
Inertial-Aided KLT Feature Tracking for a Moving Camera

Myung Hwangbo, Jun-Sik Kim, and Takeo Kanade

Abstract— We propose a novel inertial-aided KLT feature
tracking method robust to camera ego-motions. The conven-
tional KLT uses images only and its working condition is
inherently limited to small appearance change between images.
When big optical flows are induced by a camera-ego motion,
an inertial sensor attached to the camera can provide a good
prediction to preserve the tracking performance. We use a low-
grade MEMS-based gyroscope to refine an initial condition
of the nonlinear optimization in the KLT. It increases the
possibility for warping parameters to be in the convergence
region of the KLT.

For longer tracking with less drift, we use the affine photo-
metric model and it can effectively deal with camera rolling and
outdoor illumination change. Extra computational cost caused
by this higher-order motion model is alleviated by restraining
the Hessian update and GPU acceleration. Experimental results
are provided for both indoor and outdoor scenes and GPU
implementation issues are discussed.

I. INTRODUCTION

Feature tracking is a front-end to many vision applications

from optical flow to object tracking and 3D reconstruction.

Higher-level computer vision algorithms require, therefore,

robust tracking performance no matter how a camera moves.

KLT (Kanade-Lucas-Tomasi) feature tracking which uses

template image alignment techniques has been extensively

studied from the seminal work by Lucas and Kanade [1],

Shi and Tomasi [2], to the unifying work by Baker and

Matthews [3].

The fundamental assumption of KLT feature tracking is

small spatial and temporal change of appearance across

image sequence. Hence it is naturally vulnerable to fast

rotational and big shake motions of a camera. Figure 1 shows

two common tracking failures of interest: The first is when

the pan motion of a camera induces large optical flows,

which easily occur in a hand-held device. It fails because

the amount of translation is out of the search region even

a multi-scale method can afford. The second is when the

roll motion of a camera produces large translation as well

as rotational deformation of a template. In this case the

translation motion model is not enough to explain template

deformation but more general warping models are required

such as an affine-photometric model [4]. However, it causes

extra computational cost in registering and tracking steps due

to increased numbers of the parameters.

These two examples address two issues we focus on in

this paper: search region and tracking motion model (image

warping function) of the KLT when a camera moves fast.

Mathematically speaking the KLT is a solver of nonlinear

M. Hwangbo, J. Kim, and T. Kanade are with Robotics Institute, School
of Computer Science, Carnegie Mellon University, Pittsburgh 15213, USA
{myung, kimjs, tk}@cs.cmu.edu

1

1

1
2

1

2

Fig. 1. (Top) An abrupt change of the pan angle in a hand-held camera
generates big optical flows that even a multi-scale feature tracker cannot
cover. (Bottom) The camera rolling occured in an aerial vehicle requires a
rotational component in addition to translation in a tracking motion model.

optimization problem and has a limited convergence region

for a true global minimum. So more assurance for avoiding

local minima is offered when a new search region is given

from a external inertial sensor instead of simply using the last

tracking state. A higher-order tracking model is preferred for

our inertial-aided tracking method since image sequences of

interest contain more appearance changes than image-only

methods expect.

An image sensor is no longer the only sensor found in

up-to-date camera systems. For example, image stabilization

(IS) driven by integrated inertial sensors becomes de facto in

small gadgets to remove unwanted jitters. The higher level

of integration for visual and inertial sensors has been studied

for gaze stabilization [5], object detection [6], and structure

from motion [7]. They are based on how humans make

the vestibular system collaborate with visual movements [8].

Particularly for camera motion estimation drawn from feature

tracking, there have been two main approaches on how to

combine them as seen in Figure 2. The first is that camera

motions considered independently from both sensors are

fused in a certain way (e.g., Kalman filter), and then feed-

backed to feature tracking. In visual SLAM [9] and Auge-

mented Reality [10] [11] [12] applications, feature tracking

or feature matching uses the knowledge of reconstructed

or given position of 3D visual landmarks. The second is

that inertial measurements are deeply coupled with feature

tracking algorithms in order to improve a parameter search

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1909

IMU

Camera

Sensor

Fusion

Feature

Tracking

IMU

Camera

Motion

Estimation

Motion

Estimation

Feature

Tracking

Sensor

Fusion

Camera Pose Camera

Pose

(a) (b)

Fig. 2. Two main approaches for feature-based motion estimation that fuses
inertial and visual sensors: (a) Camera motion is considered independently
from both sensors and then fused in a certain way. (b) Inertial measurements
are deeply coupled with a feature tracking algorithm to improve a parameter
search problem.

problem [13]. Gray and Veth [14] use an inertial sensor to aid

the search for matched SIFT descriptors in a predicted feature

space. Makadia and Daniilidis [15] use a sensed gravity

direction to reduce the number of model parameters and use

the Hough transform for direct estimation of camera motion

instead of feature correspondence. Our proposed method also

uses instantaneous rotation obtained from inertial sensors

to update the parameter of a tracking motion model. Here

we only focus on gyroscopic sensors because large optical

flows is mainly due to camera rotation in video-rate feature

tracking applications.

This paper is organized as follows. Section II describes the

derivation of tracker update rules for a high-order tracking

model we choose. Section III shows how to embed directly

inertial sensor (gyroscope) measurements into the KLT track-

ing algorithm. Section IV gives brief discussion on GPU

implementation for realtime video-rate tracking and Section

V demonstrates the improved performance of our method.

II. FEATURE TRACKING PROBLEM

Feature tracking is a sequence of search operation that

locates a feature point along incoming images. For small

appearance change between temporally adjacent images it

can be formulated as a nonlinear optimization problem (1)

and a set of parameters δq will be sought that minimizes the

cost of intensity difference e between the template T and a

new image It+1.

e =
∑

x∈A

s(x)
[

T (x)− It+1(w(x;pt, δp))
]2

(1)

where x = (x, y)⊤ is a pixel coordinate, w(·) is a tracking

motion model (image warping function), pt is a vector of

warping parameters, s is a weighting function, and A is the

area of a template window.

There are two main iterative image alignment approaches

for template matching: forward and inverse methods [3].

Both are equivalent up to a first-order approximation but key

differences are which image is used as a reference and how

to update a warping parameter during iterations. The original

Lucas-Kanade algorithm [1] is the forward method and every

iteration it recomputes the Hessian from the gradient of

I0 I1 I2 I3

T0

T0
T1

T2

T3

(a) Translation model with template update (b) Affine model with no template update

Fig. 3. For long-term feature tracking template update is necessary. A low-
order warping function (e.g. translation only) requires frequent template
updates to keep up with the appearance change. A high-order warping
function (e.g. affine) is more flexible to template deformation but its Hessian
computation is expensive.

the warped image of It+1. On the contrary the inverse

method uses a fixed Hessian from the template gradient and

consequently it leads to significant computational efficiency

over the forward method.

A. Inverse Compositional Image Alignment

This alignment method starts with switching the roles of

the image It+1(=I) and the template T from (1) to (2). The

Gauss-Newton method to solve for δp involves two steps: (i)

linearize the cost e by the first-order Taylor expansion and

(ii) find a local minimum by taking the partial derivative with

respect to δp. Linearizing at the current warping parameter,

i.e., δp = 0, gives:

e =
∑

x∈A

[

I(w(x;pt))− T (w(x; δp))
]2

(2)

≈
∑

x∈A

[

I(wx(pt))− T (wx(0))− J(x)δp
]2

(3)

where w(x; ·) = wx(·) for brevity and s(x) = 1 here.

J = ∂T
∂p

∣

∣

p=0
is called the steepest decent image and it

remains unchanged until the template T is updated. The

partial derivative of (3) with respect to δp is

∂e

∂δp
= 2

∑

x∈A

J⊤
[

I(wx(pt))− T (x)− J(x)δp
]

= 0 (4)

Rearranging (4) gives a closed form solution for δp at a

local minimum. It iterates until ‖δp‖ < ǫ for a small ǫ due

to linearization error.

δp = H−1
∑

x∈A

J⊤
[

I(wx(pt))− T (x)
]

(5)

wx(pt+1)← wx(pt) ◦w
−1
x (δp) (6)

where H =
∑

J⊤J is called the Hessian (precisely a first-

order approximation to the Hessian).

The inverse method takes computational benefit from fixed

J and H while in the forward method derived from (1) they

changes every iteration. See [3] for more details.

1910

B. Affine Photometric Warping

The choice of a tracking motion model determines the

level of allowable image deformation of a template window.

We employ the affine-photometric warping proposed by [4]

for more robust tracking to camera rotation and outdoor

illumination condition. This model has total 8 parameters,

p = (a1, . . . , a6, α, β) in (7). The affine warp (A,b) is

for spatial deformation mainly to deal with translation and

rolling motion of a camera. For illumination change the

scale-and-offset model (α, β) treats contrast variation of a

template image. The scale α compensates for the change of

an ambient light and the bias β does for the change of a

directed light.

T (x;p) = (α + 1) T (Ax + b) + β (7)

where A =

[

1 + a1 a2

a3 1 + a4

]

, b =

[

a5

a6

]

By using the chain rule the steepest decent image J can

be computed from the partial derivative at p = 0. ∇T =
(Tx, Ty) is the template gradient image.

J = ∂T
∂p

∣

∣

p=0
=

[

∂T
∂a

∂T
∂α

∂T
∂β

]

=
[

∂T
∂a

T 1
]

(8)

∂T
∂a

∣

∣

a=0
= ∂T

∂w
∂w
∂a

∣

∣

a=0
= ∂T

∂x
∂w
∂a

= ∇T ∂w
∂a

(9)

= ∇T

[

x y 0 0 1 0
0 0 x y 0 1

]

(10)

Then

J =
[

xTx yTx xTy yTy Tx Ty T 1
]

(11)

In (5) the update, δp, requires the inversion of the sym-

metric 8× 8 Hessian matrix for this model, H =
∑

A J⊤J.

So much more expensive computation, O(n3) with Gaussian

elimination method, is involved when compared with a 2×2
Hessian in the translation model.

(A,b)t+1 ← (AtδA
−1, bt −Atδb) (12)

αt+1 ← (αt + 1)/(δα + 1) (13)

βt+1 ← βt − (αt + 1)δβ (14)

Finally from the inverse compositional update rule in (6) the

warping parameters pt+1 of the affine-photometric model are

propogated as above.

C. Template Update

For long-term feature tracking template update is a manda-

tory step to keep a plausible track. It usually occurs when

the current view point of a camera is quite different from

that the template has been taken from and thus it is hard

to fit correctly with a chosen tracking motion model. An

inherent problem with the template update is accumulation of

the localization error of a feature. There exists computational

trade-off between frequency of the template update and the

order of a motion model. Figure 3 shows two extreme cases

GYRO

xt

It It+1

w(pt)

w(p0
t+1)xt

w(pgyro)

R(qgyro)

K¡1

K

Covergence

Region

bxt+1

!3

!2
!1

w(pt)

GYRO

Fig. 4. The inertial-aid KLT for a new image It+1 starts at p0
t+1

instead
of pt which is not in the covergence region C. The initial condition is
refined by the 2D homography H computed from the instantaneous camera

rotation q
t+1
t

(gyro) from the IMU and a camera calibration matrix K.

of which difference is whether the template is renewed

every certain frames or remains unchanged across images.

Less template update requires a tracking motion model to

have higher degrees of freedom to adjust bigger image

deformation in an incoming image. Nonetheless the Hessian

is updated less frequently of which computation is expensive

for a higher order model.

We choose carefully the times of the template update by

monitoring how good a current tracking is. The measures

for tracking quality are squared error, normalized correlation,

and shearness. Since tracking a feature location is the main

goal of this paper rather than the template itself, the window

around the last feature position is captured as a new template

if required.

III. INERTIAL FUSION FOR ROBUST TRACKING

One fundamental assumption for all the KLT-based track-

ing algorithms is a small inter-frame change (e.g. less than

three-pixel translation with a 9× 9 template window). Oth-

erwise the nonlinear optimization (1) may fail to converge

because the convergence region C for δp is limited to a

concave region in which the first-order approximation (4)

is close enough for a correct update direction. In the inverse

image alignment method, therefore, the success of tracking

given T and It+1 heavily depends on whether a starting point

p0
t+1 of the optimization is in C or not. The image-only

tracking method simply uses p0
t+1 = pt.

Our goal is to increase a chance of the convergence by

relocating p0
t+1 to C as close as possible with the aid from

the inertial sensor. Here we only focus on gyroscopic sensors

because large optical flows is mainly due to camera rotation

in video-rate feature tracking applications. The knowledge

of the instantaneous camera rotation qt+1
t (gyro) from a tri-

axial gyroscope is directly coupled with the current warping

parameter pt to predict p0
t+1.

1911

A. Camera Ego-Motion Compensation

Figure 4 illustrates the main idea of the paper about how

the gyroscope helps feature tracking more robust to big

optical flows. If the two images It and It+1 are assumed to be

taken by a pure camera rotation Rt+1
t the motions of all the

feature points can be described by a single 2D homography

H once a camera calibration matrix K is known [16].

H = K−1Rt+1
t K (15)

The homography H is a higher-order deformation than the

affine warp (A,b) we use for the spatial tracking motion

model. Hence the prediction affine warp is appropriately

extracted componentwise from the homography. At first the

homography needs to be normalized by H33. The linear

transformation part Apred is the same as an upper 2 × 2
matrix of H in order to copy affine components (rotation,

scaling, and shear) but projectivity. The translation part bpred

is the transfer amount of position by the 2D homography.

xH ≡ H [x 1]⊤ is a transferred position of x by H. The

photometric parameters remains unaffected.

Apred = H 2×2 (16)

bpred = xH − x (17)

αpred = βpred = 0 (18)

Given the prediction warp by the inertial sensor the initial

parameter p0
t+1 is obtained by the forward composition of

the warping function with pt.

w(x;p0
t+1) = w(x;ppred) ◦w(x;pt)

= w(w(x;ppred), pt) (19)

The chance of p0
t+1 ∈ C would be greater than that of pt ∈ C

as the bigger camera rotation is involved.

B. Camera-IMU Synchronization

High-precision synchronization of raw sensors usually

requires hardware-level triggering based on a precise clock.

For a COTS-based sensor solution with a generic computer,

however, exact sampling time of sensor data is obscure.

It is hindered by unknown delays in data bridges such as

communication and buffering between low-level embedded

systems.

If the delays between the sensors and a computer that

fuses both data are unknown but fixed, Figure 6 shows a

easy and simple way to identify the time lag between two

measurement sequences. We first repeat a small sinusoidal

motion to the camera in one direction and then compute

the average of the optical flow magnitude between images

from many feature tracks. Note that the optical flow and

gyroscope data have an identical phase since they are induced

by the same camera motion. The phase lag φo between the

two signals reveals the time offset to of both sensors. The

FFT can be used to derive a correct phase lag from repeated

camera motions.

Once to is obtained, the camera rotation qt+1
t can be

computed properly from the interpolation of asynchronous

gyroscope measurements. Let ω = [ω1 ω2 ω3]⊤ be angular

IMU

Digitizer

Fig. 5. The camera-IMU system for the inertial-aided feature tracking

Gyro

Camera

0 0.5 1 1.5 2 2.5 3 3.5
-3

0

3

G
y
ro

 [
ra

d
/s

]

Time (sec)

0 0.5 1 1.5 2 2.5 3 3.5
-30

-15

0

15

30

O
F

 [
p
ix

e
l]

Gyro Optical Flow

0 0.5 1 1.5 2 2.5 3 3.5
-3

0

3

G
y
ro

 [
ra

d
/s

]

Time (sec)

0 0.5 1 1.5 2 2.5 3 3.5
-30

-15

0

15

30

O
F

 [
p
ix

e
l]

Gyro Optical Flow

(15/30 Hz)

(100 Hz)

Fig. 6. Synchronization of the camera and the IMU: (Top) Asynchronous
gyroscope data with image timestamps are linearly interpolated to get the
rotation between It and It+1. (Bottom) By applying a sinusoidal camera
motion, the time offset to in synchronization can be identified from the
phase difference φo between the IMU and optical flow signals.

rates from gyroscopes. For a strap-down IMU configuration

the use of quaternion in (20) is fast and effective for

integrating ω to rotation angle q.

q̇ =
1

2
Ω(ω)q =

1

2









0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0









q (20)

From the initial qt = [1 0 0 0]⊤ qt+1 is computed by a

numerical integration with proper quaternion normalization.

C. IMU Noise and Camera-IMU Calibration Error

The prediction error in ppred is caused by two main

factors: modeling error and calibration error. Modeling error

means that neither camera translation nor projectivity is

considered in the prediction warp. We intentionally ignore

camera translation since noisy MEMS-based accelerometers

is insufficient to provide robust traveling distance and di-

rection of the camera. The other includes misalignment of

camera/IMU, camera calibration error, bias and variance of

IMU noise. Particularly we focus how much IMU noise is

allowable in a given convergence region C of feature tracking.

For the simplicity of analysis, the error of translation

distance ‖bpred‖ due to IMU noise is investigated in a pin-

hole camera model. For a small rotation, the variances for

1912

Algorithm 1: Inertial-Aid KLT Feature Tracking

niter, nfmin, pmax ← fixed numbers

Compute the gradient ∇It+1

if nfeature < nf,min then
Find new features from cornerness of ∇It+1

Compute H and H−1

Fill in lost slots of feature table

Get camera rotation R(q) from IMU

for pyramid level = pmax to 0 do

forall features do
Update initial warp wt+1 from wimu using (19)

Warp image It+1(w(x,pt+1))
Compute error e = T − It+1(w(x,pt+1))
Compute update direction δp using (5)

for k = 1 to niter do
Line search for best scale s∗

Update parameter with s∗δp using (12)-(14)

Remove features that e > ethresh

camera panning and rolling can be approximated from (15)

and (17) respectively for a small rotation.

σ2
‖b‖,pred = (kf)2 ∆ts σ2

ω,x (21)

σ2
‖b‖,pred = r2 ∆ts σ2

ω,z (22)

where k is a pixel scale factor, f is a focal length, r is

the distance in pixels from a camera center, and ∆ts is a

image sampling time interval. Let the camera be a 1/4" CCD

sensor and 640 × 480 resolution (k = 126.0) at 30Hz with

a lens of 60◦ field-of-view (f = 2mm). Given a typical

variance of MEMS-based gyroscopes σω = 0.01 rad/s, the

variances are σ‖b‖,pred = 0.4 pixel for pan or tilt motion

and σ‖b‖,pred = 0.8 pixel for roll motion at 120 pixels from

the center (r = 120). For the 15 × 15 template size, the

errors are negligible when compared with the convergence

region shown in Figure 11.

IV. GPU IMPLEMENTATION

In practice the affine-photometric tracking is barely used

due to the computational complexity. In template registration

time complexity of the Hessian inverse is generally O(n3)
where n is the number of parameters. Compared with the

translation model (n = 2), therefore, computation load of

the affine-photometric model (n = 8) increases at least 64

times. In template tracking the complexity is also O(n2)
in updating warping parameters. When several hundreds of

features are tracked, the increased burden can be alleviated

by parallelized hardware computation. We implemented our

high order model on a GPU as Sinha et al. [17] has done

with the translation warping model which is valid for the

ground vehicle application.

However, note that the GPU tend to lose its computational

efficiency and is even worse than the CPU when a target

algorithm has complicated decision flows depending on the

current evaluation of input data. In this case the GPU has

difficulty to use concurrent threads that have the same length

of instructions with different inputs. It violates the SIMD

principle of parallel computing. Algorithm 1 contains two

routines of which internal iterations depend on inputs: sorting

cornerness measures and inversion of the Hessian. Gaussian

elimination involved with the 8×8 Hessian inverse is a quite

complicated thread in the GPU side. Even with extra burden

of CPU-GPU data transfer, they run faster on the CPU. Based

on NVIDIA CUDA library [18], therfore, we adopt a CPU-

GPU hybrid approach in which particularly the cornerness

sort and the Hessian inversion are computed in the CPU.

V. EXPERIMENTS

The experiments are performed on two kinds of scenes:

the desk scene (640 × 480 at 30Hz) from a hand-held device

and the outdoor aerial scene (320 × 240 at 15Hz) from a

MAV. Both uses the same camera system in Figure 5. We use

the multi-resolution pyramid approach to increase the search

region as explained in the GPU implementation.

A. Camera-IMU system

The IMU is placed right behind of the camera and the

relation between both sensors are calibrated. The camera is

the SENTECH USB 2.0 color board camera and the IMU

is the O-NAVI GYROSCUBE tri-axis MEMS analog module.

Three orthogonal angular rates in the range of ±150◦ are

sampled at 100 Hz with a 11-bit resolution digitizer.

B. Results

We have run feature tracking algorithms in two ways for

the given scenes. One is purely vision-based tracking that

does not use the IMU information but the images only. We

call it the image-only method here. The other is our inertial-

aided method that the camera-ego rotation is compensated.

The advantages of the inertial-aided feature tracker over the

image-only method are summarized as follows.

• Higher tracking success rate

• Longer tracking length with less drift

Figure 7 compares the inertial-aided and the image-only

feature tracking on the desk scene. We rotates the camera so

that it undergoes three different rotations - panning, tilting,

and rolling sequentially. We apply this set of the camera

rotations both slowly and fast in order to see when the

IMU fusion makes the difference between two methods. The

IMU measurements are plotted together with the number

of tracked features for this purpose. In Figure 7(d) at the

slow camera motion no big difference in the number of

tracked features is noticeable between both methods. When

the magnitude of the camera motion increases twice in

Figure 7(e), however, the image-only method starts to drop

features significantly whenever there is a peak in angular

rates and it has good tracks only when the camera nearly

stops to switch the direction. On the contrary the inertial-

aided method maintains the good performance only losing

10% ∼ 20% of features. The robust performance of the

inertial-aided method are shown in Figure 7(a)-(c) when the

1913

Fig. 9. The templates are well tracked by the affine motion model when
the camera moves forward with a rolling motion in the desk scene. All
the degrees of freedom of the affine warping are revealed in template
deformations colored in green.

fast camera motions occur. The green dots indicate predicted

feature locations by the IMU. See how close the green dots

are to the red dots - the tracked points - to verify the effect

of the better initialization for feature tracking.

The spatial warping of a square template by the affine

transformation is shown in Figure 9. All the degrees of

freedom of this motion model can be clearly seen when

the camera moves forward with a rolling motion. Here the

templates translate and rotate due to the camera rotation.

They scale down as the camera approaches to the desk

and get sheared as the angle to the desk plane changes.

It demonstrates the affine motion model is good enough

to track templates deformed by camera rotation. Figure 10

compares the tracking length histograms of both image-only

and inertial-aided methods for the desk scene. It evaluates the

capability for a long-frame tracking. In this experiment, no

new features are registered once 500 features are selected

at the first image frame. At the high frame length bins

marked by the curly bracket, the inertial-aided tracker has

more features. In other words, the image-only tracker tends

to lose tracking quickly at the lower frame length.

Figure 8 shows outdoor experiments taken by a micro

aerial vehicle. The scene has been taken when the aerial

vehicle is banking to the left and back to a level flight.

Large optical flows occur when the vehicle changes its rolling

angle. The inertial-aided method provides quite better optical

flows sufficient to perceive the current vehicle motion relative

to the ground plane. This scene has the regions difficult

to track. A group of trees has repeated textures and the

grass field is very homogeneous. In these regions a tracker

is susceptible to get in a wrong local minimum. Since the

inertial-aided tracker narrows down a search area, however,

stable tracking results are available.

C. GPU Performance

The upper row of Figure 12 shows the comparison when

the numbers of features changes with 25×25 template size

and all four levels of pyramids. One can see that the tracking

time has no increase on most GPUs when the number of

features increases. It is because the processing time on a

GPU is determined by the worst case. Note that even the

20 30 40 50 60 70 80 90 100 110 120 130 140
0

25

50

75

100

125

150

IMU-assisted

Image-only

Tracking frame length histogram# of features

Tracking length [frame]

Fig. 10. The tracking length histogram of 500 features in the desk scene
with no new registration: The inertial-aided KLT has more features in
regions of the longer tracking length as marked by the curly bracket.

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60
0

200

400

600

800

1000

1200

Fig. 11. Feature translations rescued by the inertial-aid tracking in the
desk scene: Tested by 15×15 template size. No points appears for small
translations because the image-only KLT can also track. The inertial-aid
KLT can cover up to 60 pixel translation.

200 400 600 800 1000
0

50

100

150

200

250

300

350

400

Total number of features

T
im

e
 [

m
s
]

NVIDIA 8800 Ultra + Intel Core 2 Quad 2.4 GHz

CPU Select
CPU Register
CPU Track
GPU Select
GPU Register
GPU Track

200 400 600 800 1000
0

50

100

150

200

250

300

350

400

Total number of features

T
im

e
 [

m
s
]

NVIDIA GTX 280 + Intel Core 2 Quad Q9550 2.83GHz

CPU Select
CPU Register
CPU Track
GPU Select
GPU Register
GPU Track

15 19 23 27 31 35 39
0

50

100

150

200

250

300

350

400

Template size [pixel]

T
im

e
 [

m
s
]

NVIDIA 8800 Ultra + Intel Core 2 Quad 2.4 GHz

CPU Select
CPU Register
CPU Track
GPU Select
GPU Register
GPU Track

15 19 23 27 31 35 39
0

50

100

150

200

250

300

350

400

Template size [pixel]

T
im

e
 [

m
s
]

NVIDIA GTX 280 + Intel Core 2 Quad Q9550 2.83GHz

CPU Select
CPU Register
CPU Track
GPU Select
GPU Register
GPU Track

Fig. 12. Performance comparison between the CPU and GPU implemen-
tations on various platforms with respect to the number of features using
25×25 templates (upper row), and the template size with 500 features (lower
row). Dashed lines are for the CPU and solid lines for the GPU. The GPU
has no performance degrade when the number of features increases.

1914

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

Naive-KLT IMU-KLT

0 1 2 3 4 5 6 7 8 9
-4

-2

0

2

4

w
x

w
y

w
z

11 12 13 14 15 16 17 18 19 20 21
0

50

100

150

200

11 12 13 14 15 16 17 18 19 20 21
-4

-2

0

2

4

(a) Camera panning

(b) Camera tilting

(c) Camera rolling (e) Fast camera rotation

The number of tracked features

Time [sec](d) Slow camera rotation

Gyro rate [rad/s]

The number of tracked features

Gyro rate [rad/s]

 Image-KLT Inertial-KLT

Fig. 7. Inertial-aided vs. Image-only KLT on the desk scene: The camera is rotated in (a) pan, (b) tilt, and (c) roll motions sequentially. Two different
motion sets, (d) and (e), are applied in terms of the frequency and the magnitude of the angular rates. When the magnitude of motions increases twice
in (e), significant amount of features fails in the image-only KLT but the inertial-aided KLT maintains the good performance in terms of the number of
tracked features. (Right graphs) The red area in the bar indicates the number of features rescued by the inertial-aid KLT. (Left images) The green dots are
predicted locations by the IMU. See how close the green dots are to the red ones from the purpose of the better initialization for feature tracking.

frame = 0 frame = 15 frame = 30 frame = 45 frame = 60 frame = 75

Fig. 8. Inertial-aided vs. Image-only feature tracking on the aerial scene: (Top) Input image sequence (Middle) The image-only feature tracking results.
(Bottom) The inertial-aided feature tracking results. The aerial vehicle is banking to the left and back to a level flight. The inertial-aided method generates
quite better optical flows sufficient to perceive the current vehicle motion relative to the ground plane. Red dots are for good tracks and blue dots are for
lost ones.

1915

worst GPU runs faster than the best CPU. In the lower row

of Figure 12, the processing time of tracking 500 features

increases quadratically with respect to the template size but

its rate is much smaller than that of the CPU.

VI. CONCLUSION

We propose an enhanced KLT feature tracking method

assisted by a low-cost IMU for a freely moving camera in 3D.

We use the rotational information from the IMU to give better

initial estimates of motion parameters for template warping.

By compensating a camera-ego motion, search ranges for

the motion parameters become much narrower. This simple

assistance from the IMU brings significant improvement:

longer feature tracking under abrupt camera motions, overall

speed-up due to less frequent feature selection. With the

affine-photometric motion model our inertial-aided tracker

shows very stable and robust results under big shake and

fast rolling motions of the camera. We also show that this

high-order motion model is implemented for a video-rate

feature tracking up to 1000 features by the SIMD property

of a GPU.

REFERENCES

[1] B. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proceedings of the 7th

International Joint Conference on Artificial Intelligence, (Vancouver,
Canada), pp. 674–679, 1981.

[2] J. Shi and C. Tomasi, “Good features to track,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’94), (Seattle), June
1994.

[3] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying
framework,” Int. J. Comput. Vision, vol. 56, no. 3, pp. 221–255, 2004.

[4] H. Jin, P. Favaro, and S. Soatto., “Real-time feature tracking and outlier
rejection with changes in illumination,” in Proc. of the Int’l. Conf. on

Computer Vision (ICCV), July 2001.

[5] F. Panerai and G. Sandini, “Visual and inertial integration for gaze
stabilization.,” in Proc. Int’l Symp. Intelligent Robotic Systems (IROS),
1997.

[6] J. Lobo and J. Dias, “Vision and inertial sensor cooperation using
gravity as a vertical reference,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 25, no. 12, pp. 1597–1608, 2003.

[7] T. Okatani and K. Deguchi, “Robust estimation of camera translation
between two images using a camera with a 3d orientation sensor,” in
Proc. IEEE Int’l Conf. on Pattern Recognition (ICPR), 2002.

[8] R. H. Carpenter, Movements of the Eyes. London Pion Limited, 2 ed.,
1988.

[9] A. Davison, I. Reid, N. Molton, and O. Stasse, “MonoSLAM: Real-
time single camera SLAM,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[10] J. Chandaria, G. Thomas, B. Bartczak, K. Koeser, R. Koch, M. Becker,
G. Bleser, D. Stricker, C. Wohlleber, M. Felsberg, F. Gustafsson,
J. Hol, T. B. Schn, J. Skoglund, P. J. Slycke, and S. Smeitz, “Real-time
camera tracking in the MATRIS project,” in IBC2006, (Amsterdam),
2006.

[11] G. Bleser, C. Wohlleber, M. Becker, and D. Stricker, “Fast and stable
tracking for ar fusing video and inertial sensor data,” in Int’l Conf in

Central Europe on Computer Graphics, Visualization and Computer

Vision (WSCG), (Plzen, Czech Republic), pp. 109–115, 2006.

[12] Y. Yokokohji, Y. Sugawara, and T. Yoshikawa, “Accurate image
overlay on video see-through HMDs using vision andaccelerometers,”
in Proc. IEEE Virtual Reality, 2000.

[13] S. You, U. Neumann, and R. Azuma, “Hybrid inertial and vision
tracking for augmented reality registration,” in Proc. IEEE Virtual

Reality, 1999.

[14] J. Gray and M. Veth, “Deeply-integrated feature tracking for embed-
ded navigation,” in ION International Technical Meeting Program,
(Anaheim, USA), 2009.

[15] A. Makadia and K. Daniilidis, “Correspondenceless ego-motion es-
timation using an IMU,” in Proc. IEEE Int’l Conf. on Robotics and

Automation, pp. 3534–3539, 2005.
[16] R. Hartley and A. Zisserman, Multiple View Geometry. Cambridge,

2 ed., 2003.
[17] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Gpu-based

video feature tracking and matching,” Tech. Rep. Technical Report
06-012, Department of Computer Science, UNC Chapel Hill, May
2006.

[18] NVIDIA CUDA Compute Unified Device Architecture - Programming

Guide, 2008.

1916

