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Abstract— Many planning approaches adhere to the two-
tiered architecture consisting of a long-range, low fidelity global
planner and a short-range high fidelity local planner. While this
architecture works well in general, it fails in highly constrained
environments where the available paths are limited. These
situations amplify mismatches between the global and local
plans due to the smaller set of feasible actions. We present an
approach that dynamically blends local plans online to match
the field of global paths. Our blended local planner generates
paths from control commands to ensure the safety of the robot
as well as achieve the goal. Blending also results in more
complete plans than an equivalent unblended planner when
navigating cluttered environments. These properties enable the
blended local planner to utilize a smaller control set while 10, = ; s 1
achieving more efficient planning time. We demonstrate the X(m)
advantages of blending in simulation using a kinematic car

model navigating through maps containing tunnels, cul-de-sacs, Fig. 1. Example of blended planner navigating a world withdemly-
and random obstacles. placed obstacles using the model of a kinematic car

. INTRODUCTION

For many robotic applications, path planning can be
divided into two stages: global and local planning. Thdraversing cluttered environments. A local planner thasus
global planner finds the optimal but coarse-grained roufé@€e global path field (the set of all global paths) would
from start to finish, covering a broad area. Because of th@low for greater maneuverability and efficiency in environ
large scope, the global planner must use a simplified mod@€ents containing a myriad of obstacles, cul-de-sacs ahd tig
of the vehicle’s kinematics and dynamics to maintain a smafiPaces such as in Figure 1. Our approach bridges global
problem space (typically 2D). Local planners cannot affor@nd local planning by creating a blended local planner that
this simplification because they are responsible for enguri Utilizes global planning information to generate high fitjel
the safety of the vehicle. Therefore, a local planner fosusdlobally-feasible plans. Our blended local planner comior
on a more limited planning scope to find a detailed path th& set of dynamically feasible paths to the global path field
follows the global path while satisfying the kinematic andesulting in diverse, globally-informed plans.
dynamic constraints of the vehicle. To achieve both safety Planning high fidelity paths that achieve global waypoints
and goal acquisition, the two plans are merged. has been studied extensively in the context of motion plan-
While this two-tiered technique usually works well, inning. Methods such as randomized kinodynamic planners [1]
some cases the plans mismatch at their boundaries, regultind potential-based motion planners [2] sample a space
in combined paths that cannot be executed. One exampigsed on vehicle dynamics and random target points. Those
of a mismatch occurs when the final heading segment #fethods constrain the plans to end at these target points
the local plan and the initial heading of the global plarwhich may not lie in feasible regions of the planning space.
segment fail to coincide, creating an disconnected triamsit Additionally, several potential field methods exist thalize
at the boundary waypoint. Depending on the dynamics of trglobal information to reactively deform infeasible patios t
vehicle, the lower-level controller may not be able to srhootbe admissable [3], [4]. The potential functions can be lyighl
large heading mismatches particularly when operating ogpmplex, difficult to adapt to new environments, and subject
more complex systems traveling at high speeds. More seriotgslocal minima.
examples of boundary mismatches happen when the localSeveral deterministic methods have also addressed this
planner cannot find a dynamically-feasible path to achieygroblem. One technique known as ego-graphs [5] creates
the global plan. a static search tree of feasible path segments to achieve
Additionally, constraining the local planner to follow global waypoints. In order to densely span poses in the
one global path decreases path diversity, which is key &nvironment, the static search tree must contain a large

y(m)




number of paths which can be memory or space intensiv .
Another method uses boundary constraint solvers to ple . :
optimal trajectories between global poses creating acéatti
like network [6]. The discretization of the control command
affects the completeness of the approach because it lim -
action set of the vehicle. Recently Howard, et al, [7] préser -
an approach that samples control actions in the state spa
The algorithm uses global information to guide the placemel,

y(m)

y(m)

of their samples. However, the approach depends'on se\;jecti,;]g. 2. Paths generated Fig. 3. Paths generated
good end points that are both feasible and strategicalbepla using the controller and from two sequential con-
— a difficult process for cluttered environments. mode(l)Of/a kinemitlic lcar, trol tcﬂlf"ma”éis Uzinlg }he
H H ; = Um/s,vf = m/s, controller and model of a
Our apprc_Jach differs from_ these. methods by blendm_g % separatign Kinematic car; = Oms,
set of candidate control actions with the global path field v = +1m/s,20° separa-
by dynamically changing the control action online at each tion

step of the path generation process. Our algorithm preslude
the selection of sample points at which to connect th
local paths to the global paths, since blending enables tl =
set of control actions to naturally find the best points a
which to join the two plans. Moreover, this approach avoid : -
the complexities of computing reverse kinematics/dynamic

or multiple forward kinematics/dynamics passes since tF
algorithm only requires a single forward propagation o PR S SN S SN S
control actions.
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Our approach, the _blended Ioca}l planner, begins V\_/lth Bg. 4. Example of a Fig. 5. The global head-
candidate set of velocity and heading commands. A divergespace environment with ing field of the environ-
candidate set of commands is crucial, because some acti¢fg obstacle between the ment

may align better with the global path than others. Moreoveﬁldoihngéa?zﬁgﬂt ;gﬁ(l)?,\),

the differing actions in the set enable the local planner tarcle)
negotiate obstacles that were not (yet) included in theajlob
planning process. Next, the planner searches a space by
forward propagating the candidate set of commands usifgending possesses the added benefit of limiting the path
the model of the controlled vehicle. The generated path se@mputation to using only forward kinematics and dynamics.
encapsulates the capabilities of the vehicle but may contafrinally, the blended planner can produce complete patits wit
inconsistencies with the global planner. To bring togethed smaller control set than an equivalent unblended planner.
the global and local plans, we blend the local path with th&his property helps generate smooth paths quickly to suppor
global path field by changing the set of heading commandgal-time operation. We present simulation results in aélin
in the forward propagation process to align with the spacand cul-de-sac scenario as well as in environments with
of global headings. Because the system invokes the log@ndomly-placed obstacles.
planner at constant time intervals, the local path changes a The paper is organized as follows. Section Il describes
the environment and vehicle position change. The blendirije details of the blended local planner. Section Il expdai
process enables the planner to initially spread out thespgath the experiments and results. The algorithm and results are
explore a space before conforming to the global path fielgliscussed and analyzed in Section IV. Finally Section V
Due to the blending property, a blended local planner cagpncludes and presents future work.
cover a space efficiently with a fewer number of control
actions than an unblended planner. The blended paths benefit
from the path diversification and feasibility of the local Algorithm 1 shows the algorithm for the blended local
planner as well as the completeness and efficiency of thanner. The following subsections discuss the different
global planner. components of the algorithm in more detail. First we degcrib
Our approach has several major advantages. First, it aligtiee general underlying technique of forward propagatian fo
local paths to the global path field. This decreases thgath generation (Algorithm 1 lines 4-12). Next we explaia th
potential of an infeasible transition between the two p&asn novel method of blending the local heading with the global
through the blending the control actions to meet the globdleading field to create a new local heading (Algorithm 2).
field. It also increases path diversity due to alignment witlrinally we elucidate the terms in the cost function used to
the global field rather than a single global path. Secondind the lowest-cost path (Algorithm 1 line 13).
the method allows the control set to naturally converge to Before we proceed to the algorithm details, we first
feasible regions in the planning space instead of conatiain define some terms related to the planner as well as outline
the control actions to end at a given set of sample pointthe structure of the autonomous vehicle system. We define

Il. BLENDED LOCAL PLANNER



Input: ¢,g, current and goal states
W, world model
0;, candidate heading
t, current time
T, total time

Output: 6, blended heading

1 0y = ComputeGlobalHeading(W, g, c);
t.

yim)
yim)

*

X

xim i 2 3= L
3a=10-70;
Fig. 6. Unblended set of Fig. 7. Blended set of o p .
paths with several directed paths that bend around the 4 0y = ab; + ﬁag’
towards the obstacle qbstacle like the global 5 returnd,
field Algorithm 2: ComputeBlendedHeading

A. Forward Propagation

The algorithm receives the candidate command 58tgs
input. To ensure dynamically-feasible plans, the command
set is a sampling of control inputs that spans the space of
possible vehicle motions. The forward propagation openati
uses a model of the controlled vehicle to simulate the
control command applied to the current state to produce the
Hext state (Alg 1, line 6). A control comman@;, 0;,T;)

vehicle state as the composition of positional, rotatipaad
velocity components. Control commands consist of line

yelocuy Vis headflnger:', ;emd local p'ar.‘”'”fg timd;. A path corresponds to a single pat®athSet(i), of the path set.
Is a sequence of vehicle states moving from a start to a 9o fonyard propagation operation ensures that the vglocit

p03|t|(])cn1.0Tr:1e overall <|:0ntrol sygt?g o_?er_ates at a cor:staglt]d acceleration of the vehicle stays within certain limits
rate o ertz or cycles every 0.1&)( To integrate newly Computing the set of possible paths can be computation-

acquired sensor data, the blended local planner is invo_k y expensive due to complex equations in the vehicle's
every 15 time stepg or cycIe; every 1.5s. Local pl".‘nn'n%odel and controller. Due to the time constraints inherent t
t!me T; equals planning cycle time (1.5s) plus an Qddmon n-line planning, we can precompute the set of paths off-lin
time buff_er to ensure _safety. At the end of_a _planmng Cy(_:lqn order to accommodate a wide array of initial and ending
the_algorlthm returns its best, valid path within the plagni velocities, the paths span a candidate set of velocity pairs
horizon denoted by;. Figure 2 shows an example of a path set that starts at rest
and ends at-1 m/s with a 20 degree separation between the
segments. Figure 3 illustrates a path set generated using tw
sequential commands. During runtime, the planner matches
the current speed of the vehicle with the precomputed path
segments that have the appropriate initial speed, ensuring
that each of the potential segments can be safely executed.
At the end of the planning process, the planner combines the
precomputed segments in real time to produce whole paths.
In this paper, we use the kinematic car model to define the
vehicle motions, but the algorithm can be easily extended to

Input: s,g, initial and goal states
W, world model
dt, system time step
N, candidate command sét;, 0;, T;) wherewv;
= velocity, §; = heading, and
T; = local planning time

Output: P, path found or empty if no path found

1 foreachi € N do

z PathSet(i) = {}; use more complex models.
c=s;

4 for t =0:dt: T, do B. Blending Process

5 Op = In order to incorporate information from the global plan-
ComputeBlendedHeading(W, ¢, g, 0:, ¢, T;); ner, in our case Field D* [8], the algorithm alters the hegdin

6 €= F?rw”dpmpagation(cv (v, 0, 1)); control command by modifying the candidate heading with

7 if Valid(W,c) then a new global heading at each step of the path (Alg 1, line

8 | Append(c, PathSet(i)); 5). Algorithm 2 begins by computing the global heading

o else 0, using the initial state and the world model. A linear

10 | break; weight function then assigns weights and 3 to 6; and

u end 6,4, respectively. The weights are calculated from the current

12 | end ‘ ‘ position in the path. The sum of the weighted headings

13 | P =min; CostFunction(PathSet(i)) (ab; + 86,) produces the new blended heading comm@nd

14 | retunpP The new blended commar(d,, 6,,t) generates a new state

15 end in the path. The blended heading equals the local heading at

Algorithm 1 Blended local planner t = 0 and then blends to merge with the global heading field



att = T;. This process repeats to create new path statemhility to drive forwards and backwards, thus enabling it

Additionally, the algorithm prunes paths that collide withto maneuver in tight spaces. The vehicle controller cosvert

obstacles in the environment. the commanded control action to motion inputs using the
We illustrate the difference between blended paths argtjuations below.

unblended paths using a simple example. Figure 4 shows

the C-space expansion of an environment where a single

obstacle is between the robot and the goal. The gray cells uw = v (5)

indicate obstacle cells while the white cells indicate free w = (6 —06,) ©6)

space. Figure 5 displays the global heading field of the world

Note that the headings flow around the obstacle. Without use

of this global information, the unblended path set (Figure

6) includes path segments that drive directly towards the

obstacle. On the other hand, using the global headings Bs Tests and Results

guidance, the blended paths (Figure 7) move around the

obstacle in accordance with the global field.

whered, is the current vehicle heading.

In order to illustrate the properties of the blended local
planner, we conducted three tests to compare the diffesence
C. Cost Function between the blended planner and the unblended planner.

Once a valid set of paths is created, the algorithm assign/¥¢ show the capability of the blended planner to navigate
cost to each path (Alg 1, line 13). The minimum cost path itight spaces with a smaller path set than for the unblended
returned as the best plan. The cost used in our approach i{0§2l planner. The first two tests illustrate these properti
function of several variables. The variables include disga PY navigating the vehicle in a tunnel environment. The third
to the goal, distance to obstacles, a momentum term, afRft places the vehicle at one corner of a randomly-gerterate
an alignment term as described in Equation 1. We use th¢orld where it must navigate to the opposite corner while
D* cost to represent the distance to the goal and obstaclé¥oiding obstacles.

This maintains cost consistency between the global and The path set consists of both forward and backward
local planners. D* cost represents the sum of the cell cosggths. Each path is determined by a single candidate con-
along each path, where free cells have low cost, cells nelipl command(6;,v1,t1) or a sequence of two candidate
obstacles have higher cost, and obstacle cells have infinR@mmands[(61,v1,t1), (02, v2,t2)]. Positive and negative
cost. The momentum term indicates how much the locaelocities paired with a set of angles define the path set.
heading changes. To avoid oscillation, we give preferencehe angles are generally evenly distributed around a circle
to paths that keep the vehicle heading constant. Finaky, thvith the spacing determined by the size of the angle set.
alignment term measures the difference between the locdélhile paths generated from single commands form a single
and global headings. Local paths that align more with thigvel search tree, paths from coupled commands become a
global path are lower cosiv is the set of weights for the two-level search tree that includes segments with forward
variables, and the sum of the weighted costs equals the tofaption, backward motion, or both (Figure 3).
cost of the path. The global planner is Field D* with a cell resolution of
0.2m. The local planner finds the global heading by querying
) o ) Field D* for the path from a particular location to the goal.
CostFunction = w-[dist(g), dist(0),5(6h), |61 —0yll] (1) Field D* runs in the unfocussed mode meaning the path
I1l. EXPERIMENTS AND RESULTS search is undirected allowing for wider path cost propagati
In this manner, a global query becomes an easy lookup in
A. Robot Model the cost map, so we assume calls to the global planner to be

We tested the blended planner on a car-like vehicle ifegligible. The planner uses a predetermined lookahea poi
simulation. The car is modeled by the dynamic equationg distance 1.5 m down the global plath. Then, it calculates
below. uo represents the vehicle speed, is the steering the angle between the current point and the lookahead point
angle, and_ is the length between the front and back wheelgo be the global heading, .

The steering angle and speed are limited thr and 1m/s We measured the performance of the planner in two ways:
respectively. path length and planning time. The path length indicates
the distance the vehicle traveled to reach the goal, and the

- ugtan(uy) o T . ! .
0= —7 (2) planning time is the total computational time spent plagnin
) ‘ until achievement of the goal. Because the planner can
& = ugsin(f) (3)  return a valid path before the end of a planning cycle, the
i = ugcos(6) @) computational time for one planning cycle could be much

shorter than the allocated cycle time. Additionally, theyéa
We model the vehicle as a point robot, but the vehicl¢he trajectory set, the more time is needed to compute a best,
dimensions can easily be more complex since the C-spacalid path. We ran the tests on a 2.13GHz Intel Pentium M
expansion accounts for vehicle size. The vehicle has theith 1GB of RAM.



Fig. 8.  Tunnel environ-
ment: the right green cir-
cle denotes the start po-
sition and the left yel-
low circle denotes the goal
position. Gray represents
obstacles and white free
space.
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Fig. 10. Path result from
using unblended planner
with a set of 20 paths with
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Fig. 9. Path result from
using unblended planner
with a set of 8 paths with
a 9 separation

s
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Fig. 11. Path result
from using blended plan-
ner with a set of 8 paths

Fig. 12. Cul-de-sac en-
vironment: the right green
circle denotes the start po-
sition and the left yel-
low circle denotes the goal
position. Gray represents
obstacles and white free
space.

Fig. 13. Path result from
using unblended planner
with a set of 8 single and
64 coupled paths with a
90° separation

with the tunnel (Figure 11). Blending allowed the planner to
find a smooth path in less time than the unblended planner
using the same number of paths. Additionally, the same
path generated using blending took nearly half the time and
almost half the number of commands as that of the unblended
planner.

2) Cul-de-sac: In addition to tunnels, we tested the ability
of the planner to navigate tight spaces by finding plans
that involved driving backwards. One example is a situation
where the vehicle had to drive backwards in order to align

a 36’ separation with a 90° separation

itself to the goal. To illustrate this property, we used aiEim
tunnel environment and started the robot pointed away from
the goal (° heading). The robot could not move forward
1) Tunnel: One of the features of the blended planner igecause it was pointed straight at a wall. Therefore, the
its ability to align with the global path field. This alignnten planner was required to perform a turning maneuver to align
property modifies the local paths making it possible to usethe vehicle heading with the tunnel. Again, we varied the
smaller path set during planning. We illustrate this featy size of the path set to find the ideal number of paths for
testing the planner in an enviroment with a 1m wide tunnethe vehicle to plan a feasible path to the goal. In addition
As shown in Figure 8, the robot begins on one side of the the path set of single command paths, we added coupled
tunnel at position (0,0) and navigates to position (-18/0) ocommands to create a search tree with two levels levels.
the other side. At the beginning, the robot fadésdegrees This enabled the planner to look ahead one more path step.
away from the goal1(35° heading). Due to the narrownessResults are shown in the table below:
2; r'2he tunnel,_the robot must align itself perfectly befotg i Plan Time(s)] Path Length(m)
proceed into the passage. The results are shown in t

IijuI-de-sac

table below.C represent the size of the control set. Unblended-2 C=72 10.62 42.17
Unblended-2 C=274 12.84 25.31
| Tunnel | Plan Time(s)| Path Length(m)| Blended-2 C=72 5.20 23.93
Unblended-1 C=8 2.3 22.36 The blended and unblended planners both reached the goal
Unblended-1 C=20 3.38 19.57 with a path set consisting of 8 single commands and 64
Blended-1 C=8 1.768 19.65 coupled commands. Although the unblended planner reached

During the test, we compared the blended local plannéfe goal, the path contained numerous forwards-backwards
with the unblended planner while varying the size of thgnotions due to its inability to modify the path segments
path set. With a path set of 8 single control commands, tH&igure 13). In contrast, the blended planner reached thk go
unblended local planner found the path shown in Figure 9. lin half the time with a shorter path length (Figure 15). In
order to align the vehicle to the tunnel, the planner issuel o order for the unblended planner to generate a comparative
backwards motion to ensure the vehicle heading was correptan, it required a set of 18 single commands and 256
By increasing the local path set, the unblended local pianngoupled commands (Figure 14).
succeeded in achieving the goal with no backup movement3) Random obstacles: Finally we tested the planners in
with 20 commands in the set (Figure 10). In contrast, witlbinary environments with randomly placed obstacles. The
8 commands, the blended planner had no problem alignivgorld was 20m by 20m with 30 single point obstacles at
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Fig. 14. Path result from Fig. 15.
using unblended planner
with a set of 16 single and
256 coupled paths with a
45° separation

Path result

from using blended plan-

ner with a set of 8 single

and 64 coupled paths with ; ; ; ; i i i i

a 90 separation 1 2 3 4 5 6 7 8 9 10
Test number

. . . Fig. 16. Planning time for the random tests
random locations. A buffer of 2m in width was placed around

each obstacle and obstacles placed near the start or goal

were removed from the world model. The vehicle started at "

a random corner of the environment and navigated through [ Senesie ]
the obstacle field to reach the goal at the opposite corner. We sl 11|+~ lended 2-leve

tested the blended and unblended local planners with both [, L srened v
single-level and two-level search trees consisting of 8-com 70/ C h

mands and 72 commands, respectively. Ten random worlds
and ten random start and end locations were generated. We
ran each planner on each of the ten worlds and recorded the
distance traveled and planning time. We then averaged the
path length and planning time. The table below shows the

results from the experiments.

Plan Length(m)

30

[ Averages | Plan Time(s)[ Path Length(m) Tz s 4 sos 7 5 s w0
Unblended-1 C=8 6.7 51.02
Blended-1 C=8 5.14 41.11 Fig. 17. Path length for the random tests
Unblended-2 C=72 19.21 46.04
Blended-2 C=72 15.9 38.77

Test 3 shows that both the blended planners (single—levelAdditionauy’ blending aids in maneuvering the robot in
and two-level) performed better both in time and distancgpaces that require moving backwards and forwards. The
than the equivalent planner without blending. With 8 singlej|-de-sac test forced the planner to produce n-point turns
command paths, the blended planner performed 1.64s bef{gralign the vehicle to the tunnel. Increasing the planning
in time and 9.91m better in distance than the unblendggyrizon by one level allowed the planner to look further
planner. With 64 coupled command paths and 8 singi@an one control command. In this situation, the unblended
command paths, the blended planner performed 3.31s be%nner using a set of 8 single commands and 64 coupled
time-wise and 7.07m better distance-wise. However, theg@mmands drove back and forth multiple times to obtain an
number d(_) not tell the whole story. The unblended One'lev%_lppropriate vehicle heading. In contrast, blending emable
planner failed on one of the tests and the unblended twd-levg e planner to find a 4-point turn that properly positioneel th
planner failed on 3 of the tests. Figures 16 and 17 show thghicle while a similar path required the unblended planner
time and length results for each of the ten tests. to investigate three times more paths with a result that is
twice as long.

In Figures 11 and 15, the blended paths oscillate more than
The tests indicate that the blended planner uses globéeir unblended counterparts. This phenomenon is an etrtifa
information to reduce planning time. The benefits of blegdinof the static lookahead distance used when determining the

increase in tight spaces where alignment to the global fie@obal heading. Due to the small distance uskdm, the

is crucial in navigation. Blending also reduces plannimgeti calculated angle may not reflect the true angle of the path.
by limiting the set of controls considered during search. FdVloreover, the path heading can change drastically as the
instance, in the tunnel scenario, blending enabled thenptan position changes which leads to oscillations. We suggest
to bend the paths to conform to the global field through théynamically changing the lookahead distance to produce
tunnel with 8 paths. Without blending, the planner require@moother paths.

an extra 12 paths to generate a similar path. When navigating in randomly-generated environments,

IV. DISCUSSION
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Fig. 18. This figure shows the plan results from the 4 diffeydanners on test 6 of the random tests. The start positidineigop left green circle and
the end position is the bottom right yellow circle. The umged planners fail to navigate the vehicle through the enwirent. The one-level blended

planner achieves the goal, but the resulting path involvesyn3apoint turns while the two-level blended planner natégahe environment smoothly and
efficiently.

the blended planners performed better than the equivaldetel blended planner resulted in the lowest path length
unblended planners both in planning time and path lengtinhile the one-level blended planner is the most efficient
Figure 18 shows test 6 which contains tight spaces the robodmputationally.
must navigate through. The unblended planners spend time

aligning the vehicle to certain angles by moving forwards . . .
and backwards multiple times but failed to find a plan due We. presen_t blending as a technigue for using glqbal
to their static paths. The one-level blended planner found %th mformatlon to plan local paths_ ;hat preserve vehicle
path to the goal, but causes the vehicle to back up ma’:gnstralnts but adhere to global feasibility. Blendingl#as

V. CONCLUSION

times. On the other hand, the two-level blended planné € local pla_nner to plan paths with a smaller command s_et
generates smooth paths due to its two step lookahead. T ign an equivalent _unblended planner. Rat.her than planning
example illustrates that blending generates more comple achieve one optimal gIoba] path, blendl_ng creates more
plans in highly constrained scenarios. Figure 19 depic verse local paths by merging the candidate contro! set
another environment containing tight tunnels. The blende |th_t_he set of glot_)al paths defined bY the global path f'e.ld'
planners navigated this environment with a few backing u dd'“O”?”V’ blendlng_enables the ac_t|on comman(_j; to find
maneuvers. The single-level unblended planner succee feasible regions in the world_ without constraining t_he
in reaching the goal, but traveled 86.94m while the t\Nop‘_"Iths genera’Fed tp meet at'a given S.Et o.f sqmple points.
level unblended planner failed to navigate through theavarr FlnaIIy,.bIendlng finds feasbile paths in situations where
openings. The two-level unblended planner performed wor equivalent ur_1b|ended planner may r_10t. Our tegt rgsults
because it favored paths that realigned the vehicle heading®" that blending performs more efficiently both in time

using a sequence of backward and forward motions rath@ d distance than without it (all other factors equal) while

than persisting in the forward direction. Overall, the two naneuvering in tight spaces and in randomly generated

environments.
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Fig. 19. This figure shows the plan results from the 4 diffeyganners on test 7 of the random tests. The start posititimeidottom right green circle
and the end position is the top left yellow circle. The blehgéanners navigates the vehicle to the goal efficiently evitile unblended single-command
planner requires twice the distance. The unblended twel-lgdanner fails to reach the goal at all.

For future work, we would like to test this method[2] E. Feron, E. Frazzoli, and M. Dahleh. Real-time motion piag
with different, more complex vehicle models, such as the for agile autonomous vehicles. Proceedings of the AIAA Conf. on

heli il al . Guidance, Navigation and Control, August 2000.
autonomous helicopter. We will also conduct Compa”son[§] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive padefor-
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field testing with the blended planner would give practica{ International Conference on Robotics and Automation, 2002.
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the IEEE Intl. Conf. on Robotics and Automation (ICRA), May 2000.
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