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Abstract— In this paper we describe the problem of Vi-
sual Place Categorization (VPC) for mobile robotics, which
involves predicting the semantic category of a place from image
measurements acquired from an autonomous platform. For
example, a robot in an unfamiliar home environment should be
able to recognize the functionality of the rooms it visits, such
as kitchen, living room, etc. We describe an approach to VPC
based on sequential processing of images acquired with a con-
ventional video camera. We identify two key challenges: Dealing
with non-characteristic views and integrating restricted-FOV
imagery into a holistic prediction. We present a solution to
VPC based upon a recently-developed visual feature known as
CENTRIST (CENsus TRansform hISTogram). We describe a
new dataset for VPC which we have recently collected and are
making publicly available. We believe this is the first significant,
realistic dataset for the VPC problem. It contains the interiors
of six different homes with ground truth labels. We use this
dataset to validate our solution approach, achieving promising
results.

I. INTRODUCTION

Knowing “Where am I” has always being an important
research topic in both the robotics and the computer vision
communities. Various aspects of this problem have been ex-
tensively studied, giving answers in various granularities. For
example, place recognition, or global localization, identifies
the current position and orientation of a robot [9], [20] and
seeks to find the exact parameterization of a robot’s pose
in a global reference frame. Topological place recognition
answers the same question “Where am I”, but at a coarser
granularity [23]. In topological robot mapping, a robot is not
required to determine its 3D location from the landmarks. It
is enough to determine a rough location, e.g. corridor or
office 113. Places in topological maps do not necessarily
coincide with the human concept of rooms or regions [3].
Places in a topological map are usually generated by a
discretization of the robot’s environment based on certain
distinctive features or events in the environment.

An alternative to recognizing specific, unique places is to
recognize the semantic category of a place. Scene recogni-
tion, or scene categorization, is a term that is usually used
to refer to the problem of recognizing the semantic label
(e.g. bedroom, mountain, or coast) of a single image [10],
[16], [24]. The input images in scene recognition are usually
captured by a person, and are ensured to be representative
or characteristic of the scene category. It is usually easy for
a person to look at an input image in scene recognition, and
determine its category label. The learned scene recognizer is
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generalizable, i.e. it can predict the category of scene images
acquired in places that are not present in the training set.

As semantic information is attracting more research efforts
in robotics [13], [28], it should be fruitful to combine facets
from place recognition, topological mapping, and scene
recognition together, and provide an answer to “Where am
I” which contains more semantic information. In this paper,
we raise a new problem called Visual Place Categorization
(VPC). VPC refers to the identification of the semantic
category of a place using visual information collected from
an autonomous robot platform. For example, consider a robot
operating autonomously in an unfamiliar home environment.
The robot should be able to identify the type of room that it is
in (bedroom, living room, kitchen, etc.), even if it is visiting
that particular home for the first time. We utilize a single
video camera as the sole sensor in our approach. Cameras
have the advantage of being passive and non-obtrusive. In
addition, this choice allows us to utilize the existing large
body of computer vision research that extracts semantic
information from images. A major challenge in categorizing
places with a robot is the lack of a powerful attention
mechanism that could automatically identify characteristic
or distinctive views of a given place. For example, a person
taking a picture of a kitchen will naturally frame the image
to include representative details such as stove, sink, etc. In
contrast, the video obtained from an autonomous robot will
include many non-informative images.

This paper makes the following three contributions:
1) We introduce the Visual Place Categorization problem,

a novel categorization problem for mobile robot navi-
gation, which is related to scene recognition and place
recognition for SLAM.

2) We present the first significant dataset for the VPC
problem in home interiors, consisting of image se-
quences with ground truth labels captured from a
variety of different homes.

3) We describe a solution architecture for VPC which
supports frame-rate processing. The solution is based
on the CENTRIST visual descriptor we recently pro-
posed [25]. We then present some promising experi-
mental results using our new dataset.

II. THE VISUAL PLACE CATEGORIZATION PROBLEM

We define Visual Place Categorization (VPC) as the
problem of identifying the semantic category of a place
using visual information collected from an autonomous robot
platform. Some key aspects of the VPC problem include
• The use of vision as the main sensing modality. As

cameras are becoming cheaper and on-board computers
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are becoming faster, vision (EO) sensors are gradually
gaining in popularity for robotic systems. Real-time
video processing is already employed in a variety situa-
tions for robot navigation, including stereo ranging and
visual SLAM [4];

• A focus on recognizing the semantic category of a
spatial location, such as the type of room (e.g. kitchen,
living room, etc.) in a home environment, as opposed
to its purely geometric or topological characteristics.
Metric or topological information is useful in locating
the robot on a map, while semantic location information
can provide context for task execution. For example, a
cleaning robot can adjust its strategy based upon the
type of room it is in, and a delivery robot will be more
useful if it can distinguish the loading dock of a building
from the front reception desk;

• An emphasis on autonomously-collected image data
(i.e. without human guidance), with the result that many
images will not necessarily be characteristic or represen-
tative of the underlying category. Many previous works
in scene recognition use collections of photographs
taken by people. As a consequence, most images tend to
capture the key elements of a place category. In contrast,
the autonomously-collected frames used in VPC pose a
new level of difficulty. Solution approaches must either
simulate an attention mechanism or employ new image
representations and temporal fusion methods that do not
require a characteristic view. We describe a solution
based on the latter approach which achieves promising
results;

• The need for good generalization across a wide
range of spatial environments. The ability to accu-
rately predict the semantic category for a place that
the robot has never visited before requires the ability
to generalize effectively from a training set across a
wide range of spatial environments. Given the inherent
overlap between room functionalities (e.g. bedrooms
that contain a sofa, living rooms that contain a writing
desk, family rooms that contain a sink, etc.), it will be
necessary to address label ambiguity in naming places
and perhaps reason about sub-locations such as the
smaller functional units inside a room (e.g. a breakfast
bar within a kitchen area, or a computer desk within a
family room).

We believe there are several application areas in robotics
where VPC can provide useful functionality:

• Human-robot interaction. A key capability for HRI
is the ability to communicate naturally about spatial
locations. For example, VPC could enable a wheel-chair
robot to understand commands such as Move into the
kitchen or Back up into the breakfast nook.

• Location-aware robots. The VPC module could be
seamlessly integrated with robot mapping modules
such as SLAM (Simultaneous Localization And Map-
ping) [5]. We expect the synergy between SLAM and
VPC to improve both systems. For example, VPC can

help a topological mapping method so that it will not
combine regions from different semantic categories into
one topological location. On the other hand, regions that
are both neighbors and belong to the same semantic
category could be combined into a larger region that
naturally corresponds to a room in an indoor environ-
ment (possibly with the help of other constraints such
as the convexity constraint in [27]);

• Object recognition and scene understanding. The se-
mantic category of an environment exerts strong priors
on the objects that may appear within it [21]. Thus suc-
cessful place categorization can aid object recognition
and visual search. We believe that the recognition of
place category and the objects contained in a place can
be done synergistically. This would enable a robot to
quickly identify objects of interest within an unknown
environment. Furthermore, the semantic category of the
local environment can provide context for a variety of
additional sensing tasks.

III. RELATED WORK

While we believe our formulation of Visual Place Cate-
gorization is novel, it is clearly related to several previous
research efforts. In this section, we briefly review the most
relevant literature, which can be divided into three broad
categories: place recognition and topological SLAM, seman-
tic robot mapping, and scene recognition. As described in
Section II, we believe VPC is largely complementary to place
recognition and topological SLAM [5], [19], and so we focus
our attention on the other two categories of work.

It is difficult to provide an exact definition for either
semantic knowledge or semantic mapping. However, it is
important to possess such information in a robot map in
order for a robot to interact with a complex and non-
static environment. Kuipers [8] defined Spatial Semantic
Hierarchy (SSH), a hierarchical structure that encoded spatial
knowledge at various abstraction levels. Early attempts tried
to detect easy concepts (flat surfaces) such as walls, doors,
ceilings, doorways, etc. For example, Liu et al. [11] built 3D
models that consisted of these simple concepts using both the
range sensor and a panoramic camera. Most of these methods
used laser scanner data (possibly with the addition of vision
sensors).

Problems that have similar formulation to place catego-
rization have been previously presented. Places in the office
environment are categorized in the systems of [18], [14], [6].
Topological maps were also built in these systems. The map
was classified into place categories including office, labora-
tory, doorway, corridor, kitchen, and seminar room. These
systems used both laser range sensors and cameras. They
achieved reasonable recognition accuracies. The categories
in these systems, however, are intuitively distinguishable by
the geometric shape of objects contained in the scene (e.g.
ceiling in the corridor, or door frame in the doorway). We are
interested in recognizing more complex semantic categories
based on their functionality to humans (e.g. bedroom vs.
living room). Images from such complex categories will have
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much larger intra-class variations than the categories studied
in these earlier systems.

Torralba et al. [21] recognized both place instances (e.g.
Jason corridor vs. Kevin corridor) and categories (e.g. corri-
dor vs. conference rooms) using data collected from a mobile
system. They achieved high accuracy in recognizing place
instances. In the category level recognition, they achieved
reasonable accuracy in 3 categories (conference rooms, cor-
ridor, and office), but failed to recognize other categories
(kitchen, elevator, lobby etc.) Our conjecture is that objects
in the 3 successful classes have a specific geometric shape,
which helps in recognition. As mentioned above, in visual
place categorization, images from the same category may
have diverse visual patterns. Thus VPC is more complex
than the problem reflected in the dataset used in [21]. That
dataset was collected by mounting a camera on a person’s
head. As a consequence, the dataset reflects the attention
capabilities of the human observer, which can be readily
verified by comparing their dataset to our new VPC dataset.

Pronobis et al. [17] also recognized place categories
(offices, corridor, printer area, and kitchen). The classifiers
were designed to recognize place categories under various
changes: weather conditions, moving persons and furniture,
etc. However, they do not apply the learned category con-
cepts to new environments. Instead, they tested the learned
classifiers in the same part of the building where the training
data were collected. The idea in [17] was extended to recog-
nize places in different buildings in [22], which recognized
four categories (corridor, bathroom, printer area, and office)
in 3 environments. The resolution in [22] is 640x480, which
is much smaller than the VPC dataset (1280x720).

IV. THE VISUAL PLACE CATEGORIZATION DATASET

In visual place categorization, we strive to categorize more
complex and semantically richer places than what have been
addressed in previous works. We choose to work with videos
from home interiors, which include categories that exhibit
larger visual variations, such as bedroom or living room.
Since VPC in home interior is a new problem and to our
knowledge there is no publicly available dataset that satisfies
our problem definition, we collected a VPC Dataset and
make it available at http://categorizingplaces.
com/dataset.html. In this section we will describe the
philosophy and procedures we followed in collecting our
dataset.

We chose to collect data from home environments. Homes
provide many room categories that are naturally defined by
their function. It is also a trend to deploy intelligent software
and hardware (including robots) in homes, e.g. to help take
care of elderly people. We anticipate numerous applications
of VPC in home environments. Categories in homes show
much larger visual variations than office environments, even
for category such as kitchen, which occurs in both environ-
ments.

Ideally, high resolution images with well-calibrated focus,
appropriate viewing angles, even illumination, and white-
balanced colors are desired. However it is difficult to achieve

such desired settings simultaneously. We balanced these
requirements by choosing a high definition camcorder (JVC
GR-HD1) which captures 1280x720 images. We used the
automatic settings of the camcorder to let it adjust the
camera parameters during recording. The camcorder is able
to automatically adapt to illumination changes in different
rooms and adjust its focus and white balance. The cam-
corder is mounted on a rolling tripod to mimic a mobile
robot platform. Although it is desirable to use a real robot,
mobility and speed issues make this an impractical choice for
capturing a large dataset in a wide variety of environments.1

To date, we have collected data from 6 homes and manu-
ally labeled 11 semantic categories. We asked the volunteers
who allowed us to collect data in their homes to keep
their homes as natural as possible. We made only two
modifications to the home environments that we captured:
First, we removed objects that could reveal the identity or
the address of the occupants (e.g. family pictures or letters).
Second, we closed the blinds in each room and relied upon
artificial light. This helped to normalize the illumination
environment across homes and times of day. Within each
home, we captured two datasets. The first was a continuous
run through the entire home, one floor at a time. During
the continuous run, the operator mimicked the behavior
of a robot following a predefined path through the home
environment. He pushed the tripod with the camera facing
forward, so that it traveled through all traversable areas in
each room. The operator did not look at the captured video
during recording, and simply ensured that the tripod followed
a smooth path without colliding with any object in the room.
Following this continuous capture, we went room-by-room
and captured cylindrical panoramic video at two elevation
angles. We did not use this second part of the VPC dataset
for the experiments in this paper, but it is available for use
by interested researchers.

Our protocol for data capture had two consequences for the
images that we acquired: First, because the camera viewpoint
simply followed the path of the tripod, uninformative views
(such as a close-up of a section of wall) are a major portion
of the captured video. Second, because the tripod often
passed close by major furniture items such as beds and
sofas, these objects are typically only partially visible in any
specific frame. We believe these are realistic attributes for
conventional video data collected by an autonomous platform
in a home environment.

The VPC dataset was generated by extracting every third
frame from the videos as JPEG (95% quality) images to keep
the dataset to a manageable size. Each image is 1280x720 in
resolution. Depending upon the size of the home, each home
produced images totaling 1 to 2 gigabytes.

We provided manual annotations for this dataset. There are
11 categories (see Table I for category names). We used a
special category name transition to annotate video segments

1We experimented with a PeopleBot platform with an attached Prosilica
camera in our initial capture sessions. But we found that the tripod+camera
solution made it much easier to quickly capture high-quality images and
navigate in small spaces with challenging mobility requirements.
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TABLE I: The 11 semantic categories in the VPC dataset,
plus a special category named transition.

bedroom bathroom kitchen storage closet
living room dining room family room workspace
exercise room media room corridor transition
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Fig. 1: Diagram of the VPC system.

that are either difficult to categorize or those that contain
two or more categories. One category label is attached
to a segment of the video (i.e. continuous image frames)
instead of a single frame. Because of the autonomous image
collection process, frames within a short contiguous time
span have a high likelihood to share the same category label.
This choice reduces the required manual labeling labor, but
still retains enough information for learning place categories.

The homes in the VPC dataset span a wide range of styles
and sizes, from modern suburban homes to Craftsman-style
urban bungalows. The home owners span a variety of age
groups, and include families with and without children. The
homes vary in size and age and are designed and decorated in
a variety of styles. Both single story and two-story homes are
included, and some homes had a finished basement. Note that
not all room categories are present in all homes. However,
there are five categories that exist in all homes: bedroom,
bathroom, kitchen, living room, and dining room.

Along with the dataset, we also provided a baseline
evaluation package, which uses leave one out cross validation
and is based on per-frame accuracy. More evaluation details
are described in Section V.

V. THE VISUAL PLACE CATEGORIZATION SYSTEM

The block diagram for our VPC system is shown in
Fig. 1. In the following, we will discuss each components in
detail. A key aspect of our approach is a visual descriptor,
CENTRIST (CENsus TRansform hISTogram) [25] and a
Bayesian filtering approach [7], [21].

A. Image Representation

We adopt the “global configurations” approach proposed
by Oliva and Torralba [16], which is also followed by quite a
few other researchers. They found that perceptual properties
such as the degree of naturalness can be reliably captured
by their holistic representation, Gist. These perceptual prop-
erties were successfully used to recognizing outdoor scene
categories in [16]. They showed that scene categories can be
estimated without explicitly recognize objects in the scene.

(a) A partial image

(b) The complete image

Fig. 2: A bathroom image is shown in Fig. 2b. The shower
curtain “object” (Fig. 2a, cropped from Fig. 2b) is not
sufficient on its own to reveal the room category.

These perceptual properties are not as useful in indoor
environments. For example, indoor environments all share
low degree of naturalness. However, we believe that a holistic
approach should still be used. As illustrated in Fig. 2,
knowing the object in an image does not automatically tell
us the place category. It is the conjunction of the curtain
and the tiles on the wall that clearly show that this is a
bathroom. Many useful cues such as the tiles in Fig. 2b
are often contained in regions that are not objects. Further-
more, recognizing objects in cluttered environments is not
necessarily easier than VPC itself. Thus we prefer a holistic
representation.

Previously we showed in [25] that the CENTRIST visual
descriptor (CENsus TRansform hISTogram) is a representa-
tion suitable for encoding place and scene images. In [25],
CENTRIST achieved superior performances on both scene
recognition (the 15 class scene recognition dataset [10]) and
place recognition (the KTH IDOL dataset [17]).

Census Transform (CT) is a non-parametric local trans-
form originally designed for establishing correspondence
between local patches [26]. Census transform compares the
intensity value of a pixel with its eight neighboring pixels,
as illustrated in Eqn. 1. If the center pixel is bigger than
(or equal to) one of its neighbors, a bit 1 is set in the
corresponding location. Otherwise a bit 0 is set.

32 64 96
32 64 96
32 32 96

⇒
1 1 0
1 0
1 1 0

⇒ (11010110)2 ⇒ CT = 214 (1)

The eight bits generated from intensity comparisons can be
put together in any order (we collect bits from left to right,
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and top to bottom), which is consequently converted to a
base-10 number in [0 255]. Just as other non-parametric
local transforms which are based on intensity comparisons
(e.g. ordinal measures [2]), Census Transform is robust to
illumination changes, gamma variations, etc. Note that the
Census Transform is equivalent (modulo a difference in bit
ordering) to the local binary pattern code LBP8,1 [15].

A histogram of CT values for an image or image patch, i.e.
CENTRIST, can be easily computed, and we use CENTRIST
as our visual descriptor. As shown in previous scene recog-
nition research, incorporating spatial information greatly im-
proves recognition accuracy. Thus we evenly divide an image
into 4 × 4 = 16 sub-windows, and extract a CENTRIST
descriptor from each sub-window. An image is represented
by the concatenation of the 16 CENTRIST vectors (spatial
CENTRIST).

We index the sub-windows in an image from 1 to 16 by
their position. For each i, 1 ≤ i ≤ 16, we collect together
all sub-window i CENTRIST descriptors across the entire
training set. We then use the k-means clustering algorithm
to generate a visual codebook with K centers for the i-th sub-
window location. In total 16 visual codebooks are created,
one for each sub-window location. Any CENTRIST vector
from the i-th sub-window position will then be mapped to
an integer between 1 and K using the i-th visual codebook.
Thus an image is represented by a 16 dimensional vector

Z = (z1, z2, . . . , z16) , (2)

where zi is the vector quantized index of the CENTRIST
descriptor extracted from sub-window position i.

Let X be the category index of a video frame. Then we
use a Naive Bayes approach to estimate P (X|Z)

P (X|Z) ∝ P (Z|X)P (X) =
16∏

i=1

P (zi|X)P (X), (3)

in which P (zi|X) is easily estimated from the training data
(i.e. set to the empirical distribution of the training set).

B. Bayesian filtering

Given that we are using a conventional video camera and
we are not specifically identifying representative frames, the
probability that a robot will both capture a representative
frame and recognize the place category from such a frame
is small. Thus it is vital to integrate information from many
frames. We maintain a belief (i.e. the probability that the
current frame belongs to a certain category) and use a
Bayesian filtering approach for updating category beliefs.
Specifically, let Zt be the image observed at time t and Z1:t

represent the image history till time t, i.e. the set of images
observed from time 1 to t. Correspondingly, let Xt and X1:t

be the category label at time t and the history of category
labels till time t, respectively. Our purpose is to estimate the
distribution P (Xt|Z1:t).

The Bayesian filtering process exploits the entire image
history to efficiently integrate information from several im-
ages. We assume a Markovian property between the category

labels X , i.e. P (Xt|X1:t−1) = P (Xt|Xt−1). Furthermore,
we assume that the distribution of the observed image frame
Zt at time t is determined if we know the category label Xt

at time t. Thus, the Bayesian filtering process is governed
by three distributions [7], [21]:

1) The prior category distribution P (X0);
2) The category transition distribution P (Xt|Xt−1); and
3) The observation distribution P (Z|X).

Using the three distributions and our independence assump-
tions, P (X1:t, Z1:t) can be factorized as:

P (X1:t, Z1:t) = P (X0)
t∏

i=1

P (Xi|Xi−1)
t∏

i=1

P (Zi|Xi). (4)

In the VPC system, the prior distribution P (X0) is a
discrete uniform distribution since we assume the robot
knows nothing about the environment at the beginning. The
category transition distribution is specified as P (Xt|Xt−1) =
pe if Xt equals Xt−1. We set pe to a large number (e.g. we
set pe = 0.99 in our experiments) to reflect the fact that
image frames within a consecutive time span have a high
likelihood to share the same category label. The rest of the
probability mass is shared uniformly among all the other
values of Xt that is different from Xt−1. The last component,
the observation model, is specified by Eq. 3.

After the three distributions are available, the desired
quantity can be efficiently updated at each image frame, as
shown in [7]:

P (Xt|Z1:t) ∝ P (Zt|Xt)P (Xt|Z1:t−1) (5)

P (Xt|Z1:t−1) =
∑

c

P (Xt|Xt−1 = c)P (Xt−1 = c|Z1:t−1).

(6)

A frame t is then classified as the category whose index
is arg maxP (Xt|Z1:t) in the Bayesian filtering framework.
When Bayesian filtering is not used, we use Eq. 3 to
determine the Xt from Zt alone. Since Bayesian filtering
is an inexpensive operation, the running time remains about
the same when Bayesian filtering is used on top of Eq. 3.

C. Experimental setup and evaluation methodology

We used K = 50 in our experiments, i.e. for each
sub-window location, 50 visual codewords are generated.
We used the k-means++ variant of k-means [1] to cluster
CENTRIST vectors. We are interested in the spatial structure
property of an image rather than detailed textural informa-
tion. Thus, instead of extracting CENTRIST from input video
frames, we first compute the Sobel gradients of the input
image, and then CENTRIST descriptors are extracted from
the Sobel gradient images.

Although there are 11 categories (plus a special transition
category), only 5 categories are present in all homes. Thus
we tested the proposed VPC system on these 5 categories:
bedroom, bathroom, kitchen, living room, and dining room.
Categorization results on frames whose groundtruth label is
not within this set are simply ignored. In each home, the
accuracy for a category is computed as the number of correct
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TABLE II: Categorization accuracy (in percentages) of all
homes and categories when the Bayesian filtering is used.

bed bath kitchen living dining average
home 1 75.76 80.04 12.03 43.90 11.15 44.58
home 2 67.10 32.14 64.37 2.04 13.78 35.89
home 3 80.07 95.32 26.14 3.26 0.00 40.96
home 4 49.77 63.92 69.06 30.50 36.41 49.93
home 5 81.47 86.41 45.05 21.30 0.30 46.91
home 6 35.17 90.81 72.77 22.54 56.00 55.46
average 64.89 74.77 48.24 20.59 19.61 45.62

TABLE III: Categorization accuracy (in percentages) of all
homes and categories when the Bayesian filtering is not used.

bed bath kitchen living dining average
home 1 55.02 70.32 17.63 62.20 18.69 44.77
home 2 49.05 32.30 53.64 12.24 19.43 33.33
home 3 65.98 88.39 39.12 7.77 2.12 40.68
home 4 36.76 53.07 70.85 28.57 27.17 43.28
home 5 53.77 73.39 41.95 33.08 3.29 41.10
home 6 28.19 76.79 56.17 31.19 48.00 48.07
average 48.13 65.71 46.56 29.18 19.78 41.87

categorizations in this category divided by the total number
of video frames in this category. The accuracy of a home
is computed as the average accuracy of the five categories
inside this home.

We used a leave one out cross validation strategy to
evaluate the VPC system. The proposed method was applied
6 times. In each run, one home was reserved for testing and
all other 5 homes were combined to form a training set. The
overall accuracy of our VPC system is the average of the 6
individual homes.

Our visual place categorization system runs at approxi-
mately 20 frames per second.

D. Experimental results and comparisons

The categorization accuracies of our visual place catego-
rization system are shown in Tables II and III, which show
the results when the Bayesian filtering mechanism is used
and when it is not, respectively.

The VPC system achieves a 45.62% overall accuracy
when Bayesian filtering is used. Three categories (bedroom,
bathroom, and kitchen) have relatively high accuracy (higher
or close to 50%). The bathroom and bedroom categories
have the highest accuracies, and are close to being useful
in practice. However, the living room and dining room
categories exhibit poor performance, close to that of random
guessing (which is 20%).

The Bayesian filtering method improves both overall
system accuracy and the categories with higher accuracy
(bedroom, bathroom, and kitchen). However, living room and
dining room are sacrificed when Bayesian filtering is applied.
For example, the average living room accuracy is reduced
from 29.18% to 20.59%. This phenomenon is expected.
Bayesian filtering is effectively performing a smoothing
operation. The worst categories (living room and dining
room) will be treated as noise to some extent in the Bayesian
filtering and their performances are hurt. The different effect
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Fig. 3: Effect of using the Bayesian filtering.

of the Bayesian filtering on “good” and “bad” categories are
shown in Fig. 3.

It is also interesting to note that although the accuracy of a
category varies a lot in different homes (especially the living
room and dining room categories), the average accuracy of
homes remain relatively stable.

Figures 4a to 4c provides example visualizations for the
VPC system results.2 The gray bar indicates the groundtruth
and the red bar is the categorization result. All categories that
are not used and the special category transition are attributed
to the other category in Fig. 4. The two bars progressed
with time and the end of both bars indicated results for the
current frame (e.g. around middle in Fig. 4a and at the end
in Fig. 4b and 4c). As shown in Fig. 4, the bathroom and
bedroom category are predicated well, with minor fragments
in results and small periods of errors. However, the living
room in Fig. 4c are poorly recognized.

Our conjecture about the low accuracy in both the living
room and dining room categories is as follows. The key
objects in these categories are usually very large and our
camera can not capture the entire instance of such objects in
a single frame. For example, we can only capture half (or
even less) of the dining table in one frame due to the limited
field of view of our camera. Similarly, our camera encounters
the same problem with the big sofa in the living room. This
limitation is clearly illustrated by the example frames in
Fig. 5. These frames are taken from 4 different homes and
in general most of the frames in these two categories suffer
from the same limitation.

We used a global image representation and did not specifi-
cally detect any characteristic objects. However, we observed
that the VPC system usually recovers from errors when
such objects (e.g. sink in a kitchen and fireplace in a living
room) come into the robot’s sight. This observation makes
us believe that we could use object recognition to help visual
place categorization, and vice versa.

Our results show that Bayesian filtering improves the
accuracy of the VPC system. However, the major virtue

2A complete video is provided as supplementary material along with this
paper, which is the result for the second floor of home 5. Note that this
floor only contains a bathroom and a bedroom, which are the best learned
categories. Results for other homes and floors are generally inferior to the
one shown in this video.
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(a) (b) (c)

Fig. 4: Example results of the Visual Place Categorization system.

(a) Living room example frame 1 (b) Living room example frame 2

(c) Dining room example frame 1 (d) Dining room example frame 2

Fig. 5: Example of frames in the living room and dining room category.

TABLE IV: Results (overall system accuracy) comparing
CENTRIST and SIFT visual descriptors.

CENTRIST SIFT
Using filtering 45.62% 38.61%
Not using filtering 41.87% 35.00%

of Bayesian filtering is to reduce fragmentation in cate-
gorization results, i.e. categorized labels now change less
frequently. Comparing Fig. 6 with Fig. 4b (which shows
results when Bayesian filtering was not used), the predicted
labels without applying Bayesian filtering changed so quickly
that they would not be useful to a robot system.

The CENTRIST visual descriptor is compared with the
SIFT descriptor [12], a very popular visual descriptor. When
we extract SIFT descriptors in each sub-window instead of
CENTRIST vectors, the overall accuracy is 38.61% when
Bayesian filtering is used and 35.00% when it is not. The
SIFT-based results are lower than those using CENTRIST, by
a large margin. The comparison is summarized in Table IV.

Finally, we want to note that visual place categorization

is a challenging problem. For example, in the related work
of [22], four place categories in office environments were
recognized. While the corridor category was easy (about 55%
to 90% accuracy), the other three categories (printer area,
bathroom, and office) had very low accuracies (around 10%,
which is much lower than the chance probability 25%). In
comparison to [22], our CENTRIST visual descriptor and
VPC system have shown promising results.

VI. CONCLUSIONS AND FUTURE WORK

We have described the problem of visual place cate-
gorization (VPC), introduced the first significant dataset
for VPC in home environments, and presented a solution
approach based on spatial CENTRIST visual descriptors and
Bayesian filtering. We believe that VPC is an important
and interesting new problem for robot perception. Through
the careful collection and annotation of the VPC dataset
which is described in this paper, we hope to promote the
study of the VPC problem among the computer vision
and robotics research communities. We make this dataset
publicly available in conjunction with this paper at http:
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Fig. 6: Example VPC results when Bayesian filtering is not
used.

//categorizingplaces.com/dataset.html. Our
results demonstrate that it is possible to obtain surprisingly
good performance without the need to construct specialized
detectors for specific household objects.

We believe our dataset and experiments open up sev-
eral interesting avenues for future research. Some questions
for future exploration include: Can we define a saliency
measure or attention mechanism that could be used to
identify particularly representative or useful images? What
role could geometric reconstruction play in combining image
measurements over time and space? Are there more effective
discriminative classification methods for making place-level
category predictions?

One major limitation that has not yet been discussed is the
lack of other sensory inputs, e.g. odometry and laser range
sensor readings. Use of these sensors could further reduce
the fragmentation of system predictions. For example, the
laser range sensor readings should be able detect that the
robot has not recently passed through a door and therefore
it should have stayed in the same room. Similarly, the
room category prediction must not change if odometry data
primarily contains rotations. Furthermore, since we only need
to provide a single category label for all the frames in the
same room, we expect the categorization accuracy to improve
by a large percentage if we are able to detect when the robot
changes into a different room (e.g. utilizing the work of [6]).
We also expect the VPC system to work better if it can
exchange information with other modules in a robot, e.g.
topological mapping.
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and rotation invariant texture classification with local binary patterns.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(7):971–
987, 2002.

[16] A. Oliva and A. Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. International Journal
of Computer Vision, 42(3):145–175, 2001.

[17] A. Pronobis, B. Caputo, P. Jensfelt, and H. I. Christensen. A
discriminative approach to robust visual place recognition. In Proc.
IEEE/RSJ Int’l Conf. Intelligent Robots and Systems, 2006.
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