
Blended Local Planning for Generating Safe and Feasible Paths

Ling Xu
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
lingx@cs.cmu.edu

Anthony Stentz
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

tony+@cmu.edu

Abstract— Many planning approaches adhere to the two-
tiered architecture consisting of a long-range, low fidelity global
planner and a short-range high fidelity local planner. While this
architecture works well in general, it fails in highly constrained
environments where the available paths are limited. These
situations amplify mismatches between the global and local
plans due to the smaller set of feasible actions. We present an
approach that dynamically blends local plans online to match
the field of global paths. Our blended local planner generates
paths from control commands to ensure the safety of the robot
as well as achieve the goal. Blending also results in more
complete plans than an equivalent unblended planner when
navigating cluttered environments. These properties enable the
blended local planner to utilize a smaller control set while
achieving more efficient planning time. We demonstrate the
advantages of blending in simulation using a kinematic car
model navigating through maps containing tunnels, cul-de-sacs,
and random obstacles.

I. INTRODUCTION

For many robotic applications, path planning can be
divided into two stages: global and local planning. The
global planner finds the optimal but coarse-grained route
from start to finish, covering a broad area. Because of this
large scope, the global planner must use a simplified model
of the vehicle’s kinematics and dynamics to maintain a small
problem space (typically 2D). Local planners cannot afford
this simplification because they are responsible for ensuring
the safety of the vehicle. Therefore, a local planner focuses
on a more limited planning scope to find a detailed path that
follows the global path while satisfying the kinematic and
dynamic constraints of the vehicle. To achieve both safety
and goal acquisition, the two plans are merged.

While this two-tiered technique usually works well, in
some cases the plans mismatch at their boundaries, resulting
in combined paths that cannot be executed. One example
of a mismatch occurs when the final heading segment of
the local plan and the initial heading of the global plan
segment fail to coincide, creating an disconnected transition
at the boundary waypoint. Depending on the dynamics of the
vehicle, the lower-level controller may not be able to smooth
large heading mismatches particularly when operating on
more complex systems traveling at high speeds. More serious
examples of boundary mismatches happen when the local
planner cannot find a dynamically-feasible path to achieve
the global plan.

Additionally, constraining the local planner to follow
one global path decreases path diversity, which is key to

x(m)
y(

m
)

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

Fig. 1. Example of blended planner navigating a world with randomly-
placed obstacles using the model of a kinematic car

traversing cluttered environments. A local planner that uses
the global path field (the set of all global paths) would
allow for greater maneuverability and efficiency in environ-
ments containing a myriad of obstacles, cul-de-sacs and tight
spaces such as in Figure 1. Our approach bridges global
and local planning by creating a blended local planner that
utilizes global planning information to generate high fidelity
globally-feasible plans. Our blended local planner conforms
a set of dynamically feasible paths to the global path field
resulting in diverse, globally-informed plans.

Planning high fidelity paths that achieve global waypoints
has been studied extensively in the context of motion plan-
ning. Methods such as randomized kinodynamic planners [1]
and potential-based motion planners [2] sample a space
based on vehicle dynamics and random target points. Those
methods constrain the plans to end at these target points
which may not lie in feasible regions of the planning space.
Additionally, several potential field methods exist that utilize
global information to reactively deform infeasible paths to
be admissable [3], [4]. The potential functions can be highly
complex, difficult to adapt to new environments, and subject
to local minima.

Several deterministic methods have also addressed this
problem. One technique known as ego-graphs [5] creates
a static search tree of feasible path segments to achieve
global waypoints. In order to densely span poses in the
environment, the static search tree must contain a large



number of paths which can be memory or space intensive.
Another method uses boundary constraint solvers to plan
optimal trajectories between global poses creating a lattice-
like network [6]. The discretization of the control commands
affects the completeness of the approach because it limits
action set of the vehicle. Recently Howard, et al, [7] present
an approach that samples control actions in the state space.
The algorithm uses global information to guide the placement
of their samples. However, the approach depends on selecting
good end points that are both feasible and strategically placed
– a difficult process for cluttered environments.

Our approach differs from these methods by blending a
set of candidate control actions with the global path field
by dynamically changing the control action online at each
step of the path generation process. Our algorithm precludes
the selection of sample points at which to connect the
local paths to the global paths, since blending enables the
set of control actions to naturally find the best points at
which to join the two plans. Moreover, this approach avoids
the complexities of computing reverse kinematics/dynamics
or multiple forward kinematics/dynamics passes since the
algorithm only requires a single forward propagation of
control actions.

Our approach, the blended local planner, begins with a
candidate set of velocity and heading commands. A diverse
candidate set of commands is crucial, because some actions
may align better with the global path than others. Moreover,
the differing actions in the set enable the local planner to
negotiate obstacles that were not (yet) included in the global
planning process. Next, the planner searches a space by
forward propagating the candidate set of commands using
the model of the controlled vehicle. The generated path set
encapsulates the capabilities of the vehicle but may contain
inconsistencies with the global planner. To bring together
the global and local plans, we blend the local path with the
global path field by changing the set of heading commands
in the forward propagation process to align with the space
of global headings. Because the system invokes the local
planner at constant time intervals, the local path changes as
the environment and vehicle position change. The blending
process enables the planner to initially spread out the paths to
explore a space before conforming to the global path field.
Due to the blending property, a blended local planner can
cover a space efficiently with a fewer number of control
actions than an unblended planner. The blended paths benefit
from the path diversification and feasibility of the local
planner as well as the completeness and efficiency of the
global planner.

Our approach has several major advantages. First, it aligns
local paths to the global path field. This decreases the
potential of an infeasible transition between the two planners
through the blending the control actions to meet the global
field. It also increases path diversity due to alignment with
the global field rather than a single global path. Second,
the method allows the control set to naturally converge to
feasible regions in the planning space instead of constraining
the control actions to end at a given set of sample points.

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

x(m)

y(
m

)

Fig. 2. Paths generated
using the controller and
model of a kinematic car,
vi = 0m/s, vf = ±1m/s,
20

◦ separation

−5 0 5

−4

−3

−2

−1

0

1

2

3

4

x(m)

y(
m

)

Fig. 3. Paths generated
from two sequential con-
trol commands using the
controller and model of a
kinematic car,vi = 0m/s,
vf = ±1m/s,20◦ separa-
tion

x(m)
y
(m
)

0 10 20 30 40 50 60

−30

−20

−10

0

10

20

30

Fig. 4. Example of a
C-space environment with
one obstacle between the
robot (left green circle)
and the goal (right yellow
circle)

−5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

x(m)

y
(m
)

Fig. 5. The global head-
ing field of the environ-
ment

Blending possesses the added benefit of limiting the path
computation to using only forward kinematics and dynamics.
Finally, the blended planner can produce complete paths with
a smaller control set than an equivalent unblended planner.
This property helps generate smooth paths quickly to support
real-time operation. We present simulation results in a tunnel
and cul-de-sac scenario as well as in environments with
randomly-placed obstacles.

The paper is organized as follows. Section II describes
the details of the blended local planner. Section III explains
the experiments and results. The algorithm and results are
discussed and analyzed in Section IV. Finally Section V
concludes and presents future work.

II. B LENDED LOCAL PLANNER

Algorithm 1 shows the algorithm for the blended local
planner. The following subsections discuss the different
components of the algorithm in more detail. First we describe
the general underlying technique of forward propagation for
path generation (Algorithm 1 lines 4-12). Next we explain the
novel method of blending the local heading with the global
heading field to create a new local heading (Algorithm 2).
Finally we elucidate the terms in the cost function used to
find the lowest-cost path (Algorithm 1 line 13).

Before we proceed to the algorithm details, we first
define some terms related to the planner as well as outline
the structure of the autonomous vehicle system. We define



x(m)

y
(m
)

−5 0 5 10 15

−10

−8

−6

−4

−2

0

2

4

6

8

10

Fig. 6. Unblended set of
paths with several directed
towards the obstacle

x(m)

y
(m
)

−5 0 5 10 15

−10

−8

−6

−4

−2

0

2

4

6

8

10

Fig. 7. Blended set of
paths that bend around the
obstacle like the global
field

vehicle state as the composition of positional, rotational, and
velocity components. Control commands consist of linear
velocity vi, headingθi, and local planning timeTi. A path
is a sequence of vehicle states moving from a start to a goal
position. The overall control system operates at a constant
rate of 10 hertz or cycles every 0.1s (dt). To integrate newly
acquired sensor data, the blended local planner is invoked
every 15 time steps or cycles every 1.5s. Local planning
time Ti equals planning cycle time (1.5s) plus an additional
time buffer to ensure safety. At the end of a planning cycle,
the algorithm returns its best, valid path within the planning
horizon denoted byTi.

Input : s,g, initial and goal states
W , world model
dt, system time step
N , candidate command set(vi, θi, Ti) wherevi

= velocity, θi = heading, and
Ti = local planning time

Output : P , path found or empty if no path found
foreach i ∈ N do1

PathSet(i) = {};2

c = s;3

for t = 0 : dt : Tn do4

θb =5

ComputeBlendedHeading(W, c, g, θi, t, Ti);
c = ForwardPropagation(c, (vi, θb, t));6

if V alid(W, c) then7

Append(c, PathSet(i));8

else9

break;10

end11

end12

P = mini CostFunction(PathSet(i))13

returnP14

end15

Algorithm 1 : Blended local planner

Input : c,g, current and goal states
W , world model
θi, candidate heading
t, current time
T , total time

Output : θb, blended heading
θg = ComputeGlobalHeading(W, g, c);1

β = t
T

;2

α = 1.0 − β;3

θb = αθi + βθg;4

returnθb5

Algorithm 2 : ComputeBlendedHeading

A. Forward Propagation

The algorithm receives the candidate command set (N ) as
input. To ensure dynamically-feasible plans, the command
set is a sampling of control inputs that spans the space of
possible vehicle motions. The forward propagation operation
uses a model of the controlled vehicle to simulate the
control command applied to the current state to produce the
next state (Alg 1, line 6). A control command(vi, θi, Ti)
corresponds to a single path,PathSet(i), of the path set.
The forward propagation operation ensures that the velocity
and acceleration of the vehicle stays within certain limits.

Computing the set of possible paths can be computation-
ally expensive due to complex equations in the vehicle’s
model and controller. Due to the time constraints inherent to
on-line planning, we can precompute the set of paths off-line.
In order to accommodate a wide array of initial and ending
velocities, the paths span a candidate set of velocity pairs.
Figure 2 shows an example of a path set that starts at rest
and ends at±1 m/s with a 20 degree separation between the
segments. Figure 3 illustrates a path set generated using two
sequential commands. During runtime, the planner matches
the current speed of the vehicle with the precomputed path
segments that have the appropriate initial speed, ensuring
that each of the potential segments can be safely executed.
At the end of the planning process, the planner combines the
precomputed segments in real time to produce whole paths.
In this paper, we use the kinematic car model to define the
vehicle motions, but the algorithm can be easily extended to
use more complex models.

B. Blending Process

In order to incorporate information from the global plan-
ner, in our case Field D* [8], the algorithm alters the heading
control command by modifying the candidate heading with
a new global heading at each step of the path (Alg 1, line
5). Algorithm 2 begins by computing the global heading
θg using the initial state and the world model. A linear
weight function then assigns weightsα and β to θi and
θg, respectively. The weights are calculated from the current
position in the path. The sum of the weighted headings
(αθi +βθg) produces the new blended heading commandθb.
The new blended command(vi, θb, t) generates a new state
in the path. The blended heading equals the local heading at
t = 0 and then blends to merge with the global heading field



at t = Ti. This process repeats to create new path states.
Additionally, the algorithm prunes paths that collide with
obstacles in the environment.

We illustrate the difference between blended paths and
unblended paths using a simple example. Figure 4 shows
the C-space expansion of an environment where a single
obstacle is between the robot and the goal. The gray cells
indicate obstacle cells while the white cells indicate free
space. Figure 5 displays the global heading field of the world.
Note that the headings flow around the obstacle. Without use
of this global information, the unblended path set (Figure
6) includes path segments that drive directly towards the
obstacle. On the other hand, using the global headings as
guidance, the blended paths (Figure 7) move around the
obstacle in accordance with the global field.

C. Cost Function

Once a valid set of paths is created, the algorithm assigns a
cost to each path (Alg 1, line 13). The minimum cost path is
returned as the best plan. The cost used in our approach is a
function of several variables. The variables include distance
to the goal, distance to obstacles, a momentum term, and
an alignment term as described in Equation 1. We use the
D* cost to represent the distance to the goal and obstacles.
This maintains cost consistency between the global and
local planners. D* cost represents the sum of the cell costs
along each path, where free cells have low cost, cells near
obstacles have higher cost, and obstacle cells have infinite
cost. The momentum term indicates how much the local
heading changes. To avoid oscillation, we give preference
to paths that keep the vehicle heading constant. Finally, the
alignment term measures the difference between the local
and global headings. Local paths that align more with the
global path are lower cost.~w is the set of weights for the
variables, and the sum of the weighted costs equals the total
cost of the path.

CostFunction = ~w · [dist(g), dist(o), δ(θl), ‖θl−θg‖] (1)

III. E XPERIMENTS AND RESULTS

A. Robot Model

We tested the blended planner on a car-like vehicle in
simulation. The car is modeled by the dynamic equations
below. u0 represents the vehicle speed,u1 is the steering
angle, andL is the length between the front and back wheels.
The steering angle and speed are limited to0.15π and1m/s
respectively.

θ̇ =
u0tan(u1)

L
(2)

ẋ = u0sin(θ) (3)

ẏ = u0cos(θ) (4)

We model the vehicle as a point robot, but the vehicle
dimensions can easily be more complex since the C-space
expansion accounts for vehicle size. The vehicle has the

ability to drive forwards and backwards, thus enabling it
to maneuver in tight spaces. The vehicle controller converts
the commanded control action to motion inputs using the
equations below.

u0 = vi (5)

u1 = (θi − θc) (6)

whereθc is the current vehicle heading.

B. Tests and Results

In order to illustrate the properties of the blended local
planner, we conducted three tests to compare the differences
between the blended planner and the unblended planner.
We show the capability of the blended planner to navigate
tight spaces with a smaller path set than for the unblended
local planner. The first two tests illustrate these properties
by navigating the vehicle in a tunnel environment. The third
test places the vehicle at one corner of a randomly-generated
world where it must navigate to the opposite corner while
avoiding obstacles.

The path set consists of both forward and backward
paths. Each path is determined by a single candidate con-
trol command(θ1, v1, t1) or a sequence of two candidate
commands[(θ1, v1, t1), (θ2, v2, t2)]. Positive and negative
velocities paired with a set of angles define the path set.
The angles are generally evenly distributed around a circle
with the spacing determined by the size of the angle set.
While paths generated from single commands form a single
level search tree, paths from coupled commands become a
two-level search tree that includes segments with forward
motion, backward motion, or both (Figure 3).

The global planner is Field D* with a cell resolution of
0.2m. The local planner finds the global heading by querying
Field D* for the path from a particular location to the goal.
Field D* runs in the unfocussed mode meaning the path
search is undirected allowing for wider path cost propagation.
In this manner, a global query becomes an easy lookup in
the cost map, so we assume calls to the global planner to be
negligible. The planner uses a predetermined lookahead point
a distance 1.5 m down the global plath. Then, it calculates
the angle between the current point and the lookahead point
to be the global headingθg.

We measured the performance of the planner in two ways:
path length and planning time. The path length indicates
the distance the vehicle traveled to reach the goal, and the
planning time is the total computational time spent planning
until achievement of the goal. Because the planner can
return a valid path before the end of a planning cycle, the
computational time for one planning cycle could be much
shorter than the allocated cycle time. Additionally, the larger
the trajectory set, the more time is needed to compute a best,
valid path. We ran the tests on a 2.13GHz Intel Pentium M
with 1GB of RAM.



−20 −15 −10 −5 0

−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 8. Tunnel environ-
ment: the right green cir-
cle denotes the start po-
sition and the left yel-
low circle denotes the goal
position. Gray represents
obstacles and white free
space.

x(m)

y
(m
)

−20 −15 −10 −5 0

−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 9. Path result from
using unblended planner
with a set of 8 paths with
a 90◦ separation

x(m)

y
(m
)

−20 −15 −10 −5 0

−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 10. Path result from
using unblended planner
with a set of 20 paths with
a 36◦ separation

x(m)

y
(m
)

−20 −15 −10 −5 0

−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 11. Path result
from using blended plan-
ner with a set of 8 paths
with a 90◦ separation

1) Tunnel: One of the features of the blended planner is
its ability to align with the global path field. This alignment
property modifies the local paths making it possible to use a
smaller path set during planning. We illustrate this feature by
testing the planner in an enviroment with a 1m wide tunnel.
As shown in Figure 8, the robot begins on one side of the
tunnel at position (0,0) and navigates to position (-18,0) on
the other side. At the beginning, the robot faces45 degrees
away from the goal (135◦ heading). Due to the narrowness
of the tunnel, the robot must align itself perfectly before it
can proceed into the passage. The results are shown in the
table below.C represent the size of the control set.

Tunnel Plan Time(s) Path Length(m)

Unblended-1 C=8 2.3 22.36
Unblended-1 C=20 3.38 19.57
Blended-1 C=8 1.768 19.65

During the test, we compared the blended local planner
with the unblended planner while varying the size of the
path set. With a path set of 8 single control commands, the
unblended local planner found the path shown in Figure 9. In
order to align the vehicle to the tunnel, the planner issued one
backwards motion to ensure the vehicle heading was correct.
By increasing the local path set, the unblended local planner
succeeded in achieving the goal with no backup movement
with 20 commands in the set (Figure 10). In contrast, with
8 commands, the blended planner had no problem aligning

x(m)

y
(m
)

−20 −15 −10 −5 0

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 12. Cul-de-sac en-
vironment: the right green
circle denotes the start po-
sition and the left yel-
low circle denotes the goal
position. Gray represents
obstacles and white free
space.

x(m)

y
(m
)

−20 −15 −10 −5 0

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Fig. 13. Path result from
using unblended planner
with a set of 8 single and
64 coupled paths with a
90◦ separation

with the tunnel (Figure 11). Blending allowed the planner to
find a smooth path in less time than the unblended planner
using the same number of paths. Additionally, the same
path generated using blending took nearly half the time and
almost half the number of commands as that of the unblended
planner.

2) Cul-de-sac: In addition to tunnels, we tested the ability
of the planner to navigate tight spaces by finding plans
that involved driving backwards. One example is a situation
where the vehicle had to drive backwards in order to align
itself to the goal. To illustrate this property, we used a similar
tunnel environment and started the robot pointed away from
the goal (0◦ heading). The robot could not move forward
because it was pointed straight at a wall. Therefore, the
planner was required to perform a turning maneuver to align
the vehicle heading with the tunnel. Again, we varied the
size of the path set to find the ideal number of paths for
the vehicle to plan a feasible path to the goal. In addition
to the path set of single command paths, we added coupled
commands to create a search tree with two levels levels.
This enabled the planner to look ahead one more path step.
Results are shown in the table below:

Cul-de-sac Plan Time(s) Path Length(m)

Unblended-2 C=72 10.62 42.17
Unblended-2 C=274 12.84 25.31
Blended-2 C=72 5.29 23.93

The blended and unblended planners both reached the goal
with a path set consisting of 8 single commands and 64
coupled commands. Although the unblended planner reached
the goal, the path contained numerous forwards-backwards
motions due to its inability to modify the path segments
(Figure 13). In contrast, the blended planner reached the goal
in half the time with a shorter path length (Figure 15). In
order for the unblended planner to generate a comparative
plan, it required a set of 18 single commands and 256
coupled commands (Figure 14).

3) Random obstacles: Finally we tested the planners in
binary environments with randomly placed obstacles. The
world was 20m by 20m with 30 single point obstacles at



x(m)

y
(m
)

−20 −15 −10 −5 0

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Fig. 14. Path result from
using unblended planner
with a set of 16 single and
256 coupled paths with a
45◦ separation

x(m)

y
(m
)

−20 −15 −10 −5 0

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Fig. 15. Path result
from using blended plan-
ner with a set of 8 single
and 64 coupled paths with
a 90◦ separation

random locations. A buffer of 2m in width was placed around
each obstacle and obstacles placed near the start or goal
were removed from the world model. The vehicle started at
a random corner of the environment and navigated through
the obstacle field to reach the goal at the opposite corner. We
tested the blended and unblended local planners with both
single-level and two-level search trees consisting of 8 com-
mands and 72 commands, respectively. Ten random worlds
and ten random start and end locations were generated. We
ran each planner on each of the ten worlds and recorded the
distance traveled and planning time. We then averaged the
path length and planning time. The table below shows the
results from the experiments.

Averages Plan Time(s) Path Length(m)

Unblended-1 C=8 6.7 51.02
Blended-1 C=8 5.14 41.11
Unblended-2 C=72 19.21 46.04
Blended-2 C=72 15.9 38.77

Test 3 shows that both the blended planners (single-level
and two-level) performed better both in time and distance
than the equivalent planner without blending. With 8 single
command paths, the blended planner performed 1.64s better
in time and 9.91m better in distance than the unblended
planner. With 64 coupled command paths and 8 single
command paths, the blended planner performed 3.31s better
time-wise and 7.07m better distance-wise. However, these
number do not tell the whole story. The unblended one-level
planner failed on one of the tests and the unblended two-level
planner failed on 3 of the tests. Figures 16 and 17 show the
time and length results for each of the ten tests.

IV. D ISCUSSION

The tests indicate that the blended planner uses global
information to reduce planning time. The benefits of blending
increase in tight spaces where alignment to the global field
is crucial in navigation. Blending also reduces planning time
by limiting the set of controls considered during search. For
instance, in the tunnel scenario, blending enabled the planner
to bend the paths to conform to the global field through the
tunnel with 8 paths. Without blending, the planner required
an extra 12 paths to generate a similar path.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Test number

P
la

nn
in

g 
tim

e 
(s

)

Blended 1−level
Unblended 1−level
Blended 2−level
Unblended 2−level

Fig. 16. Planning time for the random tests

1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

Test number

P
la

n 
Le

ng
th

(m
)

Blended 1−level
Unblended 1−level
Blended 2−level
Unblended 2−level

Fig. 17. Path length for the random tests

Additionally, blending aids in maneuvering the robot in
spaces that require moving backwards and forwards. The
cul-de-sac test forced the planner to produce n-point turns
to align the vehicle to the tunnel. Increasing the planning
horizon by one level allowed the planner to look further
than one control command. In this situation, the unblended
planner using a set of 8 single commands and 64 coupled
commands drove back and forth multiple times to obtain an
appropriate vehicle heading. In contrast, blending enabled
the planner to find a 4-point turn that properly positioned the
vehicle while a similar path required the unblended planner
to investigate three times more paths with a result that is
twice as long.

In Figures 11 and 15, the blended paths oscillate more than
their unblended counterparts. This phenomenon is an artifact
of the static lookahead distance used when determining the
global heading. Due to the small distance used,1.5m, the
calculated angle may not reflect the true angle of the path.
Moreover, the path heading can change drastically as the
position changes which leads to oscillations. We suggest
dynamically changing the lookahead distance to produce
smoother paths.

When navigating in randomly-generated environments,



(a) Unblended 1-level (b) Unblended 2-level

(c) Blended 1-level (d) Blended 2-level

Fig. 18. This figure shows the plan results from the 4 different planners on test 6 of the random tests. The start position isthe top left green circle and
the end position is the bottom right yellow circle. The unblended planners fail to navigate the vehicle through the environment. The one-level blended
planner achieves the goal, but the resulting path involves many 3-point turns while the two-level blended planner navigates the environment smoothly and
efficiently.

the blended planners performed better than the equivalent
unblended planners both in planning time and path length.
Figure 18 shows test 6 which contains tight spaces the robot
must navigate through. The unblended planners spend time
aligning the vehicle to certain angles by moving forwards
and backwards multiple times but failed to find a plan due
to their static paths. The one-level blended planner found a
path to the goal, but causes the vehicle to back up many
times. On the other hand, the two-level blended planner
generates smooth paths due to its two step lookahead. This
example illustrates that blending generates more complete
plans in highly constrained scenarios. Figure 19 depicts
another environment containing tight tunnels. The blended
planners navigated this environment with a few backing up
maneuvers. The single-level unblended planner succeeded
in reaching the goal, but traveled 86.94m while the two-
level unblended planner failed to navigate through the narrow
openings. The two-level unblended planner performed worse
because it favored paths that realigned the vehicle heading
using a sequence of backward and forward motions rather
than persisting in the forward direction. Overall, the two-

level blended planner resulted in the lowest path length
while the one-level blended planner is the most efficient
computationally.

V. CONCLUSION

We present blending as a technique for using global
path information to plan local paths that preserve vehicle
constraints but adhere to global feasibility. Blending enables
the local planner to plan paths with a smaller command set
than an equivalent unblended planner. Rather than planning
to achieve one optimal global path, blending creates more
diverse local paths by merging the candidate control set
with the set of global paths defined by the global path field.
Additionally, blending enables the action commands to find
the feasible regions in the world without constraining the
paths generated to meet at a given set of sample points.
Finally, blending finds feasbile paths in situations where
an equivalent unblended planner may not. Our test results
show that blending performs more efficiently both in time
and distance than without it (all other factors equal) while
maneuvering in tight spaces and in randomly generated
environments.



(a) Unblended 1-level (b) Unblended 2-level

(c) Blended 1-level (d) Blended 2-level

Fig. 19. This figure shows the plan results from the 4 different planners on test 7 of the random tests. The start position isthe bottom right green circle
and the end position is the top left yellow circle. The blended planners navigates the vehicle to the goal efficiently while the unblended single-command
planner requires twice the distance. The unblended two-level planner fails to reach the goal at all.

For future work, we would like to test this method
with different, more complex vehicle models, such as the
autonomous helicopter. We will also conduct comparisons
of the planner to other existing local planners. Additionally,
field testing with the blended planner would give practical
results of the approach.

VI. ACKNOWLEDGMENTS

This work was partially sponsored by the U.S. Army
Research Laboratory, under contract Robotics Collaborative
Technology Alliance (contract number DAAD19-01-2-0012).
The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.
Ling Xu is partially supported by a U.S. National Science
Foundation Graduate Research Fellowship. We also thank
Omead Amidi, Nicholas Vallidas, and James Kuffner for
their development of the initial code base.

REFERENCES

[1] S. LaValle and J. Ku. Randomized kinodynamic planning. In
Proceedings of the IEEE Int’l Conf. on Robotics and Automation, 1999.

[2] E. Feron, E. Frazzoli, and M. Dahleh. Real-time motion planning
for agile autonomous vehicles. InProceedings of the AIAA Conf. on
Guidance, Navigation and Control, August 2000.

[3] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive pathdefor-
mation for nonholonomic mobile robots. InProceedings of the IEEE
International Conference on Robotics and Automation, 2002.

[4] O. Brock and O. Khatib. Real time replanning in high-dimensional
configuration spaces using sets of homotopic paths. InProceedings of
the IEEE Intl. Conf. on Robotics and Automation (ICRA), May 2000.

[5] A. Lacaze, Y. Moscovitz, N. DeClaris, and K. Murphy. Pathplanning
for autonomous vehicles driving over rough terrain. InProceedings of
the IEE ISIC/CIRA/ISAS Joint Conf., 1998.

[6] Mihail Pivtoraiko, Ross Alan Knepper, and Alonzo Kelly.Optimal,
smooth, nonholonomic mobile robot motion planning in state lattices.
Technical Report CMU-RI-TR-07-15, Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, PA, May 2007.

[7] Thomas Howard, Colin Green, and Alonzo Kelly. State spacesampling
of feasible motions for high performance mobile robot navigation in
highly constrained environments. InProceedings of the 6th Interna-
tional Conferences on Field and Service Robotics, July 2007.

[8] David Ferguson and Anthony (Tony) Stentz. Field D*: An interpolation-
based path planner and replanner. InProceedings of the International
Symposium on Robotics Research (ISRR), October 2005.


