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Abstract— The capability to assemble structures is funda-
mental to the use of robotics in precursor missions in orbit
and on planetary surfaces. We have performed autonomous
assembly in neutral buoyancy of elements of a space truss whose
mating components require positioning tolerances of the same
order of magnitude as the noise in the sensor systems used for
the docking. Numerous trade-offs, design decisions, and innova-
tions were made during the development of the assembly system
in order to both reduce and compensate for the sensor noise. By
using relative positioning, decoupling sensing and manipulation,
caching high-quality position estimates, and developing a new
waypoint-completion metric, we were able to reduce sensor
noise to the sub-millimeter level and autonomously assemble
components with millimeter tolerances. In this paper, we discuss
our approaches to the problem and report the results of a series
of autonomous assembly operations.

I. INTRODUCTION

Autonomous assembly is a compelling use of robotic
technology in orbit and on planetary surfaces. By sending a
robotic assembly team ahead of human explorers, infrastruc-
ture can be constructed autonomously, allowing the humans
to use their time on-planet more efficiently.

Robotic assembly of structures is replete with challenges.
We have begun to address the most fundamental of these:
assembly of rigid structures with slim tolerances and limited
sensing. We have demonstrated the assembly of a portion of
the EASE structure (Fig. 1(a)) [1] [2], a large underwater
truss used in neutral-buoyancy astronaut assembly train-
ing. The assembly was performed using the Ranger robot
(Fig. 1(c)) [2] [3] for manipulation and a stereo camera pair
as the sole extrinsic sensor. Fiducials placed on all elements
allowed them to be localized to within 1.27-1.52 mm in
translation and 5 degrees in rotation, the same magnitude
as the assembly tolerances.

In this paper, we discuss the challenges inherent in as-
sembly operations with noise of similar magnitude. Myriad
approaches were used to reduce or compensate for sensor
noise. We focus on four: (a) the use of relative positions to
eliminate error in the localization of the sensors; (b) caching
high-quality estimates of the relative locations of objects
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that are difficult to sense; (c) a new more robust metric
to determine when a waypoint has been reached; and (d)
the decoupling of sensing and manipulation. In addition, we
report the results of a series of 24 autonomous assembly
operations.

II. RELATED WORK

A. Multi-Agent Assembly Systems

The most common multi-agent assembly systems are those
in factory settings, where multiple industrial robots work
together to assemble products. A system of four industrial
robots arranged around a conveyor network for material han-
dling is described in [4]. The stationary robots’ interaction is
limited to the sharing of common resources such as conveyor
systems or storage areas.

Coordinated assembly performed by teams of mobile
robots is of particular interest to the space community. We
have previously used the Syndicate architecture to support
closely coupled coordination between heterogeneous agents
to complete various spatial construction assembly tasks [5].
The distributed nature of the architecture allows each agent
to be controlled separately. The agents then flexibly form and
dissolve distributed control loops as necessary to complete
the assembly task at hand. For example, we have used
separate agents to sense and manipulate [6]. This servoing
methodology allows sensors to be placed without regard to
the manipulator’s workspace constraints and movements.

Stroupe et al. [7] use the CAMPOUT architecture to
coordinate robots with purely behavior-based strategies to
perform coupled tasks similar to ours. Their team is ho-
mogeneous and performs a single, albeit complex, task.
Rather than decoupling sensing and manipulation, their task
explicitly links them: two robots transport a rigid beam,
maintaining their relative position by detecting the forces
applied by the other robot.

B. EASE and Ranger

Structural assembly has been a prime focus of the Space
Systems Laboratory (SSL). Due to the large-scale motions of
elements with high mass and moments of inertia, it provides
a physical task that requires both strength and fine motor
skills. Extensive tests in simulated extravehicular activity
(EVA) led to the Experimental Assembly of Structures in
EVA (EASE), an EVA flight experiment which was per-
formed successfully during STS 61-B in November, 1985.

The SSL’s first dexterous robot, the Beam Assembly Tele-
operator (BAT), was designed around those same assembly
tasks and correlated to flight data from STS 61-B. BAT first



successfully assembled the EASE structure via teleopera-
tion in 1984. Ranger, BAT’s successor, has been used to
investigate cooperative EVA/robotic assembly of large space
structures. The experiments reported here are the first time
any portion of EASE has been autonomously assembled.

III. TASK AND APPROACH

A. Task

The EASE assembly [1] is a large inverted pyramid
structure of six beams and four nodes (Fig. 1(a)). Each
edge of the pyramid is approximately 4 meters long. For the
collaborative project described here, the objective was toper-
form a small sub-task of the EASE assembly: autonomously
docking one beam to a node.

Establishing a node-beam connection is a two-step pro-
cess. First, the beam end is mated with one stem of the node
(Fig. 1(b)). Then, a sleeve attached to the beam is slid over
the connection point to lock the beam to the node. The node-
beam connection mechanism must be assembled precisely for
the sleeve to slide over the joint without sticking.

B. Hardware

We utilized the Ranger robot for manipulation, with visual
feedback from tracking fiducials provided by a stereo camera
pair. Ranger consists of up to three redundant robot arms. For
this project, we used the 8-DOF right arm and parts of the
6-DOF positioning leg, as shown in Fig. 1(c). All grasping,
docking and manipulation motions were carried out by the
arm, while the leg was used for gross motion. Ranger was
autonomously controlled by a visual servo process running
within the Syndicate task control architecture [5].

Sensing is provided by a stereo camera pair that is
positioned independently of Ranger. The stereo pair is used
to observe fiducials attached to all relevant parts of hardware,
providing the raw images necessary for visual servoing. As
camera stability significantly affects sensing accuracy, the
cameras were affixed to a tripod.

C. Visual Tracking and Servoing

The results reported in this paper make use of an improved
version of the visual servoing system described in [5] and
[8], which consists of two components: visual tracking and
visual servoing. Visual tracking uses square ARTag fiducials
[9] attached to the relevant portions of the hardware to
estimate the positions of objects relative to the cameras.
The fiducials are detected in the camera frames using the
ARTag library [9]. Our tracking process triangulates the
image coordinates of the fiducial corners and fits a 6-DOF
transform from the camera to the fiducial, using a singular
value decomposition-based method [10]. The location of the
object to which the fiducial is attached is then inferred, by
applying a premeasured transform from the fiducial to the
object’s (arbitrary) origin. The final output of the tracking
process is a list of transforms from the stereo pair to the
detected objects. Since all locations are reported relative to
the cameras, the camera location is irrelevant, and no global

frame or registration is required. The tracking system used
in these results provided data at approximately 5 Hz.

Visual servoing consists of commanding a manipulator to
move along a trajectory such that a specified point on the
manipulated object or manipulator passes through a series
of waypoints defined relative to a target object.

The visual servo algorithm uses the output of visual track-
ing to compute the position of the moving object relative to
the target object. This removes the stereo pair’s location from
the data, and ensures that the cameras may be positioned
solely with concern for capturing the best possible images.
The relative position is then smoothed by averaging a number
of transforms in SE3 (Alg. 1, [11]). The results reported here
use the five latest observations (i.e.t = 5 in Alg. 1): this keeps
latency low, while smoothing some of the sensor noise.

Algorithm 1 : SE3 Pose Averaging Algorithm [11]
input T1,T2, . . .Tt

outputµ = average of transforms
µ= I4
while (true) do

for i= 1:t do
dti = ln(inv(µ)∗Ti)

end

∆µ= e
1
t ·∑

t
j=1 dt j

µ= µ·∆µ
est= norm(∆µ)
if est<= ε then

return µ
end

end

The visual servo process uses the smoothed data to com-
pute the motion of the end effector necessary to bring the
moving object to the next waypoint. In computing this 6-
DOF motion, it makes use of the transform between the
moving object (if any) and the manipulator. This transform
may be prespecified (in the case of a permanent, rigid
connection), part of the output of visual tracking, or cached
(if the manipulator, moving, and target objects cannot be
simultaneously viewed). The computed end effector motion
is used as the input to a PID controller, the output of which is
sent to Ranger’s control software. The PID parameters may
be set on a per-waypoint basis; we used a purely proportional
controller, with ap value ranging from 0.04 to 0.3.

This approach to servoing has three key advantages: (a)
there is no need for an absolute (world) frame, eliminating
the need to localize the cameras, along with any associated
error; (b) the cameras may be freely repositioned, subject
only to the needs of the tracking system; and (c) the system
is robust to noise and errors of various types. Because all
measurements are relative, the initial positions of the objects
are largely irrelevant. In addition, due to the small size and
high frequency of the commands sent to the manipulator,
slight command errors will not accumulate, since the next
relatively-computed command will compensate.



(a) The EASE structure in neutral buoy-
ancy. Ranger (c) was used to au-
tonomously dock a 4 meter beam to a
node.

(b) The beam approaches the node stem
from behind for docking. The collar on
the tip of the beam accepts the node’s
T-shaped connector.

(c) The Ranger robot in this scenario’s
configuration. The arm was used for ma-
nipulation while the leg provided gross
motion.

Fig. 1. Experimental hardware.

IV. NOISE REDUCTION

The ability to perform manipulation tasks is limited by
the system’s accuracy in sensing, modeling, and actuation.
Each of these stages in the visual servoing process introduces
additional error. Accurately determining the 6-DOF pose of
fiducials relative to the camera is the most prolific source of
challenges, but strategies to reduce error in all areas are de-
scribed below. Even after applying all of the below methods,
the sensing error was of the same order of magnitude as the
mechanical tolerances, requiring trade-offs between different
sources of error, as will be discussed in Section V.

Most errors in our sensing system are inherent to the use
of visual imaging devices. For instance, wider borders were
added to the fiducials to counteract blooming effects. When
we discovered increased sensing error near the borders of
images due to lens distortion, we ensured that our camera
calibration procedure methodically covered the entire field
of view; the method used is described in [12]. In addition,
we selected camera locations that kept the fiducials away
from the edge of the image. By using a tripod for the stereo
cameras instead of placing them in the hands of a diver,
motion blur was reduced, and sensing precision increased
by an order of magnitude. After experimentation, we found
that the robot’s motion was slow enough to not affect the
tracking system: velocities of less than 6 cm/s at a range of
one meter did not cause noticeable loss of precision.

Another factor to consider when using stereo vision is the
nonuniformity of sensor noise with respect to dimension.
Estimation of the fiducial’s distance from the camera and
out-of-image-plane rotations were noticeably worse than in-
plane rotation and position within the plane (Figs. 2 and 3).
In addition, noise increases as the angle between the fiducial
and image plane normals increases. These variations in noise
dictate the placement of fiducials and cameras: fiducials
should be parallel to the image plane, and dimensions requir-
ing high accuracy should correspond to in-plane translations
and rotations. In this scenario, the beam must be precisely
placed relative to the node (aligned in Y and Z, with a +X
offset in Fig. 2), before being docked (by moving along -X).
We situated the cameras such that the initial alignment would
be as accurate as possible: this minimized the chance that the
beam and node would become jammed during docking, but
made the determination of when docking is complete more
difficult, as the final docking motion is along the cameras’

Fig. 2. The camera image plane (YZ) is perpendicular to the page
and parallel with the fiducials. Accuracy is high when detecting in-plane
translation (along Y or Z) and in-plane rotation (about X). Noise is larger
for out-of-plane rotations (about Y or Z) and translations towards or away
from the camera (along X).

Fig. 3. Rotational sensing error is a function of the range from the camera
to the fiducial, and varies with the axis being estimated: rotations parallel
to the image plane are detected more accurately than those out-of-plane.
These are plots of out-of-plane (upper; about Z in Fig. 2) andin-plane
(lower; about X in Fig. 2) rotation as a function of range to the fiducial.
‘o’s are individual error measurements; the solid line is a windowed standard
deviation of the error, and is an estimate of the measurement noise.

normal (see Section V-B). Similarly, aligning the beam such
that its axis is parallel with the node’s stem requires a high
degree of rotational accuracy in two dimensions (about X
and Z in Fig. 2). Our camera placement allowed the accurate
estimation of rotation about X in Fig. 2, while rotation about
Z was less accurate. The mechanism is slightly more tolerant
to Z rotations, and we did not encounter any significant
problems with rotational alignment.

As discussed in Section III-C, visual tracking consists of
the determination of the position of an object, and specific



points on it, based on knowledge of the fiducial attached
to it. Clearly, reducing error in this case requires a precise
model of the points of interest and fiducials relative to one
another. We used a measurement arm1 to determine their
relative positions with sub-millimeter precision. Modeling
accuracy can also be improved by carefully choosing the
location of the fiducial on the object. Although the choice of
fiducial position is limited by available mounting hardware
and camera placement, there is an advantage to placing the
fiducials as close as possible to the points on the objects
that will be brought into contact. Since some amount of
error is inevitable in sensing the location of the fiducials,
we benefit from a shorter moment arm in the transformation
from fiducial to point of interest. We placed fiducials on the
node, beam, and gripper as close as possible to the docking
faces of the node and beam and the jaws of the gripper
without impeding docking operations (Fig. 2).

The final source of error is actuation. We must consider
both the hardware’s ability to faithfully produce commanded
movements in the end-effector’s coordinate frame and the
accuracy of the commands themselves as generated by the vi-
sual servoing process. Ranger’s relative positioning accuracy
is 0.495 mm, with a standard deviation of 0.408 mm. This
is a measurement of how accurately the robot can place its
end effector relative to its previous position. While quite low,
this still represents a full third of the mechanical tolerance
between the EASE beam and node.

Since Ranger’s startup calibration procedure does not
allow the gripper’s command coordinate frame to be known
precisely, the frame must be estimated by the operator,
leading to slight errors between the frame in which the visual
servoing procedure is producing commands and the frame in
which they are being executed. These sources of error are
effectively mitigated by the relative nature of our visual servo
approach, as described in Section III-C. Finally, the latency
between tracking fiducial positions and producing movement
commands while the arm is moving may introduce small
errors. In practice, no appreciable error is introduced because
the robot’s movements are slow and the latency is small.

V. NOISE COMPENSATION

While we were able to significantly reduce sensor noise,
it remained too large to perform an EASE docking, forcing
a series of trade-offs between sources of noise and error.
By caching high quality estimates of transforms that were
unlikely to change, we were able to achieve more accurate
tracking during visual servoing operations, in exchange for
an inability to correct some unlikely errors. We developed
a new method for determining waypoint achievement that
factors out elements of the sensor noise, at the cost of
generality. Finally, by decoupling sensing and manipulation
we were able to avoid the need to trade off between manip-
ulation and sensing motion constraints. We accomplish this
decoupling by ensuring that sensor placement does not affect
manipulation, as they are controlled by different agents.

1In this instance, we used a Faro Platinum arm [13]: a passive 7-DOF
arm that can be used to dimension objects to a high degree of accuracy.

Fig. 4. Translational sensing error and noise as a function of the range to
a target consisting of two fiducials attached to a rigid plate. The reported
error is the Euclidean distance between the actual and estimated position of
one fiducial relative to the other. The errors are plotted as grey ‘o’s, and the
standard deviation as a solid line. The standard deviation is calculated by
moving a window 75 data points wide across the data set. The grey regions
represent the ranges at which the camera could be placed if simultaneously
observing either the node and wrist or the node, wrist, and beam.

A. Transform Caching

Excessive distance between the camera and fiducial is a
major source of sensor noise. In order to characterize this ef-
fect in our system, we collected observations of two rigidly-
joined fiducials, with a known fiducial-fiducial transform, as
they were moved along the normal of the cameras’ image
plane. We compared the sensing system’s estimates of the
inter-fiducial transform with ground truth to determine the
error of each reading, measured as the Euclidean distance
between the estimated and true transforms (Fig. 4). The
standard deviation of the estimates is also very relevant, as
that is a measure of how noisy the sensing system’s output
will be (solid line in Fig. 4).

As can be seen in Fig. 4, pose estimation noise increases
rapidly as the distance to the fiducial rises. As the fiducials
become smaller in the image, triangulation becomes less ac-
curate. Noise also increases if the fiducials become too close
to the cameras, as our tracking system extrapolates missing
fiducial corners as they move off-image, yielding much less
accurate estimates. Camera positioning is straightforward for
simple two-body servoing operations, such as grasping the
beam or sliding the locking sleeve. However, when operating
with chains of objects, there is an opportunity to trade off
between different sources of error and noise.

For instance, during the docking operation, the arm has
grasped the beam, and is moving it to dock with the node.
The servoing routine is attempting to make the node and
beam stems coincident by issuing commands to the arm. As
a result, there are two transforms that are relevant in order
to calculate the desired arm motion: the node to the beam
and the beam to the arm’s gripper. The obvious approach
is to simultaneously observe all three bodies (Fig. 5(a)) and
update both transforms throughout the docking operation.
This method has the advantage of automatically detecting
any slippage of the beam in the gripper that may occur, but
forces the camera to be at least 1.2 meters from the observed



Fig. 5. A top-down schematic of camera positions while observing different combinations of fiducials. (a) and (c) correspond to the grey regions on the
right and left of Fig. 4, respectively.

fiducials. Moving the camera out to this range increases
sensor noise by 1-8 mm, as the right shaded region in Fig. 4
shows; this is too much noise to successfully dock.

Our solution is to add an initial caching step, where 90
observations are collected of the gripper-beam transform
from close range (Fig. 5(b)), then averaged using Alg. 1
to obtain an accurate estimate. We determined the number
of observations to collect by plotting the standard deviation
of the set as a function of the number of readings. We
estimated where the plot plateaued, and collected twice as
many observations.

During docking, the cameras are moved to observe the
node and gripper fiducials only, allowing the cameras to be
placed much closer (Fig. 5(c), left region in Fig. 4). The
cached transform between the gripper and beam is then used
to calculate the necessary gripper movement. The disadvan-
tages of this approach are that: (a) any slippage of the beam
will go undetected; (b) an additional camera repositioningis
required; and (c) additional time is required for the initial
gripper-beam estimation step. If the undetected slippage is
large enough, the calculated manipulator commands will be
incorrect enough to prevent docking. However, small errors
will be ameliorated, as the manipulator motion is recalculated
at every iteration. In practice, we observed no measurable
slippage of the beam once the gripper was closed securely.
This approach allows cameras to be placed closer to the
observed fiducials, reducing measurement noise. The results
reported in Section VI were achieved using this caching
approach.

B. Waypoint Completion

One of our more persistent problems was determining
when docking was complete: that is, when the final vi-
sual servo waypoint had been achieved. This is particularly
challenging because the movement from the penultimate
waypoint to the final waypoint is along the cameras’ normal
(X in Fig. 2), where sensor noise is high. Initially, we relied
on a system of per-axis tolerances around each waypoint
to detect when it was achieved (Fig. 6). Note that the
waypoint completion is evaluated in six dimensions, but here
is represented in 2-D for clarity. There were two intended
methods by which a waypoint could be completed. The
primary way was to approach the waypoint and register a
specified number of consecutive readings inside the inner
tolerance bound (trace 1 in Fig. 6). Alternatively, in cases

Fig. 6. Our initial implementation to determine waypoint completion. A
waypoint was considered achieved if either three consecutive measurements
were recorded inside the inner tolerance bound (trace 1) or five consecutive
measurements fell into the outer tolerance bound and the erroralong at
least one dimension increased (trace 2). Sensor noise in the tracking system
caused the second condition to trigger too early (trace 3).

where the inner bound was very small or to appropriately
handle offset approaches (trace 2 in Fig. 6), a waypoint also
was considered to be completed if a specified number of
consecutive measurements were registered inside the outer
tolerance bound and the error was growing in at least one
dimension. This completion condition was intended to detect
cases where the arm passed by the waypoint just outside
the inner tolerance bound. Under the assumption that, in
general, the measurements will get progressively closer to
the waypoint until it is reached (or just barely missed), this
approach worked satisfactorily in previous scenarios [5] [6].

During operations for the EASE assembly task, many
waypoint completions were triggered too early. The high
noise in the system resulted in many situations similar to
trace 3 in Fig. 6. While the arm itself was moving as de-
sired, the measurements varied significantly between tracking
iterations. As the arm approached the waypoint and entered
the outer tolerance bound, noisy measurements would show
error increasing in directions orthogonal to the arm’s motion,
which triggered waypoint completion. We modified the size
and shape of the inner and outer tolerance bounds in an effort
to eliminate the problem, but the noise was too high to find
a balance that would both minimize early completions and
still detect a legitimate achievement of the waypoint in an
acceptable amount of time.

Because the arm motion tracked the desired trajectory
quite well, we developed an approach that would ignore
error orthogonal to the primary axis of motion. To do so, we
compared each measurement to the previous and the target
waypoints. Consider two vectors: one from the previous to
the current waypoint (or the manipulator’s initial position if



Fig. 7. The new implementation to detect waypoint completion considers
a plane normal to the vector from the previous waypoint to the current
target waypoint. A waypoint is complete if a fixed number of consecutive
measurements fall beyond that plane (e.g. measurement B).

there is no previous waypoint), and another from the current
measurement to the target waypoint. As long as the dot
product of the two vectors is positive, the measurement is
on the approach side of the target waypoint (A in Fig. 7).
When the sign of this inner product flips, we conclude that
the waypoint has been achieved translationally (B in Fig. 7).
Rotational errors are evaluated as in the previous approach:
a waypoint is achieved when the rotational error is within
bounds and the inner product has remained negative for a
number of consecutive readings.

This approach eliminates false positives caused by sensor
noise orthogonal to the primary axis of motion, at the risk
of determining that a waypoint has been achieved despite
large orthogonal error. Because our visual servoing system
approaches the target along a series of waypoints, this is
not generally an issue, as for very fine-tuned maneuvers the
waypoints can be made to be close enough to eliminate or
correct this error. This approach was developed after two-
thirds of the experiments reported in Section VI; insufficient
data is available to unequivocally state its effectiveness, but
the trends are promising (see Table I).

C. Separation of Sensing and Manipulation

As discussed in Section V-A, the proximity of the cameras
to the fiducials has a significant impact on pose estimation
error. In tightly constrained workspaces, placing cameras
close to the assembly can interfere with both the manipu-
lator’s movements and the cameras’ unblocked view of the
workspace. This proved to be the case when we attached
the cameras to Ranger at the base of the arm: the arm often
blocked the cameras, and the intersection of the cameras’
field of view with the arm’s workspace was too restrictive.

In our previous work, we have used independent sensing
and manipulation agents to decouple the two tasks. This
is possible only because our visual tracking and servoing
system operates entirely using relative positions: the location
of the sensor does not need to be known, allowing its
placement to be constrained solely by its characteristics.The
second Ranger arm (similar to the manipulation arm we
currently use) is an obvious choice for such a sensing agent,
and may be utilized in the future for camera positioning, but
was unavailable during our experiments. Instead, we placed
the cameras under the control of a different ‘agent’: we
mounted them on a tripod that divers manually positioned
at a series of predetermined locations. This was the only
human involvement in the assembly procedure, and occurred
only at two distinct points in the sequence: when moving the

Fig. 8. The placement of the cameras, shown here on a tripod, in
relationship to the beam, node, and manipulator during a docking operation.

cameras from the beam grasping location to where the beam-
gripper transform would be cached, and from there to a point
where the node and gripper could be observed. In addition,
we placed the cameras on the opposite side of the assembly
from the manipulator (Fig. 8). This avoided constraining the
manipulator’s movements while providing the cameras with a
clear, unobstructed view of the assembly. The results reported
below were achieved using this camera positioning strategy.

VI. RESULTS

The assembly sequence consisted of a blind joint move
to the general location of the stored beam, a visual servo to
grasp the beam, another blind move back to the approximate
location of the node, visually servoed docking and locking
maneuvers, and a blind release action (Fig. 9). Over the
course of several days at the Space Systems Lab’s Neutral
Buoyancy Research Facility, we performed 24 runs of various
portions of this sequence. Due to the limited availability of
Ranger and a lack of safety divers, we had insufficient time
for large numbers of identical experimental runs. Instead,
we performed various segments of the scenario (including
several end-to-end runs), and have aggregated the resulting
data here. Table I details the number of successes, near
successes, and failures for each stage in the process. “Near
successes” are operations that came very close to succeeding:
for instance, a docking attempt whose final waypoint was
deemed to have been finished 1-2 mm early would be
considered a near success.

The most persistent problem during these experiments
was that of waypoint completion detection, as discussed in
Section V-B. The new detection method was implemented
starting with run 13, and was tuned throughout the remaining
runs. As can be seen from the bottom row of Table I, the
system became more reliable as development proceeded. The
figures in the bottom row plot the result of each run, with
the run number increasing from left to right. If nothing is
plotted for a particular run, that segment of the sequence
was not attempted during the given run. The entire sequence
consumes roughly thirty minutes, necessitating exercising
portions of it in isolation. In combination with the very
limited robot and diver time available, this constrained the
number of runs we were able to perform overall, as well



(a) (b) (c) (d) (e)

(f) (g)

Fig. 9. The complete assembly sequence consists of six steps. The leg first moves to
position the arm near the beam storage location (b), where the arm grasps the beam
by visually servoing relative to it (c). The leg then swings back (d) and positions the
arm with the beam close to the target node (e). The arm performsthe docking (f), locks
the sleeve, and releases the beam to back away from the completed docking (g). Our
experiments began at various points in this sequence, such asbeginning with the initial
grasp or the dock itself, and were terminated as soon as an action failed, leading to the
different sample sizes for each action in Table I.

TABLE I

EXPERIMENTAL RESULTS

Task Joint Moves Grasp Dock Lock Release
Success 4 (100%) 3 (100%) 9 (41%) 1 (17%) –
Near Success – – 12 (55%) 1 (17%) –
Failure – – 1 (5%) 4 (67%) 1 (100%)

Over Time
5 10 15 20 25

Failure
Near S.

Success

5 10 15 20 25
Failure
Near S.

Success

5 10 15 20 25
Failure
Near S.

Success

5 10 15 20 25
Failure
Near S.

Success

5 10 15 20 25
Failure
Near S.

Success

as preventing us from testing the release maneuver before
attempting it for the first time during experimentation.

By run 24, we were able to complete the entire sequence
autonomously, with the exception of the untested release ma-
neuver. The only human involvement was the repositioning
of the external camera pair.

VII. FUTURE WORK

Future work on this scenario will focus on further reducing
sensor noise and performing the entire EASE assembly.
Moving to higher resolution cameras is one possible ap-
proach to reducing noise. Since tracking accuracy varies
with the orientation of the image plane, adding an additional
camera pair oriented orthogonally to the existing pair should
greatly reduce noise. Assembling the entire EASE pyramid
will require management of the arm’s workspace around a
developing structure, as well as the creation of heuristicsto
guide the automated placement of cameras, since most of the
assembly will be out of reach of a tripod on the floor.

VIII. CONCLUSION

This paper has examined some of the difficulties inherent
in autonomous assembly, especially when sensor noise is of
the same magnitude as the mechanical tolerance. We have
improved camera placement by caching some transforms and
separating sensing and manipulation, allowing a reductionin
camera-fiducial range and sensor noise. In addition, we have
developed a method for the evaluation of waypoint comple-
tion that is more tolerant to the sensor noise that remains. We
were able to sufficiently reduce and compensate for sensor
noise to allow the autonomous assembly of one element
of the EASE structure under neutral buoyancy conditions,
and reported the results of a series of autonomous assembly
operations. Autonomous structure assembly is a rich area of

research with many challenges and opportunities that have
only begun to be addressed.
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