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Abstract— In this paper, we present a new method that uses ~ However, in lower level planning, such as walking pattern
random search for online planning of biped walking, given a generation, the dynamics of the robot need to be taken
feasible footstep plan. The Linear Inverted Pendulum dynaric into account. Offline planning is widely applied to these

model and the Zero Moment Point concept are employed to -
solve the walking problem. We consider walk planning as the problems[6]. The Linear Inverted Pendulum (LIP) model

choice of a sequence of ZMPs leading to a stable walk that [2][3] approximates the dynamic process of biped motion;
satisfies all the dynamic and mechanical constraints of the Zero Moment Point (ZMP) [4] is a powerful constraint that
robot. We contribute a novel online sampling algorithm to  ensures a stable walk. In practical applications, differen
efficiently search for such ZMP sequence. We demonstrate the \j,4s of motions are predefined by different trajectory plan
effectiveness of the algorithm by successful combined watig . . . .
tasks in a faithful simulation of a full-body humanoid robot. pers, the f°b9t is able to achieve the motions and keep
search, online planning, linear inverted pendulum (LIP), Zzro  genetic algorithms [11] and Monte Carlo methods [12] have
moment point (ZMP) already been used for offline optimization, it is difficult to
employ an adaptive solver based on random search in the
. INTRODUCTION planning, because biped walking is a complex nonlinear
dynamic process.

B|p_ed motlc_)n planning is a challenging pr_oblem n huf RRT search has been successfully applied in footstep
manoid robotics research, because of nonlinear dynam|c'[5

. ) . k ._planning and other motions of humanoid robots [10]. RRT
and the high dimensionality of the state space. Sampling- . . . )
; . . employs a random method to find a solution effectively;
Based Planning[1] was introduced to solve footstep plapnin . . :
. . . . It also reduces the dimension of the planning problem by
and has enjoyed much success in robot motion planning.. . i N o
o . Sing a universal "AutoBalancer” [13] as a dynamic filter. In
However, it is still difficult to apply random search to ordin

. . e this work, we employ an online random search algorithm to
low-level planning because of solution efficiency. ) . e . :
: : f||_.pd a motion plan that satisfies the mechanical and dynamic
This paper presents a new method, which we name ZM . ) .
: . ) . constraints of biped walking.
Sampling Search, as a universal solution for the planning
of biped motions with constant torso height. Our approach I1l. DYNAMIC MODELS
employs a random search algorithm to choose the ZMP
sequence for our simplified walking. Our algorithm is able td\- 3D-LIP and ZMP
achieve online planning for any given feasible footstempla We use the Linear Inverted Pendulum (LIP) to describe
The rest of the paper is organized as follows: Section the approximate movement of a biped walking when the
gives an overview of related work. Section Ill introduces aobot is supporting its body on one leg. A 3D linear inverted
simplified model of biped walking and the dynamic modelgpendulum is an inverted pendulum which moves in a specific
which are used for our walk planning. Section IV describeplane. If the constraint plane is a horizontal plane, thesjisy
the ZMP sampling search algorithm that solves the walkinghodel shown in Figure 1. can be described as follows [5]:
problem. Section V presents the performance of our algo-

rithm and experimental results. We conclude in Section VI. = %x + ihTy (1)
m
Il. RELATED WORK . g 1
j=79y— —T @)
h mh

In recent biped motion research, adaptability, online; uni
versality and intelligence are addressed. RRT and othewhereg is the acceleration due to gravity, is the given
search techniques have been introduced to solve globd&ight, m is the mass of the pendulunfz,y), (Z,9) is
footstep planning problems [7][8][9]; this demonstrathe t the position and the acceleration of the pendulum in the
possibility of using online search in biped motion planningonstraint plane, and,, 7, are the torques around the
to improve walking flexibility. axis andy-axis, respectively.
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Fig. 1. 3D Linear Inverted Pendulum

B. Biped Robot

The humanoid robot Nao (Figure 2) is used for our
research and simulation experiments. Nao is a new type of
full-body humanoid robot produced by Aldebaran Robotics
[14]. The height of the robot is about 60 cm and the weight
is about 4.5 kg. The robot has 21 degrees of freedom (DOF).
There are two DOFs in the head, four DOFs in each arm, five
DOFs in each leg, and one in the pelvis (shared between the
legs). This robot model is able to provide enough flexibility

The Zero Moment Point (ZMP) is another importantq, our research.
concept in biped walking. The ZMP is defined as a point on

the ground where the sum of all the moments (due to gravity  —

and inertial forces) equals zero [6]. When the ZMP is within . ;&
the convex hull of the contact points between the feet and /'/O, \ +_‘ . *
the ground, the robot can walk in a stable manner; the feet T { \/v
of the robot will fully contact the ground. For bipedal robot ey 4

with touch sensors attached under their feet, it is espgcial
important to adjust the balance using the feedback provided Fig. 2. Model of the humanoid robot Nao and its joints.

by these sensors.

In a 3D LIP, as shown in Figure 1, the ZMP can be

calculated by

1
Pz = ——Ty 3
mg
1
Py = —Tx 4)
mg

where(pg, py) is the ZMP. We can rewrite (1) and (2) as

i = (@ —po) (5)
i= 5 -p) (6)

C. Simplified Walking

Biped walking is a complex nonlinear dynamic process.
It can be considered as a periodic phenomenon. A whole
walking cycle consists of two phases: tdeuble-support
phaseand thesingle-support phaseAlthough the double-
support phase is only about 20% of the duration of a walk
cycle [6], it is important for making the walk more stable
and reducing the impact between the swing foot and the
ground. However, the single-support phase is the key part
of biped walking. During the single-support phase, the tobo
must place its swing foot in position for the next step while

Solving (5) as a differential equation, we get the relationkeeping its balance. _ o
ship between a final state and an initial state in x-axis of a In this paper, we simplify biped walking by considering

LIP including the position and the velocity:

xe(t) | X5 B D
g | =aol L] re-aa 5] o
where (;,v;) is the initial state, £;(t),vs(t)) is the final
state at time, | is a2 x 2 identity matrix andA(t) is a state
transition matrix which only depends on the duration

[ cosh(qt) Lsinh(qt)
A®) = [ gsinh(qt) qcosh(qt) } ®)
q is the constant:
a=/% (©)
By defining the state of 3D LIP at timeas:
_ | =) y(@)
xw=| 50 10 (10)
and the control input as:
_ | Pz Py
U= [ 0 0 ] (11)
we obtain:
X(t)=At)X0)+[I—-AQ®)|U (12)

it as a series of single-support phases for the sampling
search algorithm, and focus on choosing the ZMPs in these
phases. The double-support phase can be planned according
to the ZMP decisions in a lower-level planning to achieve a
complete walking. Our simplified model of biped walking is
defined as follows:

1) The robot is considered as a linear inverted pendulum
which is supported by one of its feet. The mass of the robot
is distributed on the Center of Mass (CoM) which moves
in a horizontal plane with a constant height. The effects of
inertia are ignored.

2) The walking process only consists of a series of
single-support phases. The robot uses each of its legs as
the supporting leg in turn. Theoretically, one single-supp
phase is able to switch to the next one immediately.

3) While in the single-support phase, we only use a single
ZMP decision instead of a ZMP trajectory.

Figure 3 shows our biped walking planner approach based
on ZMP sampling search. The inputs of the planner consist
of a footstep plan, the initial state, and the final state ef th
CoM. A footstep plan, including the pose and the duration
of each footstep, comes from higher-level planning, such as
an RRT path search [7], A-star search [8], a static footstep
library, or as created by hand by a human. The output of this



walking planner is a sequence of ZMP decisions. A detailed 4) K-Steps Sample”: A tuple 7% = (p1,pa, -, pr, 5).

description of the algorithm will be given in the next sentio It includesk 2D points and a final state. Thgh point is
a ZMP decision to control the walking in thgh step. The
final state is the ending state of the CoM of thh step. A

Initial State of the CoM B~ ZMP zero-step sample has only a final state.
- k- i -
Final State ofthe Con B SAMPING b 74P Sequence 5) K-Steps Sample Sei™: A set of a certain knum
Search ber of k-steps samples. It has the following forr* =
Footstep Plan |:'> o { E ok . -k
anner T, Ty, ’ﬂ—n}'

B. Algorithm of Unidirectional Search

Given a footstep plan and an initial state of the CoM, we

The ZMP sampling search planner is supported by lowelse @ unidirectional search algorithm to search for a semuen
of ZMP points that make the robot follow the footstep

level algorithms which provide CoM trajectory generation, o ; . -
trajectory modification for the double-support phase, an lan from the initial state. A valid solution satisfies two
calculation of the desired joint angles by using invers&inds of constraints: 1pynamic Constraintsthe kth ZMP

kinematics. Due to the limitations on paper length, theitieta decision should be inside theth foot pose. 2Mechanical

- : L Constraints the position of the ending state of tf¢h step
of these lower-level functions are not described in thisepa|
P should be inside théth kinematic range. Table | shows the

IV. ZMP SAMPLING SEARCH ALGORITHM pseudocode for our algorithm. We explain each procedure in
We introduce two ZMP sampling search algorithms to findletail.
the ZMP sequence as the solution of a biped walk. One is TABLE |
the unldlreCtlona_l _SeiarCh WhICh WorkS Wh_en the _ro_bOt _does PSEUDOCODE FOR OUR UNIDIRECTIONAL SEARCH ALGORITHM
not have a specific final state, the other is the bidirectional
search which can achieve a given final state.

Fig. 3. Our biped walking planner approach.

SEARCH (1. .k, t1..ks R1..k Sinit)
A. Definitions

1 8% — {(sinit)}
; ; ; _ 2 fori=1to kdo
Thg fc?IIowmg definitions are used in the algorithm de 3 S GENERATEG, Fy.t:. Ry)
scription: ) o 4 if (S* = g) then ReturnFailure
1) Foot PoseF}: A tuple with a 2D position on the 5 S« SiU CONVEX_EXPAND(S?)
ground and a direction to describe the gesture of the sup- 6 ReturnS*
porting foot in the global reference frame. In this paper, we
assume that the shape of the underside of a foot is a rectangle GENERATE ("1, Fy, ty, Ry)
2) States: The position and velocity of the CoM in the 1 Skep

2 fori=1to M do
3 wk—1 — RANDOM_ELEMENT(S*k—1)
I wh=1 = (p1,pa,- -, pu—1,5)
4  p, — RANDOM_POSITION(})
5 Snew + LIP(s,pg, tr)
6  if (INSIDE(snew, Ri)) then
7
8
9

constraint plane in the global reference frame.

3) Kinematic Rangd;: A convex polygon which can be
any shape inside the reachable area of the CoM as large as
possible.

The CoM of the robot has a 2D reachable area in the
constraint plane because of the leg shapes and the joint
angle limits of the robot. Generally, the reachable area has
an irregular shape. For the humanoid robot Nao, the shape
only depends on the poses of the robot’s feet because of CONVEXEXPAND (s¥)
the decrease of DOF by the shared joint in pelvis. For other 1 Skew .
bipedal robots with 6 DOFs in each leg, the orientation of g for i =110 Sizeesp do
the torso should be specified or related with the poses of feet 4 7% — RANDOM_ELEMENT(S¥)

5
6
7

Sk — Sk U{(p1,p2,"* Ph—1, Pk Snew) }
if (|S¥| = Sizegen) then Return S*
ReturnSk

— g

7 «— RANDOM_ELEMENT(S¥)
for us to obtain the reachable area. a —RANDOM_VALUE(0, 1)
For the purpose of algorithm efficiency, rectangles are used . Shew - ShewV LINEAR_.COMBINE(r{, 75, o)
to represent the kinematic range, as shown in Figure 4. We etUM Sy
build a lookup table to store the kinematic ranges offline;

this table can be used online for our search.

1) Main Procedure of Unidirectional Searchifthe main
loop of the unidirectional search algorithm is an itera-
tive process. The inputs are the Foot Podgs; of k
single-support phases, Supporting Durations;, Kinemat-
ics RangesR; j, and the initial state of the CoM;,;.

The procedure generates drsteps sample set with an
Fig. 4. Reachable area and kinematic range. (¢ — 1)-steps sample set in thigh loop. The loop terminates
whenever there is a failure to generate any sample set. The



CONVEX_EXPAND function is used to ensure that eachClaim: A linear-combined sample satisfies all the dynamic

sample set is of a certain size. and mechanical constraints.

Assume ak-steps sample set i§¥ = {#¥ =k ... 7k} Proof: Let 7, denote the area on the ground occupied by
={(P1,1:P1,2, P1ks S1)5 (P21, P22, P2,k S2), 7+ the kth supporting foot with the pose df. Vi, p1; € F,
(Pn.1,Pn.2,**, Pn.ky S2) . Then, we obtain a ZMP solution p2; € F;; the shape ofF; is a rectangle, which is a convex
from the k-steps sample set with the function polygon. Therefore, when it is given a valuec (0, 1), the

Lo Lo Lo pointpco%i = ap1i + (1 — a)pa,; satisfiespeom,; € Fr.
r(S%) = (= me’ i me’ - Zpi,k) (13) We define the initial state aX, the state of the kth step
ni n— n— as Xy, the kth state transition matrix as;, the input control
Th lution is th ter of the feasibl luti which depends on theth ZMP decision) ag¢/;, and the area
€ solution is the average cen'er of the 1easi’e SoILTon xpressed by the kinematic rangg asRy. Let e denote a

given the sample set. Due to noise and other disturbanc %’ctor[l 0] so that the position of a state can be write as
the average solution is considered much safer than the bor T, ’

solutions. The solution satisfies all the constraints. ft ba For the initial state,X;0 = X209 = Xo. We obtain
proved by mathematical induction, similar as the proof ia th - 0=aXio+(1— a)XQ o= Xo
Convex Expansion section below. o Assume that we are able to get thth state X, by

2) Generation: The GENERATE function is the core of ,ing the formerk combined ZMP decisions; also assume

our sampling-based search process. GENERATE returns a §et: it satisfies thatt? . e € Ry.. According to (12), we
of samples of possible ZMP values by sampling the spagg;- com,k ’

of the robot foot and validating the samples according to the X1 a1 = Apr Xog + (I — App1)Un s
LIP model. Xopr1 = A1 Xop + (I — Apg 1)Uz e 1

In each attempt to generate &asteps sample, the al-  Then, X,,.,.::1 = aXip + (1 — a)Xops1 =
gorithm selects an element from the € 1)-steps sample a[Aps1 X1k +'(I — Ap)Un k+1] +(1— Oé)[Ak+71X2 L+
set randomly, and uses a random ZMP decision inside tr@ _ Ak+;)U2 1] = Ak+71[aX1 r 4 (1 — a)X, 1;] +
supporting foot to obtain a new state of the CoM. The newr _ Ak+1)[a(j1 k+ (1= a)Uszl _ Apir Xeom +’([ -
k-steps sample is created and added toitiséeps sample set 4,y . ’ ’ ’
when the new state satisfies the kinematic range constraintherefore X.om r+1 Can be achieved by applying tth

The size of the sample set will not exceed temerated size compined ZMP decision to the kth combined state, and it

Sizegen. _ _ satisfies thatX) ;. e € Riy1, because the shape &
T_h_e_functlon LIR's, pk, tx) _cz?\lculates the final state, givenis a rectangle which is also a convex polygon.

an initial states, a ZMP decisiorp; and a duration time;, Then, we can conclude that a linear-combined sample

according to (12). satisfies all the mechanical and dynamics constraints.

Our GENERATE function is an incomplete search process. The number of expanded samples is #panded size
The loop terminates in/ iterations whenever it getSizegen,  Size,,,. The performance of the algorithm is directly af-
samples, wherel/ is a given constant. Thus, when thefected by the generated size and the expanded size. This

generation function returns an empty sample set, we canngialysis is shown below, in Section V.
determine whether a sample exists. However, we do kno

that it is very difficult to find a sample, so the solution (if(\gl' Algorithm of Bidirectional Search

it exists) must be in a tiny area of the solution space. In a In regular biped walking, it is also important for the robot
complex nonlinear system full of noise, it is unwise to usdo arrive at a specific state—for example, to stop moving.
a solution that demands high-precision robot control; is th The bidirectional search algorithm (shown in Table 1) can
case, the higher-level planner should notice the probledn afe used to find the ZMP solution, when the walking planner
adjust its footstep plan accordingly. is given an initial state, a final state, and a footstep plan.

3) Convex ExpansionConvex expansion is an important 1) Main Procedure of Bidirectional SearctOur bidirec-
technique to reduce the computation time of ZMP samplin@onal search algorithm can be considered as a combination
search. The convex expansion function creates-steps of two unidirectional searches. One direction is from the
sample by repeatedly combining two randomly seledted first step to the last step and the other is in the opposite

steps samples are selectetf = (p1.1,p1o, - pLg,51) WO Steps in the middle of the footstep plan. We name the

75 = (pa1,p22, -, P2k, 52), @ linear-combinedk-steps returneq sample sets hsad sample setndtail sample set
sample can be calculated as linear combinations by a randéggpectively. _ _ _
value o which is betweerd and1. The function RE\(s), which appears in the algorithm,
returns areverse statedefined as follows:

ap1z + (1 - a)paa, BV { (1) y(t) } = [ @(t) ) } 15
14) Lay o) = ) oy | @
apri + (1 — a)pa k. A reverse state is a virtual state which is used for conngctin
asy + (1 — a)sg) the searches in the two different directions.

T = (ap11 + (1 — @)pa,1,



TABLE Il
PSEUDOCODE FOR OUR BIDIRECTIONAL SEARCH ALGORITHM

BI-SEARCH (Fy. &, t1..k» R1..k—1, Sinits Sfinal)
1 de |k/2) -1
2 e—|k/2]+1
3 8,4 —SEARCHE! 4, t1..4, R1..as Sinit)
4 Spp —SEARCH(FY ci1, th et
Rk}fl..er REV(Sfi7L(Ll))

if (S¢.,, = Failure or SF'-¢ = Failure) then

ReturnFailure
7 S* «—CONNECTGSL, 4 Fat1,tatt,

Sfa:le’ Fe7 te? Rd+17 sfina,l)

8 if (S* = g) then ReturnFailure
Return Sk

[e2 B¢ ]

©

CONNECT (7, F1, t1, S%, F, t2, R, s)

1 k—m+n+2
2 Sk—g
3 fori=1to W do
4 e RANDOM_ELEMENT(ST)
N7 = (p1,1,P1,2," "+, P1,m, S1)
5 Ty — RANDOM_ELEMENT(SS)
II'm% = (p2,1,p2,2, ,P2,n,52)
6 21,22 «—CONNECTZMP(s1,t1, s2,t2)
7 Snew +LIP(s1,21,t1)
8 if (INSIDE(z1, F) and

INSIDE(z2, F) and
INSIDE (s, R)) then
9 Sk — S*U{(p1,1,p1,2,"**» P1m, 21, 22,
P2,n;P2n—1,""" 7p2,175)}
10 if (|S*| = Sizecon) then Return S*
11 ReturnS*

Claim: Given a movement of the CoM froo¥; to X, with

transition A and control input/, there necessarily exists a

reverse moment as shown in Figure 5. from REY] to
REV(X) with the same control input.

z z -—

X,V X5V, =V XY,

o x o x

Fig. 5. A Pair of Inverse Movements

0 -1

EU = U. According to the definition ofd as (8), we obtain
EA = A—'E, and according to (12), it satisfies

Xo=AX1 + (I - AU

= EXy = EAX, + E(I - AU

= FEXy=A'EX, +(E—- A'E)U

= AEX, = EX, + (AE — E)U

= EX; =AEXy,+ (I — A)EU

Therefore, REVK;)=A-REV(X3)+(I — A)U. We obtain

a reverse movement from REX({) to REV(X;) with the
same control input/. O

Proof: Let E denote L0 l We get REVX)=EFX and

nected samples. In each attempt, the algorithm selects one
random elementhead from the head sample set, and
one random elementtil, from the tail sample set. CON-
NECT_ZMP(s1, t1, 2, t2) is a function that calculates and
returns a pair of ZMPs for the connection. We rewrite the
final state of the head sampie as X;..q and the final state

of the tail samples; as Xy,;;. Let A; denote the transition
matrix for durationt; and A, for durationt,. A pair of
control inputs can be solved by the following equation:

A1 Xhead+(I—A1)U1 = REV[As Xau+(I—A2)Us) (16)

Then the middle state is calculated By X},cqq+ (1 —A1)U;.
When the state satisfies the kinematics range constraint and
the two ZMP decisions generated from the control inputs are
inside their areas of supporting foot, we obtain a connected
Sequence,i, P1,2, **, Plms 21, 221 P2,n, P2,n—1, "+, P2,1)-

The sequence is able to control the CoM to arrive at
the specific final state, and the movement satisfies all the
constraints which can be proved by the character of reverse
moment.

V. EXPERIMENTS

Figure 6 shows an example of ZMP sampling search for
10 steps of bipedal motion. In the figure, (a) and (b), the
ZMP samples are shown as points, and the ZMP decisions
are shown as crosses. The figure (c) presents the trajectory
of the CoM which can be used in the lower level to control
the joints with inverse kinematics.

(a)

Fig. 6. ZMP samples (a) and (b), and CoM trajectory (c).

To study the performance of the algorithm, we performed
thousands of searches for the same motion on a 2.0GHz
computer. Each measurement for a specific generated size
and expanded size is based on repeating the search 30 times.
Figure 7 shows our results. The computation time reported is
the average computation duration of the 30 trials; the a&era
error presents the average deviation of the the ZMP solsition
We found that the computation time mainly depends on the
generated size, though the number of expanded samples also
contributes a fraction of the computation time. A similar
phenomenon is seen with the average error.

Searching is more stable when the average error is small;
however, in practical applications, we only need the awerag
error less than a specific value, rather than as low as

2) Connection: Connection is also a random searchpossible. To demonstrate the improvement of performance by

process. The search repeat$ times to collect the con-

convex expansion, we collected the smallest expanded size
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Fig. 7. Computation time and average error of different dansgzes.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have presented a new method for biped
walking planning, based on random search. We introduced
the LIP model, the ZMP concept and a simplified walking
model. We introduced an algorithm for ZMP sampling
search, including unidirectional search and bidirectiona
search. In experiments, we studied how the search was
affected by the generated size and expanded size. We have
shown that the algorithm is able to accomplish walk planning
online. We have also demonstrated a combined walking task
in a simulated environment.

In the future, we are interested in converting the ZMP
decision into a ZMP trajectory in order to make the walking

and associated computation time when the average errorof a real humanoid robot more stable. To achieve fast
less than 8mm. As shown in Figure 8, with an appropriatmotions, the inertia and multi-body physical properties of
expansion, the algorithm is clearly able to achieve the santlee robot will be considered. Our next step is to include the

average error without increasing the computation time.

T00
o«
M 600
o
hel
T 500
o
5 400
o

=
L 300

Computation Time (s)

200

100

0 50 100 150 200 0 50 100 150 200
Generated Size Generated Size

Fig. 8. Expanded size and computation time for the same g&ezaor.

mathematical analysis of these considerations in the ZMP
sampling search.
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