thekth step. A
zero-step sample has only a final state.

5) K-Steps Sample SetSk: A set of a certain num-
ber of k-steps samples. It has the following form:Sk =
{πk

1 , πk
2 , · · · , πk

n}.

B. Algorithm of Unidirectional Search

Given a footstep plan and an initial state of the CoM, we
use a unidirectional search algorithm to search for a sequence
of ZMP points that make the robot follow the footstep
plan from the initial state. A valid solution satisfies two
kinds of constraints: 1)Dynamic Constraints: the kth ZMP
decision should be inside thekth foot pose. 2)Mechanical
Constraints: the position of the ending state of thekth step
should be inside thekth kinematic range. Table I shows the
pseudocode for our algorithm. We explain each procedure in
detail.

TABLE I

PSEUDOCODE FOR OUR UNIDIRECTIONAL SEARCH ALGORITHM.

SEARCH (F1..k, t1..k , R1..k, sinit)

1 S0 ← {(sinit)}
2 for i = 1 to k do
3 Si ←GENERATE(Si−1, Fi, ti, Ri)
4 if (Si = ø) then ReturnFailure
5 Si ← Si∪ CONVEX EXPAND(Si)
6 ReturnSk

GENERATE (Sk−1, Fk, tk , Rk)

1 Sk ← ø
2 for i = 1 to M do
3 πk−1 ← RANDOM ELEMENT(Sk−1)

// πk−1 = (p1, p2, · · · , pk−1, s)
4 pk ← RANDOM POSITION(Fk)
5 snew ← LIP(s, pk, tk)
6 if (INSIDE(snew, Rk)) then
7 Sk ← Sk ∪ {(p1, p2, · · · , pk−1, pk, snew)}
8 if (|Sk| = Sizegen) then ReturnSk

9 ReturnSk

CONVEX EXPAND (Sk)

1 Sk
new ← ø

2 for i = 1 to Sizeexp do
3 πk

1
← RANDOM ELEMENT(Sk)

4 πk
2 ← RANDOM ELEMENT(Sk)

5 α←RANDOM VALUE(0, 1)
6 Sk

new ← Sk
new∪ LINEAR COMBINE(πk

1 , πk
2 , α)

7 ReturnSk
new

1) Main Procedure of Unidirectional Search:The main
loop of the unidirectional search algorithm is an itera-
tive process. The inputs are the Foot PosesF1..k of k

single-support phases, Supporting Durationst1..k, Kinemat-
ics RangesR1..k and the initial state of the CoMsinit.
The procedure generates ani-steps sample set with an
(i− 1)-steps sample set in theith loop. The loop terminates
whenever there is a failure to generate any sample set. The



CONVEX EXPAND function is used to ensure that each
sample set is of a certain size.

Assume ak-steps sample set isSk = {πk
1 , πk

2 , · · · , πk
n}

={(p1,1, p1,2, · · · , p1,k, s1), (p2,1, p2,2, · · · , p2,k, s2), · · · ,
(pn,1, pn,2, · · · , pn,k, s2)}. Then, we obtain a ZMP solution
from thek-steps sample set with the function

Γ(Sk) = (
1

n

n
∑

i=1

pi,1,
1

n

n
∑

i=1

pi,2, · · · ,
1

n

n
∑

i=1

pi,k) (13)

The solution is the average center of the feasible solutions,
given the sample set. Due to noise and other disturbances,
the average solution is considered much safer than the border
solutions. The solution satisfies all the constraints. It can be
proved by mathematical induction, similar as the proof in the
Convex Expansion section below.

2) Generation:The GENERATE function is the core of
our sampling-based search process. GENERATE returns a set
of samples of possible ZMP values by sampling the space
of the robot foot and validating the samples according to the
LIP model.

In each attempt to generate ak-steps sample, the al-
gorithm selects an element from the (k − 1)-steps sample
set randomly, and uses a random ZMP decision inside the
supporting foot to obtain a new state of the CoM. The new
k-steps sample is created and added to thek-steps sample set
when the new state satisfies the kinematic range constraint.
The size of the sample set will not exceed thegenerated size
Sizegen.

The function LIP(s, pk, tk) calculates the final state, given
an initial states, a ZMP decisionpk and a duration timetk
according to (12).

Our GENERATE function is an incomplete search process.
The loop terminates inM iterations whenever it getsSizegen

samples, whereM is a given constant. Thus, when the
generation function returns an empty sample set, we cannot
determine whether a sample exists. However, we do know
that it is very difficult to find a sample, so the solution (if
it exists) must be in a tiny area of the solution space. In a
complex nonlinear system full of noise, it is unwise to use
a solution that demands high-precision robot control; in this
case, the higher-level planner should notice the problem and
adjust its footstep plan accordingly.

3) Convex Expansion:Convex expansion is an important
technique to reduce the computation time of ZMP sampling
search. The convex expansion function creates ak-steps
sample by repeatedly combining two randomly selectedk-
steps samples using a linear combination. Assuming twok-
steps samples are selected:πk

1 = (p1,1, p1,2, · · · , p1,k, s1)
πk

2 = (p2,1, p2,2, · · · , p2,k, s2), a linear-combinedk-steps
sample can be calculated as linear combinations by a random
valueα which is between0 and1.

πk
com = (αp1,1 + (1 − α)p2,1,

αp1,2 + (1 − α)p2,2,

· · · ,
αp1,k + (1 − α)p2,k,

αs1 + (1 − α)s2)

(14)

Claim: A linear-combined sample satisfies all the dynamic
and mechanical constraints.
Proof: Let Fk denote the area on the ground occupied by
the kth supporting foot with the pose ofFk. ∀i, p1,i ∈ Fi,
p2,i ∈ Fi; the shape ofFi is a rectangle, which is a convex
polygon. Therefore, when it is given a valueα ∈ (0, 1), the
point pcom,i = αp1,i + (1 − α)p2,i satisfiespcom,i ∈ Fk.

We define the initial state asX0, the state of the kth step
asXk, the kth state transition matrix asAk, the input control
(which depends on thekth ZMP decision) asUk and the area
expressed by the kinematic rangeRk asRk. Let e denote a
vector [1, 0]T so that the position of a state can be write as
XT e.

For the initial state,X1,0 = X2,0 = X0. We obtain
Xcom,0 = αX1,0 + (1 − α)X2,0 = X0.

Assume that we are able to get thekth stateXcom,k by
using the formerk combined ZMP decisions; also assume
that it satisfies thatXT

com,ke ∈ Rk. According to (12), we
get:

X1,k+1 = Ak+1X1,k + (I − Ak+1)U1,k+1

X2,k+1 = Ak+1X2,k + (I − Ak+1)U2,k+1

Then, Xcom,k+1 = αX1,k+1 + (1 − α)X2,k+1 =
α[Ak+1X1,k + (I − Ak+1)U1,k+1] + (1 − α)[Ak+1X2,k +
(I − Ak+1)U2,k+1] = Ak+1[αX1,k + (1 − α)X2,k] +
(I − Ak+1)[αU1,k + (1 − α)U2,k] = Ak+1Xcom,k + (I −
Ak+1)Ucom,k+1

Therefore,Xcom,k+1 can be achieved by applying thekth
combined ZMP decision to the kth combined state, and it
satisfies thatXT

com,k+1
e ∈ Rk+1, because the shape ofRk

is a rectangle which is also a convex polygon.
Then, we can conclude that a linear-combined sample

satisfies all the mechanical and dynamics constraints.�

The number of expanded samples is theexpanded size
Sizeexp. The performance of the algorithm is directly af-
fected by the generated size and the expanded size. This
analysis is shown below, in Section V.

C. Algorithm of Bidirectional Search

In regular biped walking, it is also important for the robot
to arrive at a specific state—for example, to stop moving.
The bidirectional search algorithm (shown in Table II) can
be used to find the ZMP solution, when the walking planner
is given an initial state, a final state, and a footstep plan.

1) Main Procedure of Bidirectional Search:Our bidirec-
tional search algorithm can be considered as a combination
of two unidirectional searches. One direction is from the
first step to the last step and the other is in the opposite
direction. The two unidirectional searches are connected by
two steps in the middle of the footstep plan. We name the
returned sample sets ashead sample setand tail sample set,
respectively.

The function REV(s), which appears in the algorithm,
returns areverse state, defined as follows:

REV (

[

x(t) y(t)
ẋ(t) ẏ(t)

]

) =

[

x(t) y(t)
−ẋ(t) −ẏ(t)

]

(15)

A reverse state is a virtual state which is used for connecting
the searches in the two different directions.



TABLE II

PSEUDOCODE FOR OUR BIDIRECTIONAL SEARCH ALGORITHM.

BI-SEARCH (F1..k, t1..k , R1..k−1, sinit, sfinal)

1 d← ⌊k/2⌋ − 1
2 e← ⌊k/2⌋+ 1
3 Sd

head
←SEARCH(F1..d, t1..d, R1..d, sinit)

4 Sk−e
tail
←SEARCH(Fk..e+1, tk..e+1,

Rk−1..e, REV(sfinal))
5 if (Sd

head
= Failure or Sk−e

tail
= Failure) then

6 ReturnFailure
7 Sk ←CONNECT(Sd

head
, Fd+1, td+1,

Sk−e
tail

, Fe, te, Rd+1, sfinal)

8 if (Sk = ø) then ReturnFailure
9 ReturnSk

CONNECT (Sm
1 , F1, t1 , Sn

2 , F2, t2 , R, s)

1 k ← m + n + 2
2 Sk ← ø
3 for i = 1 to W do
4 πm

1
← RANDOM ELEMENT(Sm

1
)

// πm
1

= (p1,1, p1,2, · · · , p1,m, s1)
5 πn

2 ← RANDOM ELEMENT(Sn
2 )

// πn
2

= (p2,1, p2,2, · · · , p2,n, s2)
6 z1, z2 ←CONNECTZMP(s1, t1, s2, t2)
7 snew ←LIP(s1, z1, t1)
8 if (INSIDE(z1, F1) and

INSIDE(z2, F2) and
INSIDE(snew , R)) then

9 Sk ← Sk ∪ {(p1,1, p1,2, · · · , p1,m, z1, z2,
p2,n, p2,n−1, · · · , p2,1, s)}

10 if (|Sk| = Sizecon) then ReturnSk

11 ReturnSk

Claim: Given a movement of the CoM fromX1 to X2 with
transitionA and control inputU , there necessarily exists a
reverse moment as shown in Figure 5. from REV(X2) to
REV(X1) with the same control input.

Fig. 5. A Pair of Inverse Movements

Proof: Let E denote

[

1 0
0 −1

]

. We get REV(X)=EX and

EU = U . According to the definition ofA as (8), we obtain
EA = A−1E, and according to (12), it satisfies
X2 = AX1 + (I − A)U
⇒ EX2 = EAX1 + E(I − A)U
⇒ EX2 = A−1EX1 + (E − A−1E)U
⇒ AEX2 = EX1 + (AE − E)U
⇒ EX1 = AEX2 + (I − A)EU
Therefore, REV(X1)=A·REV(X2)+(I − A)U . We obtain

a reverse movement from REV(X2) to REV(X1) with the
same control inputU . �

2) Connection: Connection is also a random search
process. The search repeatsW times to collect the con-

nected samples. In each attempt, the algorithm selects one
random elementhead, from the head sample set, and
one random elementtail, from the tail sample set. CON-
NECT ZMP(s1, t1, s2, t2) is a function that calculates and
returns a pair of ZMPs for the connection. We rewrite the
final state of the head samples1 asXhead and the final state
of the tail samples2 asXtail. Let A1 denote the transition
matrix for durationt1 and A2 for duration t2. A pair of
control inputs can be solved by the following equation:

A1Xhead+(I−A1)U1 = REV [A2Xtail+(I−A2)U2] (16)

Then the middle state is calculated byA1Xhead+(I−A1)U1.
When the state satisfies the kinematics range constraint and
the two ZMP decisions generated from the control inputs are
inside their areas of supporting foot, we obtain a connected
sequence (p1,1, p1,2, · · · , p1,m, z1, z2, p2,n, p2,n−1, · · · , p2,1).
The sequence is able to control the CoM to arrive at
the specific final state, and the movement satisfies all the
constraints which can be proved by the character of reverse
moment.

V. EXPERIMENTS

Figure 6 shows an example of ZMP sampling search for
10 steps of bipedal motion. In the figure, (a) and (b), the
ZMP samples are shown as points, and the ZMP decisions
are shown as crosses. The figure (c) presents the trajectory
of the CoM which can be used in the lower level to control
the joints with inverse kinematics.

Fig. 6. ZMP samples (a) and (b), and CoM trajectory (c).

To study the performance of the algorithm, we performed
thousands of searches for the same motion on a 2.0GHz
computer. Each measurement for a specific generated size
and expanded size is based on repeating the search 30 times.
Figure 7 shows our results. The computation time reported is
the average computation duration of the 30 trials; the average
error presents the average deviation of the the ZMP solutions.
We found that the computation time mainly depends on the
generated size, though the number of expanded samples also
contributes a fraction of the computation time. A similar
phenomenon is seen with the average error.

Searching is more stable when the average error is small;
however, in practical applications, we only need the average
error less than a specific value, rather than as low as
possible. To demonstrate the improvement of performance by
convex expansion, we collected the smallest expanded size



Fig. 7. Computation time and average error of different sample sizes.

and associated computation time when the average error is
less than 8mm. As shown in Figure 8, with an appropriate
expansion, the algorithm is clearly able to achieve the same
average error without increasing the computation time.

Fig. 8. Expanded size and computation time for the same average error.

We conducted a simulation of combined motion that
demonstrates the use of ZMP sampling search for online
biped walk planning. The demonstration continuously com-
bined a series of motions, including walking, turning while
walking, walking backward, sidle, turning, and stopping, as
shown in the snapshots in Figure 9. Every three steps, the
robot searched for the ZMP decisions of the next 8 steps on-
line. Using this approach, the motion planning computation
only utilized 20% of the available CPU time. Therefore, the
algorithm has the capability to be executed online even in
systems with lower CPU performance.

Fig. 9. A detailed walking demonstration.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have presented a new method for biped
walking planning, based on random search. We introduced
the LIP model, the ZMP concept and a simplified walking
model. We introduced an algorithm for ZMP sampling
search, including unidirectional search and bidirectional
search. In experiments, we studied how the search was
affected by the generated size and expanded size. We have
shown that the algorithm is able to accomplish walk planning
online. We have also demonstrated a combined walking task
in a simulated environment.

In the future, we are interested in converting the ZMP
decision into a ZMP trajectory in order to make the walking
of a real humanoid robot more stable. To achieve fast
motions, the inertia and multi-body physical properties of
the robot will be considered. Our next step is to include the
mathematical analysis of these considerations in the ZMP
sampling search.
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