
Finding and Exploiting Goal Opportunities in Real-time during Plan Execution

Paul Schermerhorn†, J. Benton‡, Matthias Scheutz†, Kartik Talamadupula‡, and Subbarao Kambhampati‡

†Cognitive Science Program
Indiana University

Bloomington, IN 47406, USA
{pscherme,mscheutz}@indiana.edu

‡Department of Computer Science and Engineering
Arizona State University
Tempe, AZ 85281, USA

{j.benton,krt,rao}@asu.edu

Abstract— Autonomous robots that operate in real-world
domains face multiple challenges that make planning and goal
selection difficult. Not only must planning and execution occur
in real time, newly acquired knowledge can invalidate previous
plans, and goals and their utilities can change during plan
execution. However, these events can also provide opportunities,
if the architecture is designed to react appropriately. We present
here an architecture that integrates the SapaReplan planner
with the DIARC robot architecture, allowing the architecture
to react dynamically to changes in the robot’s goal structures.

I. INTRODUCTION

Planning architectures for intelligent autonomous robots
that operate in real-world domains and under time pressure
must make decisions about which goals to pursue at any
given point in time. In particular, they need to address at least
six major challenges: (1) the world is partially observable,
(2) actions are non-deterministic, (3) the prior knowledge
about the planning domain is limited, (4) knowledge ac-
quisition for planning is non-monotonic (i.e., new world
states can invalidate previously found plans), (5) planning
and plan execution are subject to real-time constraints, (6)
goals and goal utilities (including action costs and timeouts)
can dynamically change during plan execution. Additional
practical challenges include varying action durations and
action costs, interleaving of planning and action execution,
or identification of world states used for planning across time
and contexts.

While the first three challenges are common to many
planning applications [1], [2], [3], the second three are
typical of robotic scenarios and impose architectural con-
straints on robotic planning architectures. For example, they
all can trigger replanning: (4) if a new percept invalidates
a pre-condition of a plan operator to be executed, (5) if
delays in executing a plan operator change the expected post-
conditions, and (6) if a new goal is introduced during plan
execution. Yet, these challenges also present opportunities:
(4) new perceptions might lead to opportunities to achieve
goals (i.e., new planning paths to goal states that did not
exist before), (5) the real-time nature of actions allows for
good estimates for action costs and the achievability of
possible plan sequences given deadlines, and (6) dynamic
adaptations to the robot’s goal structures (in light of changes
in the environment) might allow it to achieve better task
performance compared to static structures. And even though
planning algorithms have been used extensively in robotics

[4], there are currently no integrated robotic planning archi-
tectures with mechanisms for (1) generating counterfactual
“what-if” scenarios using background knowledge about the
planning domain to detect possible action sequences that
can lead to goal opportunities, (2) systematically scheduling
perception actions as part of a plan that can be carried out
by the robot in parallel to plan actions in order to be able to
detect goal opportunities, and (3) dynamic goal management
and replanning triggered by perceptions from monitoring
processes to exploit detected opportunities, all in light of
real-time planning constraints and goal deadlines.

In this paper, we propose such an integrated robotic
planning architecture, which thus addresses all six chal-
lenges. Specifically, we propose an integration of an extended
version of the planner SapaPS [5] called SapaReplan [6]
into the robotic DIARC architecture [7], together with
additional architectural mechanisms for the scheduling of
perceptions, which leads to active monitoring of the robot’s
environment, and notification of the planner when oppor-
tunities are detected, which leads to dynamic adaptations
to the robot’s goal structures. We start with an intuitive
example from a search and rescue domain motivating the
proposed architectural mechanisms and then formally present
the planning problem and the proposed extensions to our
previous planning algorithms. Next, we describe how these
new mechanisms were integrated into our existing DIARC
architecture and implemented in our ADE robotic middleware
[8], [9]. We then demonstrate the utility and functionality of
these mechanisms in an evaluation experiment, where we
systematically vary environmental conditions and timeouts
that dynamically affect goal utilities. The results show that
the robot is able to change its plan given its knowledge and
time constraints. We conclude with a brief summary and
suggestions for future work.

II. MOTIVATION

Suppose that a medical support robot, as part of a search
and rescue mission, has a hard goal to deliver critical drugs
needed to treat injured people. While executing a plan to
achieve this goal, the robot needs to traverse a corridor that
has rooms leading off on either side. The robot also has the
knowledge that other wounded humans might be in those
rooms, and it has a soft goal to report the location of any
wounded humans it encounters on the way. The difference
between the soft and the hard goal is that the hard goal has



to be met no matter what (hence the planner has to plan
accordingly), while the soft goal should be met if possible,
but the robot is allowed to fail to meet it. In particular, these
soft goals might not even be reachable from the current state
of the world. We call this subclass of soft goals “sleeper
goals”, because there might be a “wake-up” condition where
a change in the world state will open up a path to the goal.
However, even given such a path, it still may not be worth
it to pursue the goal. For instance, if the robot had a time
limit to deliver the drugs to the injured people, it may be that
it must ignore rooms despite their potential reward because
it would cause the robot to miss its deadline. In essence,
the agent faces two coupled problems: it must first identify
the opportunities that may lead to succeeding at an objective
and then decide, given the opportunity, whether it is worth
pursuing the goal.

To solve the first problem, we present a framework and
methodology that allows problem domain modelers to spec-
ify background knowledge regarding potential opportunities
by explicitly representing known background facts about
sensory data. The background knowledge can give goal
definitions, which enables an online planner to reason about
the possible reward that pursuing objectives may give. More
specifically, the planner generates counterfactual “what-if”
scenarios over the background knowledge. Using these coun-
terfactuals, it can identify opportunities that may lead to
objectives and simultaneously reason about the reward and
cost of these objectives. In our example, the planner would
be given the sleeper goal “report location of wounded
humans” and the knowledge that “wounded humans are in
rooms”. Though the sleeper goal has no path to it initially,
counterfactual reasoning would allow the planner to see the
potential for satisfying the goal of reporting humans once
rooms are found.

To handle decisions about whether to pursue goals, we
use recent innovations from the automated planning research
community. In particular, we employ the techniques found
in the planner SapaPS [5], [10] for quickly solving problems
that involve actions with cost and soft goal objectives with
associated reward. Upon updating its internal state, the agent
casts its situation into an automated planning problem, where
a planner provides counterfactual generation and reasons as
to whether an opportunity for reward exists. If one does, the
planner can determine whether it is worth it to pursue a goal
or ignore it. In the case of discovering rooms, the planner
can reason about whether a detour to look for a human in
the room is acceptable – and this depends upon a variety of
factors, such as the reward of the goal and the deadline to
be at the end of the hallway (a hard goal).

III. PROBLEM REPRESENTATION

The planner operates on a partial satisfaction planning
model expanded to allow for temporal actions and events.
The expanded partial satisfaction planning problem is defined
as a tuple Π = 〈O,ω, T, I,G,E, tc〉 where T represents a set
of predicate templates that can be grounded to typed objects
O into a set of boolean fluents F , ω is a set of operator

templates that are grounded into a set of actions A and the
initial state I is defined by the values of F . The goal set G
is defined by a partial set of F where each g ∈ G can be
marked as either hard (i.e., must be achieved) or soft (i.e.,
can remain unachieved) and has a reward u(g) that indicates
its value of achievement. An action a ∈ A provides a set
of conditions pre(a), an add list add(a) which indicates the
facts added by a, a delete list del(a) indicating the facts
deleted by a, and a cost c(a) indicating the cost of executing
a. Given a state of the world S, applying an action a is
defined as (S

⋃
add(a))\del(a) iff pre(a) ⊆ S. We expand

on this model by including a temporal component to actions,
dur(a) indicating the duration of a (i.e., how long it takes
to complete a after starting it). Actions may be executed
concurrently but in a limited fashion, following the model
of the planner Temporal Graphplan (TGP) [11]. Each goal
g ∈ G may have a deadline dl(g) associated with it. Goals
with deadlines must be true at their specified time and, to
simplify our description, must remain true to be considered
achieved. E represents an event queue of changes in state
(i.e., a list of facts that change from true to false or vice
versa at given times) and tc is the “current” time stamp to
plan from.

The objective of partial satisfaction planning is to find the
plan with the best possible net benefit. A plan P is a solution
if and only if the execution of the actions in the plan satisfies
all hard goals in the problem. We define net benefit as the
difference between the total cost of actions used in a plan and
the total reward for achieving the goals. More formally, our
objective is to maximize

∑
g∈G′ u(g) −

∑
a∈P c(a) where

G′ is the set of goals achieved by a plan P .

A. Problem Updates

In an online setting, changes to state may come at any
moment. In our system, updates can add objects or change
any aspect of the grounded problem (i.e., those aspects
specified by values of F ) except the set of actions A.
Therefore, an update is the tuple υ = 〈O, I,G,E, tc〉. The
new objects in O instantiate a new ground problem over the
operator and predicate templates, and therefore I , G, and E
can specify values for these new fluents and actions.

B. Specifying Goals with Background Knowledge

To successfully reason about and actively seek sleeper
goals, we need to express knowledge we have about them.
As such, the system provides the ability to relate sensing
of particular facts to the goals themselves. The planner
receives background knowledge through a description of
the properties to be sensed. Though our planner operates
over ground actions and fluents, we need to specify lifted
background knowledge in a form that can be ground with
the rest of the problem. In some respects, knowledge about
sleeper goals is similar to local closed world rules as defined
by Etzioni, et al. [12]. Formally, a background rule is a
tuple B = 〈S,R, V, γ〉. S is a typed variable representing
the object to be sensed. R is a first order formula formed
as ∀Q0, . . . , Qn ∃ S|r0 ∧ . . . ∧ rm where Q0, . . . , Qn are



typed object variables and r0 ∧ . . . ∧ rm is a conjunctive
formula and each ri indicates information about S. V ∈ T
is an ungrounded predicate indicating that knowledge has
been retrieved with regard to the object S and γ is a new
goal on S.

For instance, in our example we would want a rule
pertaining to humans being in rooms, B = 〈h,∀r∃h| (in h
r), (sensed for h r), (report h r)〉, where h is of type human,
r of type room, and u((report h r)) = 100.

IV. PLANNING ARCHITECTURE

For this work, we build on the SapaReplan [6] planning
architecture,which is based on the planner SapaPS [10] and
allows for problem and goal updates [6]. The architecture
consists of two components, a monitor which waits for and
processes problem and goal updates and a planner, which
solves for the new updates as they arrive. The planner
component has been extended to perform counterfactual
reasoning over the background knowledge given to it.

A. Processing Updates

In our system, the monitor’s role is to process sensory
information and to choose goals for the planner to achieve
(i.e., it performs objective selection). When an update arrives,
the monitor immediately updates the problem representation
and signals the planner. The planner then processes the
new updates and generates counterfactuals. Afterwards, the
monitor performs a heuristic goal selection process that
involves propagating costs on a temporal planning graph
structure (one borrowed from the planner SapaPS [5], [10]).
Counterfactuals. Given a current problem definition, a
counterfactual is generated by unifying constant objects
over the background knowledge and adding a counterfac-
tual (i.e., simulated) object for every unification on the
universally quantified variables. These counterfactuals can
also be chained together to allow for compound scenarios
that involve multiple background rules. In other words, a
counterfactual generates the assumption that an object being
sensed exists, and that certain facts and goals, as specified
by background knowledge, also exist. In the example, for
every room that is in the known problem, the planner would
assume that a human exists, generating the fact (in h* r) and
the goal (report h* r) where h* is the new counterfactual
object and r is a known room. The planner can then plan
over these facts, allowing it to assume that opportunities for
reward exist. When the fact (sensed for h r) is generated for
the room r, the counterfactual information is removed from
the problem.
Objective Selection. The monitor performs objective selec-
tion using a temporal planning graph technique taken from
the planner SapaPS [5], [10]. Objective selection relies on
the reachability and cost analysis provided by a temporal
planning graph (TPG). The problem is relaxed by removing
the delete lists of actions. After reachability of a goal has
been determined, a relaxed plan is found from the goal set.
Each goal is analyzed by finding the difference between the
reward for the goal and its estimated cost in the relaxed plan

(i.e., the actions used to reach it). If the goal is soft and the
number falls below a threshold (in our case, 0), then the goal
is removed from consideration. Though we perform up-front
objective selection, the planner’s search process is aware of
whether goals are hard or soft and may eventually discover
that the achievement of a pre-selected goal provides a poor
quality plan or prevents the achievement of a hard goal.

B. Planner

SapaReplan is based on SapaPS [5], [10], which uses a
forward chaining weighted-A*, decision epoch search for
handling temporal actions and partial satisfaction planning
problems. Additionally, it allows for problem updates and
can be run in an online environment. The planner uses a
heuristic similar to the objective selection heuristic, where a
temporal planning graph is used to extract a relaxed version
of the problem. Goals can then be pruned from the heuristic
value at each state.

V. PLANNER INTEGRATION

The SapaReplan planner is integrated into the DIARC
robotic architecture for human-robot interaction1 and imple-
mented in the ADE robot development infrastructure [9].2

In ADE, each functional component is implemented as an
ADE server that registers its functionality with an ADE
registry (essentially a white pages component used to help
locate resources, enforce security policies, and provide fault
tolerance and error recovery to the system). When an ADE
server requires the services of another component, it requests
a reference to that component from the registry, which
verifies that it has permission to access the component and
provides the information needed for the two components
to communicate directly. The “client” ADE server can then
access the (possibly remote) component’s services via a
JAVA RMI interface.

The SapaReplan planner was integrated into the ADE
infrastructure by creating an ADE server that wraps the ex-
isting planner. This new component does not manage action
execution; that functionality exists already in the ADE Goal
Manager, a goal-based action selection and management
system that uses procedural knowledge in the form of action
scripts to achieve goals [7]. These scripts can be simple or
complex, composed of (potentially recursive) calls to other
scripts. When a new goal is instantiated, the goal manager
retrieves a script that can achieve the goal and starts an Action
Interpreter to execute the script (possibly in parallel with
other action interpreters servicing other goals). Simple script
elements are carried out directly in an action manager and
typically result in the invocation of remote methods in other
ADE servers (e.g., to initiate movement in a robot server).

1DIARC combines higher-level cognitive tasks, such as natural language
understanding, with lower-level tasks, such as navigation, perceptual pro-
cessing, and speech production [13]. DIARC has served as a research
platform for several human subject experiments (e.g., [7], [13]).

2ADE combines support for the development of complex agent archi-
tectures with the infrastructure of a multi-agent system that allows for
the distribution of architectural components over multiple computational
hosts [9].



Note that there is no problem-solving built into the goal
manager or action interpreter, so if there is no script available
that achieves the specified goal, or actions are missing in a
complex script (e.g., to deal with a failure condition), then the
action interpreter simply fails, causing a failure to achieve the
goal. The integration of the planner thus fulfills a dual role:
it provides DIARC with the problem-solving capabilities of
a standard planner (for finding action sequences to achieve
goals for which no prior procedural knowledge exists) and
it allows DIARC to use the specific opportunistic planning
based on counterfactual reasoning and perceptual monitoring
that is presented in this paper.

The new SapaReplan planner server starts the SapaReplan
problem update monitor, specifies the planning domain, and
(when applicable) presents the planner with an initial prob-
lem description. The set of percept types that are of interest
to the planner are sent to the ADE Action Manager (via
the “attend” mechanism, described below), and the planner
server enters its main execution loop, in which it retrieves
new plans from the planner and sends new percepts and goal
status updates to the planner.

A special “attend” primitive has been defined in the goal
manager to allow servers (such as the planner server) to spec-
ify which percepts are of interest. This will “focus attention”
on those types of percepts by causing the instantiation in the
goal manager of monitoring processes that communicate with
other ADE servers (e.g., the vision server to detect targets of
interest that are visually perceivable, the laser rangefinder
server to detect doorways, which are detected in the range
finder profile, etc.). In the case of the SapaReplan planner
server, the percept types of interest are those that could
prompt opportunistic replanning (e.g., detection of a new
doorway might trigger a new plan to explore the room). A
wide variety of percept types are available from various ADE
servers; a subset of those most relevant to the present study
are:
• (robot orientation ?heading velocity ?vel location ?loc)

provides the current orientation, velocity, and location
of the robot

• (landmark ?name type ?t heading ?dir distance ?dist)
provides information about a perceived landmark with
the given label ?name of type ?t (e.g., chair, table, etc.),
its direction relative to the robot’s heading in degrees
and its distance in meters

• (box ?name color ?value heading ?dir distance ?dist)
provides information about a perceived box, including
its label, color, direction relative to the robot’s heading
in degrees, and distance in meters

• (doorway ?name heading ?dir distance ?dist) provides
information about a perceived doorway, including its
direction relative to the robot’s heading in degrees and
distance in meters

When the monitoring process of the goal manager detects a
percept in its attend list, it constructs a plan update and sends
it to the planner via the planner server’s update method.

Updates from the goal manager can trigger the planner
to replan to take advantage of detected opportunities. Plans

TABLE I
RESULTS OF TRIAL RUNS FOR VARIOUS TIME LIMITS

Time Limit Room1 Report Room2 Report Room3 Report Hard goal
30 - - - - - - Failure
60 Pass - Pass - Pass - Success
90 Enter Yes Pass - Pass - Success

120 Enter Yes Enter No Pass - Success
160 Enter Yes Enter No Enter No Success

Fig. 1. Partial map of the evaluation environment.

are generated in the form of ADE action scripts, which
are directly executable by an action interpreter in the goal
manager. Some examples of ADE scripts (both simple and
complex) available to the planner for creating plans are:
• (look-for ?t) scans the room for percepts of type ?t while

turning 360 degrees
• (move-to ?location) moves to the location specified

(e.g., as indicated by a landmark, e.g., (move-to chair1))
• (turn-to ?location) turns to face the location specified

(e.g., (turn-to box3))
• (move-through ?doorway) moves through the specified

doorway
• (report ?object ?c1 ...) reports the given characteristics

?c1, etc., (e.g., location, color) of the ?object
The new plan/script is passed to the goal manager, which
oversees its execution. When a plan completes, its post-
conditions are sent to the planner server as goal status
updates. If a newly encountered percept triggers replanning,
the previously executing plan is discarded and the new plan
takes its place.

Hence, the SapaReplan planner server can provide
problem-solving capabilities to architectures constructed in
the ADE infrastructure. When no pre-defined script is avail-
able to achieve a goal, the planner can create the script.
This newly-generated script can then potentially be saved
and reused in similar future contexts.

VI. EXPERIMENTS AND RESULTS

We evaluated the planner integration using a version of the
search and rescue scenario described in Section II, where we
use colored boxes to represent humans, with green boxes
representing wounded humans and boxes of other colors
representing non-wounded humans.3 The task takes place in
a long hallway with several doors on either side, some of

3Note that while it is an important (open) problem to detect humans
and determine whether they are injured, this problem is not relevant to
our efforts here to verify the functionality of the proposed algorithms for
detecting opportunities.



which are open (see Figure 1). In this setup, there are only
two rooms containing colored boxes (“humans”), only one
of which is green (representing a “wounded human”). There
is one hard task goal: to arrive at the end of the hallway
within the allotted time. The net utility of achieving this
goal is 1000 units, while failing to achieve the goal in time
is considered catastrophic. In addition, there is one soft task
goal: to search rooms and report the presence of green boxes
(“wounded humans”). This goal has a net utility of 500 units,
but its completion is optional, so the task is not considered
a failure if the soft goal is not achieved.

For all evaluation runs, the robot begins nearly halfway
down the hallway, just over 15 meters away from the location
it is supposed to reach – the end of the hallway – to meet its
hard goal. The robot has initially no information about the
environment other than that of the hallway which it needs
to traverse, hence it does not know of the presence of any
of doorways/rooms along the way. Rather, that information
is presented to the planner as it is acquired perceptually
along the way. The integrated system was tested with various
values for the time limit on the hard goal, ranging from
30 seconds to 160 seconds. The results are summarized
in Table I. Traversing the hallway takes approximately 50
seconds, so the planner does not even produce a plan when
the time limit is set to 30 seconds, given that it knows about
the length of the hallway ahead of time. Entering, scanning,
and exiting a room takes approximately 35 seconds, so even
with a time limit of 60 seconds, the planner does not replan
to search any of the rooms encountered on the way to
the hard goal, as it can estimate the action costs for these
operations. It is only when the time limit of the hard goal is
increased to 90 seconds that there is sufficient time to search
the first room, after which the robot reports the presence
of the green box. Increasing the time limit further allows
the planner to produce plans to investigate additional rooms
encountered on the way; in none of the remaining cases,
however, is there a “wounded person”, i.e,, a green box,
to report (even though there is another room that contains
a blue box representing a healthy human). Notice that the
architecture could perform the intended actions (i.e., either
entering an room and reporting any findings, or skipping
the room) when the goal deadlines are dynamically adjusted
during plan execution (by virtue of triggering replanning and
allowing the planner to initiate perceptual monitoring via the
“attend” primitive).

In sum, the evaluation confirms that the integrated archi-
tecture is able to tackle challenges 4 through 6 mentioned in
the Introduction to its advantage. Specifically, by being able
to detect opportunities using active knowledge acquisition
(of perception obtained via scheduling monitoring), real-time
constraints (to estimate the duration and completion times of
action sequences), and dynamic changes to goal structures
(based on updates to the problem representation), the robot
is able to meet (optional) soft goals and thus significantly
improve overall task performance (which would otherwise
not be possible).

VII. RELATED WORK
While many hybrid control architecture have been pro-

posed in the course of the last two decades (e.g., AuRA
[14], Atlantis [15], the SFX [16], 3T [17], Saphira [18],
Task Control Architecture [19], and others), their design
has remained a challenge when fast-working, highly respon-
sive reactive layers are necessary (e.g., [20], [21]), largely
because the two layers are so different in terms of their
operational principles. Reactive layers, for example, typically
keep state to a minimum, if state is kept at all [22]. Rather,
sensory information is continuously processed and actions
are immediately generated in response to sensory input. In
contrast, higher architectural layers store information and
use it to perform complex processing. Moreover, reactive
layers often use continuous sensor-motor mappings, whereas
action representations used by deliberative layers are typ-
ically discrete. In short, the challenge is get two layers
that operate on different time scales, typically use different
representations, perform operations of different complexity
within different time spans, etc. to work together. The inte-
grated architecture proposed in this paper demonstrates how
higher-level planners can interface with lower-level action
execution and monitoring components in systematic ways,
through standard communication channels like notification of
planner through the action execution component as well as
real-time monitoring of plan execution through the monitor.

Most of the work on real-time, continuous planning de-
pends on the existence of a known, direct path to a hard,
defined goal. For instance, the work by Ruml, Do and
Fromherz [23] defines an online planning problem and algo-
rithm that depends upon up-front knowledge of the problem
topology. Additionally, a good deal of work has been done
with NASA domains and problems, including that by Chien
et al. [24] and Pell et al. [25], but these also require a
topology for goal achievement.

There has additionally been work on directly handling
goal arrival. In particular, methods have been developed
for planning with online goal arrival by Benton, et al. [26]
and Sapena and Onaindı́a [27]. Hubbe et al. [28] deals with
the same types of problems when goal arrival distribution is
known.

Perhaps most closely related to this work is that of Etzioni
et al. [12], who developed a method of defining local closed
world assertions, essentially allowing a planner to determine
what it knows and does not know (thereby allowing it to
seek out this knowledge). Their work, however, assumes all
goals are hard and must be achieved.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel integrated robotic

planning architecture for opportunistic planning and plan
execution in the light of limited prior knowledge about
the planning domain, non-monotonic changes to the plan-
ner’s knowledge through dynamic knowledge acquisition and
changes of goals and goal utilities during plan execution. The
architecture contains mechanisms for generating counterfac-
tual “what-if” scenarios using background knowledge about



the planning domain to detect to possible action sequences
that can lead to the goal opportunities. Based on the outcome
of these reasoning processes, it can systematically schedule
perception actions as part of a plan that can be carried out
by the robot in parallel to plan actions in order to be able
to detect goal opportunities. Whenever an opportunity is
detected, goal structures and deadlines can be re-assessed
dynamically to be able to exploit the detected opportunities
if they can lead to higher net payoffs. The new integrated
architecture was then implemented and tested on a robot
to demonstrate its functionality and utility in dynamically
changing real-world domains.

For future work, we are investigating methods of rea-
soning about the cost of failure. The planner should be
able to reason about the possibility that a sensing action
will be unsuccessful at enabling a path to the goal (i.e.,
the sensing action completes with no object found), allow-
ing it to determine whether the cost of failure outweighs
the potential benefits of success. Additionally, background
knowledge is currently limited to specifying information
about single sensed objects. Expanding this representation
to allow for more objects would provide a better way of
chaining counterfactuals together. For example, predicates
that involve multiple sensed objects could be specified such
as “there exists a door connected to a room” where both the
door and room need to be sensed for (the current system
can only chain such counterfactual scenarios together in a
very limited fashion). We are also planning to extend the
planner’s pre- and postconditions to accommodate temporal
specifications in a temporal logic, which will allow the robot
to accept natural language instructions by humans that can be
automatically converted into formal goal specifications and
passed on to the planner for consideration [29]. Finally, we
will also conduct more extensive and systematic evaluation
experiments both in simulation and on robots to verify that
the proposed architecture will scale up.

IX. ACKNOWLEDGMENTS

This work was in part funded by ONR MURI grant
#N00014-07-1-1049. Thanks also to W. Cushing and Minh
B. Do.

REFERENCES

[1] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artificial Intelligence, vol.
101, no. 1-2, pp. 99–134, 1998.

[2] A. Cimatti, M. Roveri, and P. Traverso, “Strong planning in non-
deterministic domains via model checking,” in Proceedings of the 4th
International Conference on Artificial Intelligence Planning System
(AIPS98), 1998, pp. 36–43.

[3] S. Kambhampati, “Model-lite planning for the web age masses: The
challenges of planning with incomplete and evolving domain theories,”
Proceedings of AAAI07, 2007.

[4] C. Boutilier, T. Dean, and S. Hanks, “Decision-Theoretic Planning:
Structural Assumptions and Computational Leverage,” Journal of
Artificial Intelligence Research, vol. 11, p. 194, 1999.

[5] M. Do and S. Kambhampati, “Partial Satisfaction (Over-Subscription)
Planning as Heuristic Search,” Proceedings of KBCS-04, 2004.

[6] W. Cushing, J. Benton, and S. Kambhampati, “Replanning as a
deliberative re-selection of objectives,” Arizona State University, Tech.
Rep., 2008.

[7] M. Scheutz, P. Schermerhorn, J. Kramer, and D. Anderson, “First steps
toward natural human-like HRI,” Autonomous Robots, vol. 22, no. 4,
pp. 411–423, May 2007.

[8] J. Kramer and M. Scheutz, “Robotic development environments for
autonomous mobile robots: A survey,” Autonomous Robots, vol. 22,
no. 2, pp. 101–132, 2007.

[9] M. Scheutz, “ADE - steps towards a distributed development and
runtime environment for complex robotic agent architectures,” Applied
Artificial Intelligence, vol. 20, no. 4-5, pp. 275–304, 2006.

[10] J. Benton, M. Do, and S. Kambhampati, “Anytime heuristic search for
partial satisfaction planning,” Artificial Intelligence Journal, 2009.

[11] D. Smith and D. Weld, “Temporal planning with mutual exclusion
reasoning,” in International Joint Conference on Artificial Intelligence,
vol. 16, 1999, pp. 326–337.

[12] O. Etzioni, K. Golden, and D. Weld, “Sound and efficient closed-
world reasoning for planning,” Artificial Intelligence, vol. 89, no. 1-2,
pp. 113–148, 1997.

[13] T. Brick and M. Scheutz, “Incremental natural language processing
for HRI,” in Proceedings of the Second ACM IEEE International
Conference on Human-Robot Interaction, Washington D.C., March
2007, pp. 263–270.

[14] R. C. Arkin and T. R. Balch, “AuRA: principles and practice
in review,” JETAI, vol. 9, no. 2-3, pp. 175–189, 1997. [Online].
Available: citeseer.nj.nec.com/arkin97aura.html

[15] E. Gat, “Integrating planning and reacting in a heterogeneous asyn-
chronous architecture for mobile robots,” SIGART Bulletin 2, pp. 70–
74, 1991.

[16] R. Murphy and R. Arkin, “SFX: An architecture for action-oriented
sensor fusion,” in Proceedings of IROS 1992, 1992, pp. 1079–1086.

[17] R. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack,
“Experiences with an architecture for intelligent, reactive agents,”
JETAI, vol. 9, no. 2/3, pp. 237–256, Apr 1997.

[18] K. Konolige, K. L. Myers, E. H. Ruspini, and A. Saffiotti, “The
Saphira architecture: A design for autonomy,” Journal of experimental
& theoretical artificial intelligence: JETAI, vol. 9, no. 1, pp. 215–235,
1997. [Online]. Available: citeseer.nj.nec.com/konolige97saphira.html

[19] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, and J. Sullivan, “A
layered architecture for office delivery robots,” in First International
Conference on Autonomous Agents, February 1997, pp. 235 – 242.

[20] R. Jensen and M. Veloso, “Interleaving deliberative and reactive
planning in dynamic multi-agent domains,” in Proceedings of the
AAAI Fall Symposium on Integrated Planning for Autonomous
Agent Architectures. AAAI Press, oct 1998. [Online]. Available:
http://citeseer.nj.nec.com/jensen98interleaving.html

[21] P. Maes, “Situated agents can have goals,” in Designing Autonomous
Agents, P. Maes, Ed. MIT Press, 1990, pp. 49–70.

[22] E. Gat, “On three layer architectures,” in Artificial Intelligence and
Mobile Robots, D. Kortenkamp, R. P. Bonnasso, and R. Murphey,
Eds. AAAI Press, 1998.

[23] W. Ruml, M. Do, and M. Fromherz, “On-line planning and scheduling
for high-speed manufacturing,” in International Conference on Auto-
mated Planning and Scheduling, 2005.

[24] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau,
“Using iterative repair to improve responsiveness of planning and
scheduling,” in Proceedings of the Fifth International Conference on
Artificial Intelligence Planning and Scheduling, 2000, pp. 300–307.

[25] B. Pell, E. Gat, R. Keesing, N. Muscettola, and B. Smith, “Robust
periodic planning and execution for autonomous spacecraft,” in Inter-
national Joint Conference on Artificial Intelligence, vol. 15, 1997, pp.
1234–1239.

[26] J. Benton, M. Do, and W. Ruml, “A simple testbed for on-line
planning,” in Proceedings of the ICAPS Workshop on Moving Planning
and Scheduling Systems into the Real World, 2007.

[27] O. Sapena and E. Onaindıa, “An architecture to integrate planning
and execution in dynamic environments,” Proceedings of PLANSIG,
vol. 3, pp. 184–193, 2003.

[28] A. Hubbe, W. Ruml, S. Yoon, J. Benton, and M. Do, “On-line
Anticipatory Planning,” ICAPS Workshop on a Reality Check for
Planning and Scheduling Under Uncertainty, 2008.

[29] J. Dzifcak, M. Scheutz, C. Baral, and P. Schermerhorn, “What to do
and how to do it: Translating natural language directives into temporal
and dynamic logic representation for goal management and action
execution,” in Proceedings of the 2009 International Conference on
Robotics and Automation, Kobe, Japan, forthcoming.


