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Design Optimization of Robot Manipulators
over Global Stiffness Performance Evaluation

Eric Courteille, Dominique Deblaise, Patrick Maurine

Abstract— This paper presents a general framework for
the design optimization of robot manipulators with respect
to multiple global stiffness objectives. For this purpose, a
systematic elasto-geometrical modeling method is used to derive
the analytical manipulator stiffness models by taking into
account their link and joint compliances. The models are then
involved within an optimization process that is performed under
a constraint of mass by using three global indices that describe
the structure stiffness over the workspace. Multi-Objective
Genetic Algorithm, i.e. Pareto-optimization, is taken as the
appropriate framework for the definition and the solution of the
addressed multi-objective optimization problem. Our approach
is original in the sense that it is systematic and it can be applied
to any serial and parallel manipulators for which stiffness is a
critical issue.

I. INTRODUCTION

The main objective for the mechanical design of robot ma-
nipulators consists in finding the best compromise between
several properties, such as workspace, dexterity, manipulabil-
ity, and stiffness [1]. Stiffness is an important issue for serial
and parallel robots manipulators since their structures are
now gradually being implemented to carry out various appli-
cations in fields such as medical, flight simulation and high-
speed machining [2]. To make these machines compatible
with their applications, it is necessary to model, identify and
compensate all the effects that degrade their accuracy. These
effects may be caused by errors in the geometry tolerances of
the structure associated with machining and assembly errors
of the various constituting bodies, and also by the elastic
deformations of their structure [3]–[6]. The main problem
is that a low stiffness of links and/or joints may lead to
large compliant displacements of the end-effector under both
structure own weight and external wrench applied at the end-
effector [7]. These compliant displacements detrimentally
affect both accuracy and payload performances, as pointed
out for example in [8]. It is also to be noted that insufficient
stiffness may induce low natural frequencies of the structure
that lead to longer stabilization times and reduced dynamic
performances [9] .

In the literature many efforts were recently devoted to the
design optimization of robot manipulators by considering
many competing objectives such as velocity transmission,
workspace, inertia and stiffness [10]–[12]. These studies have
shown the real efficiency of the evolutionary algorithms to
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solve this kind of problems. However, most of them do not
include the analysis of the optimization results as part of the
design process.

It is in this context that the presented work takes place.
Our main objective is to fulfill the industrial demands in the
preliminary design of the robots manipulators by optimiz-
ing simultaneously the stiffness over a specific workspace
and/or by minimizing the global weight of the structure for
increased dynamic performances, the whole in an acceptable
timeframe. The main originality of our work resides :

• in a systematic analytical calculation of the equivalent
stiffness matrix of the manipulator structures through a
method that we proposed and experimentally validated
in [13], [6],

• in the use of realistic global stiffness indices derived
from the concatenation of the equivalent stiffness ma-
trices locally calculated in the manipulator workvolume
[14], [7],

• in the fact to provide an interactive use of Multi-
Objective Genetic Algorithms (MOGA) in the robot
design optimization as a reliable tool from an engineer
point of view.

The paper is organized as follows. The stiffness modeling
of a 3 degree-of-freedom translational parallel manipulator
that is used to illustrate the proposed method is described
first. The definition of local stiffness performance indices is
done next. Global performance indices are then proposed
and a sensitivity study is presented to show the coher-
ence with the static positioning accuracy expected over
the workspace. Then a practical application of the multi-
objective optimization procedure is presented in order to
define optimal stiffness designs of the studied structure for
which the optimization results are carefully analyzed.

II. STIFFNESS MODELING OF A DELTA LIKE MECHANISM

The Surgiscope R©1 is a hybrid structure with a position
mechanism based on a Delta like parallel manipulator [15]
and a decoupled orientation mechanism. This structure is
used in neurosurgery to move and to place accurately a
microscope, a laser guiding system and some others surgical
tools. In the following, the Surgiscope will only designate
the position mechanism (Fig. 1).

The analytical stiffness model presented in this section is
based on matrix structural analysis and has been introduced

1ISIS: Intelligent Surgical Instrument & Systems
http://www.isis-robotics.com/
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Fig. 1. The Surgiscope.

in previous papers [13], [6]. Compared to traditional CAD-
FEA approach, this analytical modeling leads both to a
realistic stiffness description as well as a reduction of compu-
tational time that allows its use in a parametric optimization
loop.

The stiffness modeling of the Surgiscope is composed with
nodes corresponding to the characteristic points. These nodes
link some 3D flexible beams, some rigid elements and some
joints. The 6 dimensional equivalent stiffness matrix Keq of
the Surgiscope is defined in two steps as follows:
• definition of the equivalent substructure of each kine-

matic chain k (k = 1, 2, 3) defined by the equiva-
lent stiffness matrix Keq,k and the equivalent external
wrench Feq,k (Fig.2);

• assembly of the three equivalent kinematic chains to the
moving platform considered as rigid. Definition of the
equivalent structure defined by the stiffness matrix Keq

and the equivalent external wrench Feq acting at the
center point of the moving platform (Fig.3).

This stiffness modeling leads to the stiffness relation

Feq = Keq ∆X. (1)

It is to be noted that the stiffness matrix Keq depends on the
geometrical parameters of each part of a kinematic chain.
These parameters which will be optimized thereafter are
defined in Table I.

1) Equivalent translational stiffness matrix: Relation (1)
can be rewritten as[

F
M

]
=
[

K11 K12

K21 K22

] [
δX
δR

]
(2)

where F and M are respectively the equivalent external
force and moment, the matrices Kij defined a partition
of the stiffness matrix Keq , δX and δR are respectively
the translational and the rotational elastic displacements.
Relation (2) can be rewritten as

Fteq = Kt
eq δX (3)

where Kt
eq = K11 −K12 K22

−1 K21 is the equivalent trans-
lational stiffness matrix and Fteq = F−K12 K22

−1 M is the
equivalent external force which generates the translational
elastic displacements δX. It is to be noted that Fteq depends
on the external moment M.

equivalent 
substructure
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Fig. 2. Modeling of the kth kinematic chain.
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Fig. 3. Modeling of the equivalent structure.

2) Equivalent rotational stiffness matrix: Relation (2) is
also used to defined the rotational stiffness relation

Mr
eq = Kr

eq δR (4)

where Kr
eq = K22 − K21 K11

−1 K12 is the equivalent
rotational stiffness matrix and Mr

eq = M − K21 K11
−1 F is

the equivalent external moment (depending on the external
force F) which generates the rotational elastic displacements
δR.

III. STIFFNESS PERFORMANCE EVALUATION

As explained in the previous section, at the static equilib-
rium and for a configuration in space i related to the actuator
joint values qi, one can write the relation

Feq,i = Keq,i∆Xi. (5)

Since it has been shown in the previous part that this
configuration-dependent Cartesian stiffness matrix Keq,i can
be obtained analytically, the stiffness performance of a
manipulator can be studied in a systematic way. By the way,
our goal is to propose in the following some possible indices
to study the stiffness of robots manipulators. The approach
we used is similar to those developed in the works related

TABLE I
PARAMETERS SUBJECT TO OPTIMIZATION

Forearm Parallelogram
long side small side

Length (m) L1 L2 L3

Diameter (m) φ1 φ2 φ3

Thickness (m) T1 T2 /



to the study of the manipulability of robot manipulators as
well as the observability study of their geometrical errors
and their geometrical calibration ( [14], [16]–[20]). In the
following, three local indexes are defined in order to describe
the stiffness of the manipulator at a given configuration in
space and three global indices are used to express its stiffness
performance in the overall workspace.

A. Local stiffness indices

1) Volume of the local stiffness ellipsoid: A first stiffness
index can be calculated by assuming that for a configuration
i the elastic displacements ∆Xi are bounded. As a result,
the related force that is applied on the TCP Feq,i is also
bounded. Since the relation (5) is linear, the value of the
elastic displacement bound can be chosen arbitrarily and it
is usual to take its value so that:

‖∆Xi‖ ≤ 1. (6)

By substituting the bound value of ∆Xi into (5) it comes:

FTeq,i
(
Keq,iKT

eq,i

)−1
Feq,i ≤ 1. (7)

As a result, if the Euclidian norm is used to describe the
value of ∆Xi bound in (6), the relation (5) maps the
hypersphere in the space of the elastic displacements into an
hyperellipsoid in the generalized force (wrench) space. The
lengths of this hyperellipsoid semi-half-axes are the values
of the eigenvalues of

(
Keq,iKT

eq,i

)−1
which are in fact the

singular values of Keq,i (Fig. 4). The singular values σj,i
(j = 1, ..., 6) can be obtained through a Singular Value
Decomposition (SVD) of Keq,i according to:

Feq,i = Keq,i∆Xi =
(
UiΣeq,iVT

i

)
∆Xi (8)

The matrices Ui and Vi are orthogonal and Σeq,i is made up
of the ordered singular values of Keq,i in its main diagonal:
Σeq,i = diag (σ1,i, · · · , σ6,i) with σ1,i > · · · > σ6,i.

The singular values σj,i give an idea of the stiffness
hyperellipsoid size and shape as well as an image of the
amplification factor between respectively the elastic dis-
placement and equivalent force spaces along the directions
given by the eigenvectors of

(
Keq,iKT

eq,i

)−1
. And for a

manipulator configuration i, the bounds of ∆Xi and Feq,i
are linked by:

σ6,i ≤
‖Feq,i‖
‖∆Xi‖

≤ σ1,i. (9)

As a result, the first index that can be defined to study the
manipulator stiffness at the configuration i is given by:

S1,i =
√

det
(
KT
eq,iKeq,i

)
=
∏6

j=1
σj,i. (10)

S1,i is related to the volume of the stiffness hyperellipsoid
and the geometrical rationale that is behind this index is to
make the volume of the stiffness hyperellipsoid as big as
possible for the manipulator configuration i.

Let us note however that the calculation of S1,i which is
based on the matrix Keq,i that is not homogeneous in terms
of units is not invariant with respects to those units [14], [7].

Fig. 4. Mapping between elastic displacement and force spaces.

One solution that can be used to overcome this problem is to
split the matrix into its equivalent translational and rotational
parts respectively Kt

eq,i, Kr
eq,i defined in II-.1, II-.2 and to

define subindexes related to each of them.
2) Condition number of the local stiffness matrix: A

second possible index is the condition number of the stiffness
matrix given by to the ratio of the maximum and minimum
singular values of Keq,i:

S2,i =
σmax,i
σmin,i

=
σ1,i

σ6,i
. (11)

For a manipulator configuration i, the variations of the
bounds of ∆Xi and Feq,i are linked by [21]:

‖δ∆Xi‖
‖∆Xi‖

≤ σ1,i

σ6,i

‖δFeq,i‖
‖Feq,i‖

. (12)

Geometrically, the ratio σmax,i

σmin,i
gives an indication of the

excentricity of the stiffness hyperellipsoid rather than its
volume as it was the case with the previous index S1,i. For
minimum values of S2,i that is to say for values near to 1,
this hyperellipsoid is closer to an hypersphere. As a result,
minimizing this index allows to avoid for a manipulator
configuration i a sharp stiffness ellispoid for which, the
manipulator would have a high stiffness along a given axis
and a low stiffness along an other.

As with the previous index S1,i, since Keq,i is not
homogeneous, the value of S2,i will change according to
the choice of unit. A possible solution of this problem is
the definition of a dimensionless or dimensionally consistent
stiffness matrix by dividing the rotational elements of Keq,i

by a characteristic length L that can be the length of the
manipulator variable links in its nominal position of the
natural length that minimizes the condition number for a
reference pose [22], [23].

3) Minimum singular value of the local stiffness matrix:
As the inequality (9) can be rewritten as:

‖Feq,i‖ ≥ σ6,i ‖∆Xi‖ (13)

the greater is the minimum singular value σ6,i, the greater is
‖Feq,i‖ and thus the greater is the stiffness of the manipulator
at configuration i. As a result a third possible stiffness index
is defined as:

S3,i = σ6,i. (14)

From a geometrical point of view, the index S3,i conveys
the idea that for the configuration i, the shortest semiaxis of
the stiffness hyperellipsoid should be as long as possible.



B. Global stiffness indices

Based upon the previously defined local indices, the three
global stiffness indices that will be used further for the
optimal design of manipulators are defined in an original
manner [7]. For this purpose, the manipulator workspace is
as usual discretized by using a regular space grid and for
each equally spaced node Ni of the grid (i = 1, ..., nN ),
the equivalent stiffness matrix Keq,i is calculated as well
as its determinant in order to verify that the configuration
related to the chosen node Ni is not singular. Then the
global equivalent stiffness matrix KG

eq is defined by the
concatenation of all the nN non-singular equivalent stiffness
matrices Keq,i as follows:

KG
eq =


Keq,1

Keq,2

...
Keq,nN


(6nN×6)

. (15)

This global matrix links the global vector FG of all resulting
wrenches acting on the TCP at each node Ni for a given
(6 × 1) generalized vector of TCP cartesian displacements
∆XG:

FG = KG
eq∆XG. (16)

From the definition of the global matrix KG
eq and by using

the same approach as the one used for the definition of the
local stiffness indices, the three global stiffness indices are
calculated as explained in the following.

1) Volume of the global stiffness ellipsoid: The first global
stiffness index S1 is related to the volume of the global
stiffness ellipsoid which as to be maximized overall the
manipulator workspace. Its value is calculated according the
relation:

S1 =
√

det
(
KGT
eq KG

eq

)
=
∏6

j=1
σGj (17)

where σjG are the singular values obtained through the SVD
of the KG

eq as follows:

FG = KG∆XG =
(
UGΣGVGT

)
∆XG (18)

with ΣG = diag
(
σG1 , · · · , σG6

)
and σG1 > · · · > σG6 .

2) Condition number of the global stiffness matrix: The
second global stiffness index S2 gives an indication of the
excentricity of the global stiffness ellipsoid which as to be
minimized overall the manipulator workspace. Its value is
calculated according as follows:

S2 =
σGmax
σGmin

=
σG1
σG6

. (19)

3) Minimum singular value of the global stiffness matrix:
The third global stiffness index S3 concerns the length of
the smallest semiaxis of the global stiffness ellipsoid which
as to be maximized:

S3 = σG6 . (20)

IV. SURGISCOPE STIFFNESS ANALYSIS

A. Calculation of the local and global stiffness indices of
the Surgiscope

For the calculation of all indices, the workspace is dis-
cretized by using a regular spatial grid included in a singu-
larity free area of the Surgiscope [24]. This grid is made of
some parallel and horizontal planar grids defined within a
volume described by −0.3m ≤ X ≤ 0.3m, −0.3m ≤ Y ≤
0.3m and −1.4m ≤ Z ≤ 0.9m.

In an attempt to solve the optimization problem in an
acceptable timeframe while maintaining a smooth variation
of the local stiffness indices from one node to the nodes
that it is connected with, a number nN = 294 nodes are
regularly fixed over the Surgiscope workspace. This includes
6 planes of 49 nodes each. For all nodes, the 3×3 equivalent
translational stiffness matrix Kt

eq (II-.1) is calculated in
order to derive both the local S1,i, S2,i, S3,i and global S1,
S2, S3 stiffness indices previously described. Based upon
this calculation, a qualitative analysis of the TCP elastic
displacements and local stiffness indices is done a well as
a study of the influence of the Delta geometrical parameter
variations onto the Surgiscope global stiffness.

B. Qualitative Analysis between the TCP elastic displace-
ments and local stiffness indices

This qualitative analysis is done in order to study the
relation that exists between the variations of the TCP elastic
displacements values and the variations of the related local
stiffness indices. For this purpose, an horizontal planar grid
is used at a given altitude within the Surgiscope workspace.
For each node i of that grid, the equivalent translation
stiffness matrix Kt

eq is calculated as well as the local stiffness
indices S1,i, S2,i, S3,i. By considering then a translational
equivalent wrench Fteq,i =

[
Fx,i Fy,i Fz,i

]T
applied

on the TCP, the translational elastic displacements δxi, δyi,
δzi are calculated and plotted with the local stiffness indices.

Fig. 5 gives an example of results for a 625 node grid
set in the workspace at the altitude Z = −1.2 m which
XY dimensions are given in IV-A when the constant wrench
Fteq,i =

[
0 0 −800

]T (N) is applied at the TCP. This
wrench describes the in use maximum load of the surgiscope.
As one can see, the resulting TCP elastic displacements δzi
are minimum at the center of the grid (δzmin = 1.2 mm)
and they increase from 0 to more that 100% when the
distance from the center rises to reach the borders of the
grid (δzmax = 2.5 mm). In a meantime, the local stiffness
indices S1,i in a logical way decreases about 0 to 44% while
the excentricity of the hyperellipsoid S2,i goes up from 0 to
85% . These results and other simulations allowed to get
a qualitative appreciation of the relation between the TCP
compliant displacements and the local stiffness variations.
Moreover they validated the proposed local stiffness used to
obtain a realistic description of the Surgiscope stiffness.



Fig. 5. δzi, S1,i and S2,i for a 625 node planar grid set at the altitude Z = −1.2m.

Fig. 6. Evolution of the global stiffness indices S1, S2 and S3 under simultaneous variations of the geometrical parameters L1 and φ1.

TABLE II
DESIGN PARAMETERS VALUES

Parameters Nominal Lower Upper Step
(Unit) value bound bound
L1 (m) 0.75 0.7 0.8 1e−3

L2 (m) 0.95 0.85 1.05 1e−3

L3 (m) 0.125 0.1 0.15 1e−3

T1 (mm) 2 2 10 0.5
T2 (mm) 5 2 10 0.5
φ1 (mm) 70 50 100 0.5
φ2 (mm) 25 15 60 0.5
φ3 (mm) 22 10 40 0.5
Rn (m) 0.2 0.15 0.25 1e−3

C. Influence of the Surgiscope geometrical parameter vari-
ations onto the stiffness global indices

The main purpose of this part is to study the influence of
the variations of the Surgiscope geometrical parameters onto
its global stiffness (S1, S2 and S3). This allows to verify
that the variations of the global stiffness indices can describe
the effects of the variations of the Surgiscope geometrical
parameters. For this analysis, the spatial grid described in
IV-A is used to calculate the global stiffness indices under
the variations of the parameters given Table II.

For example, the Fig. 6 gives the results obtained for the
simultaneous variations of the arm length L1 and diameter
φ1 which values increase respectively from 0.7 to 0.8m and
from 0.05 to 0.1 m. As one can see, the global stiffness of

the Surgiscope decreases (see the variations of S1 and S3)
for reduced values of L1 when in the meantime it logically
increases when the arm diameter φ1 goes up.

To conclude this part, one can see that such parametric
analyze is interesting at a pre-design stage to study the
effects of one or two geometrical parameters onto the global
stiffness of the Surgiscope. However, this analyze is limited
since it is difficult to have a global overview of the combined
effects of all geometrical parameters [25]. A solution of this
problem is to achieve a multi-parameters and multi-criteria
analyze as shown in the next part.

V. DESIGN OPTIMIZATION OF THE SURGISCOPE

A. Problem formulation

1) Design parameters: With reference to the Surgiscope
mechanism under investigation, 9 design variables are tuned,
which refer to the length, internal diameter and thickness of
each bar constitutive of a kinematic chain, and also the radius
of the moving platform Rn (Table. II). The radius of the base
Rb is defined by the constraint relation R = Rb −Rn, with
R = 0.05m.

Note that the genetic algorithm as optimization scheduler
will imposed to considered the individual parameters such as
discrete variables. The steps are defined by nearly respecting
the manufacturing tolerances in order to not increase artifi-
cially the research space (Table. II).

2) Performances indices: As emphasized below, an op-
timal stiffness design of a robot manipulator can only
be achieved by considering three global indices over the



Fig. 7. Iteration history of S1.

workspace. The objective of the optimization is to maximize
both S1 and S3 while simultaneously minimizing S2 to
match values near to 1.

3) Constraints: In addition to these main performances
indices, a constraint on the mass have to be set. The mass of
the Surgiscope must not exceed the nominal threshold value
of 21kg. An indirect geometrical constraint is that all designs
whose workspace does not include the nominal Surgiscope
workspace defined in IV-A are automatically considered as
invalid and excluded from the optimization flow.

B. Search method

1) Pareto-optimal solutions: Solving this optimization
problem with multiple conflicting objectives across a high-
dimensional design space is a difficult goal. Instead of a
single optimum, there is rather a set of alternative trade-
offs, generally known as Pareto-optimal solutions. Various
evolutionary approaches to multi-objective optimization have
been proposed since 1985, capable of searching for multiple
Pareto-optimal solutions concurrently in a single simulation
run [26]. The optimization program FRONTIER R©2 and the
technical computing software MATLAB R© are used to set
up the framework of the multi-objective design optimization
study of the Surgiscope. The Multi-objective Genetic Algo-
rithm (MOGA), implemented first by Fonseca and Fleming
[27], is used to perform the optimization problem.

2) Global optimization process: The algorithm will at-
tempt a number of evaluations equal to the size of the
initial population for the MOGA multiplied by the number
of generation. A rule of thumb would suggest possibly
to accumulate an initial population possibly more than
2 ∗ number of variables ∗ (number of objectives +
number of constraints). Thus, the initial population is
generated by a random sequence of 90 designs (9 design
variables, 3 objectives, 1 constraint).

The major disadvantage of the MOGA is mainly related
to the number of evaluations necessary to obtain satisfactory
solutions. The search for the optimal solutions extends in
all the directions from design space and produces a rich data
base and there is not a true stop criterion. But the uniformity
and the richness of the data base are very useful for the
capitalization and the statistical analysis of the results. In

2http://www.esteco.com/

the context of pre-stage design, the numerical evaluation
of the performances calls upon MATLAB codes is not so
expensive in terms of computing time (about 8 s). In an
attempt to solve the optimization problem in an acceptable
timeframe, the number of generations evaluated is almost 30,
i.e. 2700 designs in all. The required computation time for
the global optimization process is about 6 hours (2.0 GHz /
2.0 Gb RAM). Integrating a Response Surface Methodology
to reduced the computation time could be an interesting
extension of our work.

C. Numerical Results

1) Algorithm convergence: Fig. 7 highlights the MOGA
convergence toward the maximization of the global index S1.
Of the 2700 designs analyzed, 8 generate an error since they
do not respect the workspace required, and 759 are unfeasible
designs since they do not respect the mass constraint fixed at
21 kg. These unfeasible designs are represented with a grey
rhomb on Fig. 7. In spite of an initial population largely
dominated by individuals exceeding the mass constraint, the
algorithm allows a good and rather fast convergence.

Fig. 8 shows the projection of the resulting Pareto-optimal
sets onto the S1/S2 domain, stressing the sensible improve-
ment that can be obtained for the two objectives respecting

Fig. 8. Scatter chart of S1 versus S2.



the mass constraint. The most interesting characteristic of
this figure is the shape of the Pareto-front on these objectives.
The Pareto-front is very wide. This aspect indicates that there
is a conflict between the objectives. The left-up region of the
Fig. 8 is characterized by a non-feasibility against the mass
constraint.

2) Tradeoffs decision using multiple criteria: The MOGA
will by definition articulate design preference information
after generating solutions. The MOGA defines a posteriori
method which generates a set of solutions, with the decision
marker’s selecting a preferred solution afterwards. They can
be regarded as a means of generating information for the
user to base preference information on.

An ideal design would be one which gives the same
objective function values as would be obtained if each
objective were to be maximized on its own. Such a design is
unlikely to exist. Rather, there will exist a set of best designs
at the boundary of the feasible region. At any given point
during an optimization, a set of feasible designs will have
been evaluated. It may well not be known whether any of
the designs is on or near the actual boundary of the feasible
region. If the number is at all large, it will not even be
obvious which of the designs are Pareto-optimal with respect
to this particular set. So a filter needs to be provided to
identify the non-dominated members of the set. These can
then be listed numerically or displayed graphically. Various
methods have been used to display sets of solutions in a
multiple dimensional objective space. When there are many
objectives and constraints, a main diagrammatic tool to assist
understanding is parallel coordinates [28]. The selection of
the optimal structure inside the Pareto-set designs can be
done easily by using an interactive filter on the parallel
coordinates chart of the global stiffness indices and the
mass constraint (Fig. 9). The design engineer balances these
factors off against each others to arrive at what he thinks is
the best combination of properties in the final design. There’s
no a unique solution. It is clear that in broad terms design
is a creative process involving the use of knowledge and
experience of the designer.

3) Optimal stiffness design: Of the 2700 designs ana-
lyzed, 69 were Pareto-optimal with respect to the others.
Of these, the design ID 1964 is identified as being a
good candidate for best overall design. The improvement
of the optimal stiffness solution with respect to the nominal
design is discussed in detail and shown in Table. III. The
comparison of the stiffness performances of the candidate
optimal solution with those of the nominal structure stresses
the sensible improvement that can be obtained for all the

TABLE III
EVALUATION GLOBAL STIFFNESS INDICES FOR THE SURGISCOPE

Design Mass (kg) S1 S2 S3

Nominal 20.2 1.99e20 2.79 4.21e6

ID 2556 20.2 6.53e20 2.37 6.49e6

ID 1188 16.7 2.04e20 2.43 4.37e6

Fig. 9. Parallel coordinates chart of the Pareto-optimal designs.

objectives with an identical mass. The average improvement
on the global stiffness performance indices S1 and S3 is
about 65% while the performance index S2 prove to be
15% better than the corresponding of the reference structure.
Design characteristics for the optimum solution are reported
in Table. IV. The geometrical modifications obtained for the
optimal design ID 2556 confirm the conclusions advanced
in IV-C.

In order to show the stiffness improvement, we have com-
puted the value of the maximal and the mean of the resulting
TCP elastic displacements for a payload of 800N (Table. V).
By considering the optimal stiffness design ID 2556, the
improvement is about 30% on the mean as on the max of
the resulting TCP elastic displacement δzi. Even if the global
optimization indices relate only to the translational stiffness
matrix Kt

eq,i, the angular deflections are also optimized in
almost the same proportion that those in translation for the
design ID 2556 (Table. V). Fig. 10 illustrates the distribution
of the resulting TCP elastic displacements δzi at the altitude
Z = −1.2 m for the optimal and nominal designs. It can
be observed that the improvement obtained for the design
ID 2556 is uniformed all over the workspace, and note that
the excentricity is also reduced.

4) Optimal weight design: The search for the optimal
stiffness provides solutions that preserve identical stiffness
properties to the nominal design, while minimizing the mass.
The design ID 1188 performs a reduction of almost 20% on
the mass while conserving, or even while improving global
stiffness indices (Table. III).

TABLE IV
DESIGN CHARACTERISTICS OF OPTIMAL SOLUTIONS.

Parameters (Unit) Nominal ID 2556 ID 1188

L1 (m) 0.75 0.773 0.762
L2 (m) 0.95 0.917 0.954
L3 (m) 0.125 0.106 0.112
T1 (mm) 2 7 5
T2 (mm) 5 2 2
φ1 (mm) 70 74 70
φ2 (mm) 25 17.5 23
φ3 (mm) 22 23.5 21
Rn (m) 0.2 0.152 0.151



Fig. 10. δzi for a 625 node planar grid set at the altitude Z = −1.2m.

TABLE V
MEAN AND MAXIMUM OF THE TCP ELASTIC DISPLACEMENTS.

Design δxi(mm) δyi(mm) δzi(mm)

mean max mean max mean max
Nominal -0.006 2.27 0.0 3.93 1.80 3.17
ID 2556 -0.007 1.36 0.0 2.53 1.26 2.25
ID 1188 -0.006 1.87 0.0 3.25 1.75 2.80

Design δθxi(mrad) δθyi(mrad) δθzi(mrad)

mean max mean max mean max
Nominal 0.0 8.86 -0.01 6.79 0.0 0.42
ID 2556 0.0 7.75 -0.01 5.40 0.0 0.39
ID 1188 0.0 8.28 -0.01 6.09 0.0 0.36

VI. CONCLUSION

Design optimization of robots manipulators must be done
in a short period of time and, as a result, an automated
procedure for finding an optimum stiffness structure is
proposed. The presented optimization, based on an origi-
nal and systematic elasto-geometrical modeling, fulfills the
industrial demands in the preliminary design of the robot
manipulators: optimizing simultaneously the stiffness over a
specific workspace and minimizing the global weight of the
structure for dynamic performances increased, the whole in
an acceptable timeframe. The interactive use of evolutionary
multi-objective algorithm in the robot design optimization
is very attractive from the engineering viewpoint. Pareto-
optimization may be considered as a tool providing a set of
efficient solutions among different and conflicting objectives,
under different constraints. The final choice remains always
subjective and is left to the designer responsibility.
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