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Abstract— We describe a framework for detecting and track-
ing continuous ”trails” in images and image sequences for
autonomous robot navigation. Continuous trails are extended
regions along the ground such as roads, hiking paths, rivers, and
pipelines which can be navigationally useful for ground-based
or aerial robots. Our approach to single-image trail segmen-
tation incorporates both bottom-up and top-down processes.
First, good grouping hypotheses are efficiently generated by
probabilistic clustering of superpixels based on color similarity.
Second, hypotheses are robustly ranked with an objective
function comprising shape, appearance, and deformation terms.
The shape term measures how well a triangle, the approximate
template for a trail viewed under perspective, can be fit to
the grouping’s boundary. The appearance term reflects the
visual contrast between the grouping and its surroundings
using a between-class/within-class scatter measure. Finally, the
deformation term measures the closeness of the fitted triangle
to a learned distribution which captures expected size, location,
and other degrees of shape variation.

Although trail detection is accurate and reasonably fast
on a variety of isolated images, we describe how introducing
temporal filtering to both the bottom-up and top-down stages
increases segmentation accuracy and per-frame speed over im-
age sequences. Results are shown on varied sequences collected
from flying and driving platforms, as well as images sampled
from the Web.

I. INTRODUCTION

Navigationally-useful linear features along the ground, or
trails, are ubiquitous in manmade and natural outdoor envi-
ronments. Spanning engineered highways to rough-cut hiking
tracks to above-ground pipelines to rivers and canals, they
“show the way” to unmanned ground or aerial vehicles that
can recognize them. Built trails also typically “smooth the
way,” whether by paving, grading steep slopes, or removing
obstacles. The computer vision tasks involved in robust trail-
following may be divided into three categories:

Finding We use this term for the problem of detecting
or segmenting a trail in an image with very little or no a
priori information about its location, appearance, and specific
shape. Corollary issues include deciding whether the trail is
coming to a dead-end or a branch, which might be more
generally framed as whether a trail is visible at all, or how
many trails are in view if there may be more than one.

Keeping Analogous to the sense of “lane keeping” from
autonomous road following, this involves repeated estima-
tion, or tracking, of the gross shape and appearance attributes
of a previously-found trail. For discontinuous trails marked
by blazes, footprints, or other sequences of discrete features,
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Fig. 1. Example trail types. Clockwise from upper-left: ground view of
hiking trail, aerial views of canyon road, pipeline, and river.

the underlying task is successive guided search rather than
segmentation.

Negotiation When a trail contains hazards such as rocks,
roots, logs, and puddles, the gross shape estimate may be
insufficient for safe travel. Individual detectors for each class
of obstacle are necessary for avoidance maneuvers and other
control policy adjustments.

In this paper we describe a vision-based approach to
part of the overall problem—namely, the tasks of finding
and keeping to a single, non-branching, non-terminating,
continuous trail. Our method has two major parts: (1) a
randomized search for the most-salient, most-trail-shaped
region in a single image with no a priori color model; and
(2) efficiently tracking a previously-found trail region over
an image sequence.

An obvious analogy is to consider trails as a scaled-down
version of road following. Vision-based road following has
been thoroughly studied on paved and/or painted roads with
sharp edges [19], [29], [30], but some of the subtypes of
trails we are interested in lack these (e.g., the hiking trail
and river in Figure 1). When the road border is ragged,
bottom-up methods using color or texture to classify image
patches as road vs. background often work well [1], [5], [20],
[35], but they tend to function best with manual initialization
and a large road region. This last factor is problematic
for a low-altitude aerial (i.e., UAV) perspective. From the



air, trail pixels rarely dominate the image, making mere
detection of the trail among many other features a difficult
challenge. There has been one cluster of work in this area
from essentially a top-down perspective [10], [21], [22], but
their algorithms require fairly constrained imagery. [31] has
some results on finding straight roads in low-altitude aerial
images using a Hough transform on static images only, with
no tracking.

Our motivating intuition here is that the shape of trails is
subject to less variability than their appearance, and therefore
should be a very strong cue in finding them. There has
been much recent work on combining bottom-up grouping
with top-down shape constraints for segmentation and object
detection [3], [4], [14], [17], [25], [27], [34] A common
feature of many such approaches is their use of an overseg-
mentation technique such as [8], [28] to generate superpixels
as a preprocessing step. The superpixels are combined in
different ways in a bottom-up hypothesis generation step,
which is followed by top-down hypothesis-scoring. Many of
these researchers, however, are trying to detect complicated,
often articulated objects (e.g., horses, people, things from
Caltech101, etc.) and must struggle with a large search
space for the top-down stage. We are basically looking for
a deformation of a triangle, which is a reasonable template
to describe an unoccluded trail viewed under perspective,
modulo high-frequency variation along the edges and some
nonlinearity due to curvature near the horizon. The two most
similar approaches to ours are [27], [34], which search over
low-dimensional transformations of relatively simple shapes
like bananas and street signs in fairly uncluttered images.
Their methods allow for multiple detections if multiple
instances of an object are present, which requires extra work,
whereas we for now assume one and only one trail is present
in every image. However, we are trying to make our method
work in difficult outdoor images.

There has not been much recent work on combining shape-
based segmentation and tracking, probably because of the
computational cost of some of the superpixel generation
algorithms. [24] used a novel technique, constrained De-
launay triangulation, to obtain its superpixels and perform
foreground/background classification on grayscale image se-
quences. [15] used the fast segmentation method of [8] to
extract superpixels as a precursor to foreground/background
classification. However, to work on sequences their method
requires that the first frame be manually labeled. Finally, a
few somewhat less global shape-oriented uses of superpixels
for segmentation include surface layout classification [12]
and [13]’s work on classifying superpixels as obstacle or
free space for outdoor robot navigation.

In the following sections we will first describe our method
for finding a single trail in a single image, how we modify the
method to take advantage of temporal consistency over image
sequences while increasing efficiency, and show results as
space allows.

II. SINGLE-IMAGE TRAIL SEGMENTATION

Here we explain the process for detecting a trail in a single
w× h image. We assume that there is exactly one such trail
region, roughly in the shape of a triangle with its base aligned
with the bottom edge of the image. The basic idea is generate
a set of hypothetical trail regions which are reasonable in that
they are self-similar and connected, score them using several
global shape and appearance criteria, and pick the hypothesis
with the best overall likelihood.

A. Generating a trail region hypothesis

A trail region hypothesis is a grouping G of connected
superpixels {s1, . . . , sm}. G is constructed through an m-
stage agglomerative process such that G1 ⊂ G2 ⊂ . . . ⊂
Gm−1 ⊂ Gm = G. Each stage adds a superpixel to the
group: the seed hypothesis consists of a single pixel G1 =
{s1}, and at stage i a next member superpixel snext is chosen
from the current grouping’s set of neighbors N (Gi) to form
Gi+1 = Gi∪snext. The seed s1 always borders the bottom of
the image. It is chosen as the superpixel containing a random
bottom-row pixel (x, h− 1) with x drawn uniformly.

The next member superpixel to add to the current group-
ing is chosen as follows. Let δ(sj , Gi) be the appearance
distance between a neighboring superpixel sj ∈ N (Gi) and
the grouping (details are given in Section II-A.1). A purely
greedy approach (e.g., the “best-first” method of [27]) would
deterministically select the next member of the hypothetical
grouping as argminj δ(sj , Gi). However, for a fuller explo-
ration of the space of hypothetical groupings (i.e., ergodicity
in the Markov sense [32]), we randomize the process by
converting each superpixel j’s appearance distance δ(sj , Gi)
to a “next member probability” pnext(sj |Gi) via simple
normalization

pnext(sj |Gi) =
1/δ(sj , Gi)∑n
k=1 1/δ(sk, Gi)

(1)

where n is the number of superpixels neighboring Gi. Now
the next member of the grouping snext is just sampled from
the neighbors according to pnext(sj |Gi).

The final number of superpixels m in grouping G is deter-
mined probabilistically, based on two factors: the grouping’s
overall size and its appearance variation. For each hypothesis,
a maximum number of stages of agglomeration mmax is
randomly chosen (the upper bound on this was set based
on the superpixel segmentation parameters to effectively be
an area range). The hypothesis process may terminate early,
however, if the selected next member superpixel snext is too
dissimilar to Gi. Let var(Gi) be a measure of Gi’s internal
appearance variation in the same units as the appearance
distance function δ (see Section II-A.1). The “acceptance
probability” paccept(snext|Gi) is inversely proportional to
δ(snext, Gi)/var(Gi).

1) Appearance measures: A number of different measures
have been successfully used to measure appearance similarity
in superpixel-based segmentation work, including brightness
in grayscale images [23], Euclidean color distance (often



in CIELAB space [16]), and color and texture histogram
dissimilarity measures such as χ2 [7], [33] and the Earth
Mover’s Distance [17].

For efficiency, in this work the appearance distance be-
tween a superpixel s and grouping G is based on Euclidean
distance in RGB space. Let the mean color of any image
region R be given by µ(R) = (µR(R), µG(R), µB(R)).
Then the appearance distance δ(s,G) = |µ(s) − µ(G)|.1
Letting the vector of color channel standard deviations of
a region be analogously defined as σ(R), the appearance
variation of a grouping is the magnitude var(G) = |σ(G)| .

B. Scoring groupings

The boundary of a trail under perspective is linearly
approximated by a triangle with its base coincident with the
bottom of the image. This trail triangle is our shape template
in the sense of [27]. For a given triangle T the positions of
the top, bottom-left, and bottom-right vertices are pt, pl, and
pr, respectively. Since pl and pr are on the bottom row of
the image y = h − 1, their x coordinates xl and xr suffice
to describe them. Thus, a minimal geometric description of
the triangle is a 4-D point t = (xt, yt, xl, xr), subject to the
constraint that xr > xl. Note that xl and xr may be outside
of the range [0, w − 1], corresponding to the triangle being
clipped by the left and/or right image edge. The trail triangle
associated with a particular grouping G will thus be referred
to in a region sense as TG and in a point sense as tG.

The overall goodness of a trail region hypothesis G is
assessed through a trail likelihood function Ltrail(G) com-
prising three terms derived from [27]’s formulation. These
terms encompass (1) how well G’s shape is described by a
triangle, (2) how internally consistent its appearance is while
contrasting with its surroundings, and (3) how much distance
or deformation there is between the best-fitting triangle and
the most-likely trail triangle based on a learned distribution.
The formula is:

Ltrail(G) = (2)
uLshape(G) + vLappear(G) + (1− u− v)Ldeform(G)

Lshape, Lappear, and Ldeform (detailed below) are all con-
structed to have values in the range [0, 1], and u = v = 1

3
for all of the results in this paper (although tuning them could
help greatly).

1) Shape likelihood: We want the shape likelihood to
measure how “triangular” G is, which is equivalent to the
shape similarity between G and its best-fit triangle TG. TG
is initially estimated by a simple fitting procedure: pt is set
equal to G’s highest point, pl is set to G’s leftmost point
within some tolerance of the bottom of the image (since
G always has at least one superpixel bordering the image
bottom), and pr is set to G’s rightmost point near the image
bottom.

1This value is squared in the computation of δ to penalize more dissimilar
superpixels.

There are no issues here with registering the two shapes
first since TG is derived from G, so the direct area overlap
computation suggested by [27] works very well:

Lshape(G) =
A(G ∩ TG)2

A(G)A(TG)
(3)

where A(R) is the area of a region R, and G ∩ TG is the
region of intersection between the grouping and its fitted
triangle. This quantity is quickly calculated from a polygonal
representation of G via clipping against the left and right
edges of TG.

The accuracy of the fitted triangle TG is most susceptible
to noise in the superpixel segmentation or trail curvature near
the apex pt. Significant improvement is often obtained by
searching over the x coordinate of pt for a local maximum
of Lshape(G); this is only done after the best grouping
hypothesis is chosen for reasons of speed.

2) Appearance likelihood: This is a measure of how
different a grouping G’s neighboring superpixels are from
it in appearance and how much variation there is in the
interior of G. Grouping-to-neighbor difference, which we
wish to maximize, and within-grouping variation, which we
wish to minimize, are somewhat analogous to the concepts
of between-class scatter and within-class scatter from linear
discriminant analysis [11]. Thus, the form of the appearance
likelihood is also a ratio:

Lappear(G) =
∑n
k=1 w(sk)δ(sk, G)

var(G)
(4)

where w(sk) is the fraction of the total border length of
all superpixels neighboring G due to sk. This is different
from [27]’s formulation, which accounts for variation within
a grouping but not its contrast with the surroundings. It is
quite similar to [18], which cites [23] as an antecedent.

3) Deformation likelihood: This term measures how close
the trail triangle TG is to a distribution which represents
expectations about the trail’s apparent width, centeredness,
horizon line curvature, and so on. These of course depend
on both the trail’s intrinsic shape properties as well as the
camera perspective. In the absence of any specific knowl-
edge of these parameters for a given image or sequence,
we use a Gaussian distribution (t̄,Σ) learned from user-
labeled examples. The deformation likelihood is derived from
the Mahalanobis distance to the grouping’s fitted triangle
d(tG, (t̄,Σ)) = (tG − t̄)TΣ−1(tG − t̄):

Ldeform(G) = e−γd(tG,(t̄,Σ)) (5)

The distribution used here was learned from an image
sequence consisting of several hundred frames captured by a
wheeled robot over a multi-km hiking trail with a variety of
turns and width changes (the hiking trail image in Figure 1
was captured on the same trail). The trail region Ri in each
image i was manually-segmented using a local copy of the
LabelMe tool [26]. A triangle ti was fitted to each Ri and
(t̄,Σ) calculated over the entire set of triangles {ti}.



III. TRACKING TRAILS IN IMAGE SEQUENCES

In this scenario, a robot or camera platform is moving
along a trail and capturing a sequence of images. We would
like to infer the most likely sequence of trail regions to
describe what we are seeing. Of course we could run the
single-image procedure described above repeatedly, but this
does not enforce the expected frame-to-frame consistency
of our interpretations (though we show some results on
sequences in the next section). In this section we describe
how we use the trail region estimate from the previous frame
to guide segmentation and fitting in the current frame.

Two things may change between frames: the apparent
shape of the trail as we move along it and new sections come
into view, and the trail appearance as its material composition
and illumination conditions change. Because trail terrain
is often highly-nonplanar and trail curves (particularly for
hiking trails) may not be well-modeled by analytic curves, it
is most convenient to carry out tracking strictly in the image
domain.

Our high-level idea is to carry forward the triangle T t−1
G

fitted to the best-scoring grouping in the previous frame to
the current frame via a suitable dynamical model [2] and
search for the “nearest” good grouping hypothesis to T tG.
To find this, consider the grouping G∗ formed by all of the
superpixels in the new frame which significantly overlap T tG.
These constitute a top-down hypothesis about where the trail
is now. We assume that the shape and deformation likelihood
of this grouping are good given how it was formed, but
how is its appearance likelihood? We wish to find what
transformation of T tG brings it into best alignment with the
current trail position and thus maximizes Lappear(G∗).

There are numerous possible ways to do this, deterministic
and stochastic, but for this paper we simply randomly
sample trail triangles around T tG, evaluating the appearance
likelihoods of the associated groupings G∗, and picking the
best one. This is considerably cheaper than carrying out the
full grouping process of Section II-A. A more principled
analog of this would be to carry out particle filtering [2].

IV. RESULTS

We have run the single-image trail finder on numerous
images from the hiking trail, river, and canyon sequences
depicted in Figure 1 with Felzenszwalb’s superpixel segmen-
tation code [8] as the front-end (for all results in this paper,
σ = 0.5, k = 50,min = 100). On the hiking trail and canyon
sequences there is excellent gross accuracy of trail detection
and fairly good frame-to-frame correlation considering the
variability of the superpixels and the lack of temporal filter-
ing. The first row of Figure 2 shows two canyon images 80
frames apart and their best-scoring groupings with fitted trail
triangles. n = 100 grouping hypotheses were generated and
scored by the single-image trail finder described above for
each 320 × 240 image, taking less than 1 s per image on a
Core Duo T2600 2.16 GHz laptop. Despite dynamic pitching
and rolling of the UAV, 95% of the trail detections for the
frames between were substantially correct. The second and
third rows of the figure show results from the river sequence.

C 1 C 80

R 1 R 20

R 40 R 60

Fig. 2. Aerial sequence excerpts: Single-image detections at equally-spaced
intervals (C = canyon sequence frame numbers; R = river sequence frame
numbers).

This was a more difficult set of images because of the shape
and appearance variation of the water, particularly the white
of the rapids (see discussion in Conclusion). Nonetheless,
over the approximately 60 images spanning by this clip, the



river-trail region was roughly correct for almost 70% of the
frames.

Next we present results on the diversity of trail images that
the system can process successfully. In Figure 3, 10 images
from a larger collection culled from Flickr and Google
image searches are shown. The best-scoring grouping—
with no further post-processing—and its fitted trail triangle
is shown below each input image. The algorithm does a
good job of finding the trail region in each image despite
their very different colors, sizes, and image locations. This
procedure took about 5 seconds per image with n = 1000.
Running with n = 100 hypotheses yields similar results
with somewhat rougher grouping edges. For contrast, the
superpixel step alone takes about 3 minutes for each of these
images using [17] and more than 10 minutes per image using
the multiscale normalized cuts of [4].

Finally, we show some results from the tracking procedure
running on the hiking trail sequence in Figure 4. The tracker
was run on every single image of a multi-thousand frame
sequence captured at 5 fps from a robot moving at an average
speed of 1 m /s. The figure shows 20-frame intervals from
one section. Over the sequence, which has a number of
dips and curvy sections, the tracker did not lose the trail,
although the fit of the trail triangle was occasionally sloppy,
as the sixth frame shows. This should be mostly mitigated
by a better dynamical model (currently we are just modeling
the trail triangle’s motion with nothing more than a random
walk). This mode takes about 0.65 s per image after the initial
detection; most of this is due to the superpixel segmentation
that must be run on each new image.

V. CONCLUSION

We have presented a practical yet novel approach to
visually finding and following trails for robot autonomy and
showed it working on a number of different kinds of images
and image sequences. The method does not require an a
priori color or texture model for the trail region, working
primarily from general cues such as gross shape and self-
similar regional appearance vs. contrasting surroundings to
localize a variety of trail types without parameter changes.
This baseline implementation is fairly accurate on realistic
imagery and efficient for its level of sophistication, running
at interactive rates suitable for control of a ground robot.
The segmentation approach is readily extensible to other cues
such as obstacles detected by ladar à la [6].

There are number of directions to explore for improvement
of the algorithm. First, our essentially unimodal color model
for the interior of a grouping fails on highly-variable regions
such as scattered leaves or the boulder pile of Figure 5.
This will be remedied with a more sophisticated appearance
model, possibly using a mixture of Gaussians for multiple
color [6] or by explicitly modeling texture [33]. Second, the
algorithm has problems when the trail region is broken into
several segments separated by areas of visual contrast such
as occluding branches, shadows, lane lines, or other features
such as the rocks in the stream in Figure 5. These can prevent
the hypothesis generator, which works by adding neighboring

Fig. 5. Difficult images for the trail finder: multi-modal trail color/texture
distribution (left) and isolated segments (right)

superpixels with an appearance affinity to the grouping, from
reaching the other side of the blockage unless there is another
path. What is necessary is a grouping mechanism which
can “jump” such obstructions by considering neighbors as
nearby superpixels rather than requiring that they abut. For
cast shadows in particular, which can occupy relatively large
areas, it may be helpful to also apply an explicit shadow
removal method [9] or at least employ a more illumination-
insensitive color similarity measure.
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