
  

  

Abstract— In order to develop a friendly and safe interaction 
between humans and robots, it is essential for the robot to 
evaluate user’s affective states and respond accordingly.  
However, affective states are typically assessed using offline 
questionnaires and user reports.  In this paper we investigate 
the use of an online-device for collecting real-time user reports 
of affective state during interaction with a robot.  These reports 
are compared to both previous survey reports taken after the 
interaction, and the affective states estimated by an inference 
system. The aim is to evaluate and characterize the 
physiological signal-based inference system and determine 
which factors significantly influence its performance.  This 
analysis will be used in future work, to fine tune the affective 
estimations by identifying what kind of variations in 
physiological signals precede or accompany the variations in 
reported affective states. 
 

I. INTRODUCTION 
IMPROVING productivity and performing dangerous or 
monotonous tasks have been successfully accomplished 

by robots in industrial settings. More recently, attention has 
turned to the use of robots to aid humans outside the 
industrial environment, in places such as the home or office. 
For example, as the population in the developed world ages, 
robots that can interact with humans in a safe and friendly 
manner, while performing necessary home-care/daily living 
tasks, would allow more seniors to maintain their 
independence. Such devices could alleviate some of the non-
medical workload from health-care professionals, and reduce 
growing healthcare costs.  

An essential step towards this goal is the acquisition, 
analysis, and integration of non-explicit user-interaction data 
within the human-robot control loop, such as user attention 
and approval. Essentially, the robot should respond to the 
“body language” of the user. In recent work, the acquired 
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non-explicit control data from the human user has been 
integrated into the robot control system to provide a safer 
and more usable modality for human-robot control. Face 
direction, body location, and physiological cues such as 
heart rate, skin conductance, etc. are tracked [1]. Previously, 
these studies have used off-line user reports to calibrate this 
information in order to form an estimate of human affective 
state. In fact, throughout the literature, the most common 
way of recording the reported mood and intensity of a user 
for calibration of physiological sensors has been through the 
aid of pre and post activity questionnaires. This “off-line” 
information is not ideal when attempting to relate changing 
physiological responses to reported affective state, and is 
especially problematic in a dynamic human-robot interaction 
environment where affective responses may vary 
substantially throughout the interaction..  

Real-time reporting of affective state by the user, is 
proposed as a more effective way to calibrate user 
physiologic responses.  In this work, we investigate the use 
of a handheld device that allows people to report their 
affective state, i.e., valence and arousal, continuously during 
a human-robot interaction trial.  We study how well the 
online data correlates to both previously employed off-line 
questionnaire and a physiological signal based affective-
state inference system.  The main purpose is to evaluate and 
characterize the physiologically-based estimations and 
determine which factors significantly influence its 
performance.  The users’ reported data can be further 
utilized to fine tune the affective state estimation system by 
indentifying the variations in physiological signals that 
precede or accompany the variations in reported affective 
states.   

II. RELATED WORK 
During human-human interaction, non-verbal 

communication signals are frequently exchanged in order to 
assess each participant’s affective state, focus of attention 
and intent.  Many of these signals are indirect; that is, they 
occur outside of conscious control.  By monitoring and 
interpreting indirect signals during an interaction, significant 
cues about the affective state of each participant can be 
recognized [2] .  However it is essential to investigate how 
well affective inference systems based on physiological 
signals estimate the actual affective state of the user. 

To the authors knowledge, no device has been reported in 
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literature that can actively record, on-line, affective response 
from a human that would be useful for calibration of 
physiological responses. Devices that record human 
autonomic responses, such as heart rate, blood pressure, and 
skin conductance are being used during human robot 
interactions [3]. In this work, the data collected from these 
devices was correlated to human emotion through the use of 
after-the-fact questionnaires. 

At the University of Hertfordshire, some research and 
testing was performed to obtain the real-time comfort level 
data with a one degree of freedom hand-held device [4, 5]. 
The obtained data was analyzed in combination with video 
material so the level of comfort/discomfort of a test subject 
to a moving robot could be determined with respect to robot 
action, proximity, and motion relative to the test user.   

A Squeezemouse prototype [6, 7] was used to log user 
dissatisfaction with computer-performed tasks as described 
in the experiment procedures for human-computer affective 
interactions.  The Squeezemouse operated on pressure 
sensitivity to indicate the level of frustration experienced by 
a software user.   

Both of the devices listed above reported a one-
dimensional level of a specific type of affect, comfort, and 
frustration.   

Physiological monitoring systems have previously been 
used to extract information about the user’s reaction, both 
for human-computer and human-robot interaction [8-12].  
Signals proposed for use in human-computer interfaces 
include skin conductance, heart rate, pupil dilation and brain 
and muscle neural activity.  Rani et al. [9, 11] used heart-rate 
analysis and multiple physiological signals to estimate 
human stress levels during video game playing, using a 
fuzzy inference engine.  Kulic and Croft [13] used a fuzzy 
inference engine to estimate affective state response to 
articulated robot motions. Picard et al. [8], and Kim et al. 
[14] used Support Vector Machines to estimate user 
affective state for human-computer interaction.  Liu et al. 
[15] compared the effectiveness of several machine learning 
methods for estimating affective state.  

All these approaches consider the instantaneous value of 
various signal features (for example, the rate of change of 
the skin conductance) for estimating the affective state.  

However, physiological response is not characterized by 
instantaneous changes in value, but rather, by a signal 
sequence, or waveform.  For example, for skin conductance, 
a stimulus will be followed by a rise in conductance, 
followed by a slow decay.  A good model of the 
physiological data should capture this time-domain behavior. 

In this paper we investigate the use of an online-device for 
collecting on-line user reports of affective state during 
interaction with a robot.  These reports are compared to 
previous survey reports taken after the interaction, and the 
use of these reports to validate a fuzzy inference engine for 
estimating affective state is considered.  

III. METHODOLOGY  
Herein, our study proposes and investigates an online 

method for collection and calibration of physiological 
signals in an HRI (human-robot interaction) context in order 
to improve the estimation of the users’ affective state 
response to the interaction.  Two instruments where used to 
collect the data, an in-house developed modified joystick 
[16] called an Affective State Reporting Device (ASRD) and 
a questionnaire [17].  This experiment builds on 
methodology from our previous studies [18] which measured 
user affective response to HRI, and then utilized the 
responses in a closed loop system [19]. 

A. On-line Affective State Reporting Device 
For this work, a hand-held affective state reporting device 

(ASRD) was used to record affective states expressed by 
each user.  A two-dimensional map is used to represent 
human affective states as valence (pleasantness-
unpleasantness) and arousal (activation-deactivation) [23]. 
This space can be thought of as a Cartesian space with 
valence on the x-axis and arousal on the y-axis, as shown in 
Fig. 1. The valence/arousal representation adopted herein 
appears adequate for the purposes of robotic control. This 
representation system has also been favored for use with 
physiological signals and in psychophysiological research 
[2, 20-22].   

A usability study has been performed previously in [16].  
The handheld device has two inputs, as shown in Fig. 2 [16].  
By using the forward/backward motion, the indication of 
valence is registered.  The forward motion relates to positive 
affect and the backward motion to negative affect.  By 
squeezing the handle, the level of arousal is recorded where 
no squeezing represents neutral arousal and forceful 
squeezing represents high arousal, as only the upper half 
plane of the circumplex model of affect were mapped.  The 
concepts of valence and arousal were explained to the 
participants and Fig. 1 was presented to them before using 
the handheld, as these concepts may not be commonly 
employed by the average user.    

The signals collected from this device were transformed 
into scores from 1 to 5.  For the arousal signal, a score of 1 
indicates low arousal level and 5 is high.  For the valence 
signal, 1 indicates negative valence, 5 indicates a positive 

Fig. 1.  Circumplex model of affect [23]  
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valence and 3 is neutral. 

B. Perceived Safety Questionnaire 
Perceived safety describes the user’s perception of the 

level of danger when interacting with a robot, and the user’s 
level of comfort during the interaction. Achieving a positive 
perception of safety is a key requirement if robots are to be 
accepted as partners and co-workers in human environments.  

After each interaction, participants were asked to rate their 
emotional state in three semantic differential scales:  
Anxious / Relaxed, Agitated / Calm, Quiescent / Surprised, 
as shown in Table I.  Previous studies [17] have shown that 
this semantic differential questionnaire can provide a 
repeatable and reliable measure for assessing user’s 
perceived safety in response to robot motion. 

Users’ responses to this questionnaire are compared to 
both the data collected from the handheld device and the 
fuzzy inference engine.  

C. Affective State Inference 
The user’s affective state is estimated using a Fuzzy 

Inference Engine based on three measured physiological 
signals: heart rate (HR), skin conductance response (SCR) 
and corrugator muscle contraction (EMG), which have been 
shown to be the most reliable indicators of affective state in 
psychophysiological research [2, 21, 22]. Details of the 
fuzzy rule derivation based on phychophysiological research 
and the physiological sensing system can be found in [24].  
The outputs of the fuzzy engine are the estimated valence 
and arousal.   

For the data analysis, the average arousal and average 
valence over the duration of each trajectory are calculated 
for both the affective monitoring device and the fuzzy 
inference engine. Two-Way Repeated Measures ANOVAs 
are computed to evaluate the effect of speed and type of task 
on these measures. A correlation analysis is performed 

between the signals as well as between the responses from 
the questionnaire.  Finally, we calculate how much the 
affective states estimated by the fuzzy inference engine 
deviate from the subjective online responses collected by the 
handheld device, which allows to characterize the affect 
inference system.   

D. Study Implementation 
A group of 30 people participated in this study; however, 

due to difficulties with experimental equipment only 26 
subject data sets were captured (n=26). The group of 
subjects consisted of 7 females and 19 males.  The age of the 
subjects ranged from 20 to 39, with an average age of 27.4.  
Most of the subjects were graduate students from a wide 
range of departments (from Music to Physics) in the 
University of British Columbia.  

Each person was asked to read a description of the 
experiment and sign a consent form.  During the experiment, 
each participant is seated facing the robot and is asked to use 
a handheld device to report their affective state while the 
robot is motion.  At the same time, physiological signals 
data is collected using appropriate sensors attached to the 
person.  Fig. 3 shows the setup of the experiment. The robot 
is initially held motionless for 60 seconds to collect baseline 
physiological data for each subject.  The robot then executes 
7 different trajectories.  The trajectories are presented to 
each subject in randomized order.  After each trajectory is 
executed, the subject is asked to rate their affective state 
according to a questionnaire of Perceived Safety [17]. After 
the questionnaire is completed, a 1 minute’s rest period is 
enforced before presenting the next trajectory, to ensure that 
the physiological data returns to baseline.   

The physiological data collected is processed by a fuzzy 
inference engine to estimate the levels of valence and 
arousal the user experiences.  These estimations are 
compared to both the subject’s reported affective states 
made through the handheld device and the answers provided 
on the Perceived Safety Questionnaire.  

The experiment was performed using the CRS A460 6 
degree of freedom (DoF) manipulator. Two different tasks 
were used for the experiment:  a pick-and-place motion (PP), 
and a reach and retract motion (RR).  These tasks were 
chosen to represent typical motions an articulated robot 

 
 
Fig. 2.  Hand-Held Affective-State Reporting Device (ASRD) 
 

TABLE I 
PERCEIVED SAFETY - SEMANTIC DIFFERENTIAL SCALES 

Anxious 1     2     3     4     5 Relaxed 
Agitated 1     2     3     4     5 Calm 

Quiescent 1     2     3     4     5 Surprised 
 

 

 
 Fig. 3.  Experimental setup 
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manipulator could be asked to perform during human-robot 
interaction, for example during hand-over tasks. For the 
pick-and-place motion, the pick location was specified to the 
right and away from the subject, and the place location was 
directly in front and close to the subject.  For the reach and 
retract motion, the reach location was the same as the place 
location.  For both tasks, the robot started and ended in the 
“home” upright position. The main difference between the 
two tasks is the approach direction of the robot.  For the PP 

task, the robot approaches the subject from the side, while 
during the RR motion, the robot approaches the subject from 
head on.  Two different speeds were used for each task: 
medium and high as seen on Table II. 

Each subject was tested once over a contiguous time 
period of approximately 15 minutes.  Single trials of 
multiple subjects were selected over multiple trials of a 
single subject in order to capture a general response to the 
robot motions.   

IV. RESULTS 

A. Subjective response by ASRD 
Fig. 4 presents the average responses of arousal and 

valence given by the participants using the Affective State 
Reporting Device for each trajectory. Table III shows the 
corresponding Two-Way Repeated Measures ANOVA 
tables, where the effects of speed and type of task were 
analyzed.   

Speed was the only significant factor on the subject’s 
reported average arousal F(1,25) = 10.50, p = 0.003.  For 
high speed trajectories, users reported stronger values of 
arousal than for medium speed; as expected.  As well, there 
is a moderate correlation between average arousal and speed, 
as it is shown in Table VI. 

For the user’s reported average valence, speed was also a 
significant factor, F(1,25) = 28.98, p = 0.000.   Users 
reported lower valence for high speed than for medium.  In 
fact, there is a strong correlation between speed and 
subjective reported average valence, as seen on Table VI. 
Additionally, in this case, the type of task was also a 
significant factor, F(1,25) = 25.45, p = 0.000.  Participants 
expressed lower valence for the Reach and Retreat (RR) task 
than for the Pick a person influences their degree of comfort.  
For the RR motion, the robot approaches the subject from 
over head on while during the PP task, the robot approaches 
the subject from the side.  The interaction effect between 
speed and task type was not significant. 

B. Subjective response by Perceived Safety Questionnaire 
Fig. 5 shows the mean and standard deviations of 

responses for the three scales measured:  Anxious/Relaxed, 
Agitated/Calm and Quiescent/Surprise.  Table IV presents 
the two-way repeated measures ANOVA for each scale.  
Speed and type of task are both significant factors for each 
of the three scales measured.  Participants reported higher 
anxiety, agitation and surprise for high speed motions as 
well as for the Reach and Retract task. There is a strong 
correlation between speed and each of the three scales 
measured on the questionnaire, Table VI.  These results 
follow a similar behavior as the measures taken from the 
ASRD, which indicates a correspondence between them.  In 
effect, there are strong correlations between the average 
valence reported on the ASRD and both anxiety and 
agitation.  Additionally, there are moderate correlations 
between average arousal as reported by ASRD and each of 
the three scales measured on the questionnaire.   

These results validate the suitability of the ASRD and 
suggest that it is an effective device for collecting user 
responses. This finding was corroborated by interviews with 
the users after the experiment.   

C. Arousal response estimated by Fuzzy Inference Engine 
Fig. 6 presents the average responses of arousal estimated 

by the Fuzzy Inference Engine. Table V shows the 
corresponding Two-Way Repeated Measures ANOVA 
tables, where the effects of speed and type of task are 
analyzed.  Both factors and their interaction are all 
significant. Fig. 7 shows this interaction effect.  

Breaking down the interaction into simple main effects for 
each task, it is found on Table VII that, for the Pick and 
Place task, speed is a significant factor.  For high speed 
motions, the fuzzy inference engine estimated higher 
average arousal levels.  For the Reach and Retreat task, 
speed is not a significant factor, that is, the average arousal 
level does not vary significantly for different levels of speed.   

Only weak correlations –if any- were found between the 
average arousal estimated from the fuzzy inference engine 
and the user’s reported affective states using the handheld 
device and questionnaire, Table VI.  

Given that the estimations don’t seem to follow a similar 
pattern as the one reported by the user, it is natural to 
address the question of how much deviation is there from the 
subjective response.  Is it possible to determine whether 
fuzzy inference engine is over or underestimating user’s 
responses?  Which factors and conditions influence the 
accuracy of affect estimations?  Answering these questions 
would allow us to characterize the inference system and 
determine under what conditions they are better used.  This 
could not be done before since there was not a mechanism or 
device to allow the user to report their affective state 
continuously at the same time as the robot motions occur 
and physiological data is collected.   

 
 

TABLE II 
 DESCRIPTION OF POTENTIAL FIELD TRAJECTORIES USED  

Medium Speed Pick & Place task 
Medium Speed Reach & Retract task 
High Speed Pick & Place task 
High Speed Reach & Retract task 
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TABLE III 
TWO-WAY REPEATED MEASURES ANOVA FOR AVERAGE AROUSAL 

AND AVERAGE VALENCE FROM ASRD  

 Average Arousal 
ASRD 

Average Valence 
ASRD 

Source of  
Variation df MS F p df MS F p 

Speed 1 2.81 10.50 0.003 1 14.08 28.98 0.000 
  Error (Speed) 25 0.27   25 0.49   
Task 1 0.24 1.12 0.299 1 4.33 25.45 0.000 

  Error (Task) 25 0.22   25 0.17   
Speed x Task 1 0.25 1.73 0.200 1 0.24 0.814 0.376 
  Error  25 0.15   25 0.30   

 

 
Fig. 6 Average Valence and Average Arousal estimated by the Fuzzy 
Inference Engine 

 

TABLE V 
TWO-WAY REPEATED MEASURES ANOVA FOR AFFECTIVE STATES FROM FUZZY 

INFERENCE ENGINE 
 Average Arousal 

ASRD 
Average Valence ASRD 

Source of Variation df MS F p df MS F p 
Speed 1 0.86 7.29 0.012 1 0.009 0.082 0.777 
      Error (Speed) 25 0.12   25 0.109   
Task 1 0.82 5.00 0.035 1 0.238 3.35 0.079 
      Error (Task) 25 0.16   25 0.071   
Speed x Task 1 0.76 6.02 0.021 1 0.006 0.041 0.841 
     Error (Speed x Task) 25 0.13   25 0.140   

 

 
Fig. 4  Average Valence and Average Arousal from ASRD  

 
Fig. 5  Descriptive Statistics of Perceived Safety Questionnaire  
 

TABLE IV 
TWO-WAY REPEATED MEASURES ANOVA FOR PERCEIVED SAFETY QUESTIONNAIRE  

  Anxious-Relaxed Agitated-Calm Quiescent-Surprised 

Source of Variation df MS F p MS F p MS F p 

Speed 1 54.76 78.51 0.000 62.41 65.58 0.000 54.76 35.29 0.000 

      Error (Speed) 24 0.70   0.95   1.55   

Task 1 6.76 9.15 0.006 2.89 5.19 0.006 5.76 5.27 0.031 

      Error (Task) 24 0.74   0.56   1.09   

Speed x Task 1 0.04 0.08 0.775 0.01 0.02 0.775 0.04 0.07 0.788 

     Error (Speed x Task) 24 0.48   0.43   0.54   
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In order to characterize the estimated signal, we compare 

the data collected from the user and the estimations 
generated by the fuzzy inference engine.   

Calculating how much fuzzy estimation deviates from the 
user’s reported affect state will give a measure of how 
accurate the estimations are.  We define the Normalized 
Integrated Mean Square Error as,  

,  (1) 

where X is the estimated affective state calculated by the 
fuzzy inference engine, Y is the affective state reported by 
the user and N is the number of measurements for a given 
trajectory. The average IMSE and standard deviation per 
trajectory are presented in Table VIII.  

One can note that, for the scale used in both fuzzy 
estimations and user’s data, the lower and upper boundary 
values for IMSE are given by 

.  (2) 
Table IX presents the Two-Way Repeated Measures 

ANOVA, where the effects of both speed and task on the 
value of IMSE are assessed.  The interaction between speed 
and type of task is found significant.  Fig. 8 depicts this 
interaction effect.  

Breaking down the interaction effect by treating each task 
separately, it can be seen that for the Pick and Place task 
there is a significant effect of speed on the IMSE, Table X.  
There is a larger IMSE for high speed than for medium.  
However, for the Reach and Retreat task, speed is not a 
significant factor, that is regardless of speed level, the IMSE 
values tend to be about the same. Thus the fuzzy inference 
engine tends to perform better for the Reach and Retreat task 
at both speed levels and for the Pick and Place task at 

 
Fig. 7  Average Arousal estimated by Fuzzy – Interaction Effec 

TABLE VII 
 .BREAKING DOWN INTO SIMPLE MAIN EFFECTS 

Source of Variation df MS F p 

Speed at PP Task 1 1.62 15.95 0.001 

      Error 25 0.101   

Speed at RR Task 1 0.002 0.012 0.913 

      Error 25 0.143   

 

TABLE VI 
CORRELATION ANALYSIS 

Average Arousal Average Valence 
  Anxious-

Relaxed 
Agitated-
Calm 

Quiescent-
Surprised Speed 

ASRD Fuzzy ASRD Fuzzy 

Corr. 1        Anxious-Relaxed 
p-value         
Corr. 0.843 1       Agitated-Calm 
p-value 0.000        
Corr. -0.735 -0.741 1      Quiescent-

Surprised p-value 0.000 0.000       
Corr. -0.591 -0.581 0.555 1     Speed 
p-value 0.000 0.000 0.000      
Corr. -0.398 -0.261 0.323 0.253 1    Average Arousal 

ASRD p-value 0.000 0.009 0.001 0.011     
Corr. -0.163 -0.172 0.226 0.213 0.037 1   Average Arousal 

Fuzzy p-value 0.105 0.086 0.024 0.033 0.718    
Corr. 0.528 0.505 -0.449 -0.468 -0.346 -0.170 1  Average Valence 

ASRD p-value 0.000 0.000 0.000 0.000 0.000 0.091   
Corr. -0.122 -0.082 0.073 -0.017 0.107 0.195 -0.168 1 Average Valence 

Fuzzy p-value 0.225 0.418 0.468 0.866 0.289 0.052 0.096  

 

TABLE VIII 
 DESCRIPTIVE STATISTICS IMSE  

 n Mean Std Dev 

Speed Medium – PP Task 26 2.99 1.66 

Speed Medium – RR Task 26 3.52 1.93 

Speed High – PP Task 26 4.21 1.96 

Speed High – RR Task 26 2.90 1.34 
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medium speed.  For the Pick and Place task at high speed, 
the fuzzy inference engine tends to overestimate more the 
levels of arousal. 

From Fig 4 one can note that, the lowest arousal levels 
reported by the user occur at medium speed for both tasks, 
whereas the highest arousal occurs for the Reach and Retreat 
task at high speed.  For the Pick and Place task at high 
speed, the user’s level of arousal lies in between the 
maximum and minimum values.  Hence, the fuzzy inference 
engine tends to perform better when the user’s reported 
arousal is either high or low.  However, it produces larger 
IMSE when users reported intermediate arousal levels. 

D. Valence Response estimated by Fuzzy Inference Engine 
The affective state inference engine also attempted to 

estimate valence, based on the corrugator muscle EMG 
signal and heart activity.  Corrugator muscle activity has 
been reported to have strong correlation with negative 
valence in existing studies, and had shown promise during 
earlier studies with the inference engine using images as 
stimuli.  However, for most of the trajectories tested, the 
estimated valence was very neutral.  Corrugator muscle 

activity was primarily at baseline for all subjects tested 
during robot motions. Heart rate and skin conductance 
response did not allow for discrimination of valence either 
[9]. Therefore, no further analysis was performed. 

V. DISCUSSIONS AND CONCLUSIONS 
In this paper we have presented the implementation of a 

new handheld device that permits the users to report their 
affective state, i.e. valence and arousal, continuously during 
a human-robot interaction trial.  The Affective State 
Reporting Device was shown to be an effective tool for 
collecting subjective responses and its data was correlated to 
a previous questionnaire of perceived safety.  Earlier 
findings were verified.  Participants tend to feel more 
discomfort for high speed motions where the robot 
approaches the subject from over head.  

The ASRD provides a new source of information that 
allows us to evaluate and characterize the performance of an 
affective state inference system., by calculating how much 
deviation it exists between the estimations and the actual 
affective state the user experiences at every time step during 
the motion.  By analysing the behaviour of deviations, it is 
possible to determine under which conditions the inference 
system can be best used and which factors influence its 
performance.  In particular, we calculated the deviation 
between the estimated signals from a fuzzy inference engine 
and the users’ reported states, by using the Integrated Mean 
Square Error over the duration of the motion.  The analysis 
of the IMSE showed that the fuzzy inference engine is likely 
to perform better when the user’s reported arousal is either 
high or low.  However, it produced larger deviations when 
users reported intermediate arousal levels.  

Being able to determine when the participants experience 
a change in their comfort level and its intensity will help 
identify what kind of variations in physiological signals -and 
their extracted features- precede or accompany the variations 
in reported affective states.  This would lead to fine tune the 
fuzzy inference engine (or analogously, other affective 
inference systems) so that deviations –i.e. IMSE- from the 
users’ reported signal are minimized.   

As a final remark, it is important to comment on the 
potential drawbacks when using the ASRD.  Participants 
may fail to recognize their affective state continuously, get 
distracted or become startled by the robot motions, thus 
failing to accurately report their affect.  Through 
observations during the experiments, it became clear that it 
is also important to take into account subject individual 
differences.  For example, one male subject reported high 
levels of anxiety, agitation and surprise in the questionnaire, 
yet he reported positive levels of valence using the ASRD.  
When asked why, he said that he enjoyed being surprised 
and agitated by the robot.  Another example, a female 
subject reports in a previous interview that she really likes 
robots. When she performs the experiments, she’s noticeably 
startled by the robot motions, yet she reports high levels of 
relaxation, calmness and quiescence.  Accordingly, she also 

TABLE IX 
 TWO-WAY REPEATED MEASURES ANOVA FOR  IMSE  

Source of Variation df MS F p 

Speed 1 2.31 1.08 0.308 

      Error (Speed) 25 2.13   

Task 1 3.98 2.17 0.153 

      Error (Task) 25 1.84   

Speed x Task 1 22.18 8.61 0.007 

     Error (Speed x Task) 25 2.58   

 

Fig. 8.   IMSE Interaction Effect 
 

TABLE X 
 TWO-WAY REPEATED MEASURES ANOVA FOR AROUSAL  IMSE  - 

BREAKING DOWN THE INTERACTION EFFECT 
Source of Variation df MS F p 

Speed at PP Task 1 19.40 7.35 0.012 

      Error  25 2.64   

Speed at RR Task 1 5.09 2.47 0.129 

      Error  25 2.07   

 

3748



  

reported high levels of positive valence using the ASRD.  It 
seemed she had consciously decided she would like the 
robot before doing the experiment.  These examples 
underline the importance of individual normalization for 
both the affective inference system and the online tool for 
collecting user data.  A more thorough training protocol for 
using the ASRD would also lead to improvements. 

ACKNOWLEDGMENT 
The authors wish to acknowledge the invaluable 

collaboration of Yuh-Jia Lim, whose diligent work has 
allowed us to complete this paper.   

REFERENCES 
[1] D. Kulic and E. A. Croft, "Real-time safety for human - robot 

interaction," presented at Robotics and Autonomous Systems, 2005. 
[2]. R. Picard, Affective computing, MIT Press, Cambridge, Massachussetts, 

1997. 
[3] D. Kulic, "Safety for Human-Robot Interaction," Ph.D. Thesis, 2005. 
[4] K. L. Koay, M. L. Walters, and K. Dautenhahn, "Methodological Issues 

Using a Comfort Level Device in Human-Robot Interactions," 
Proceedings IEEE of RO-MAN 2005 (Nashville TN, August 2005), pp. 
359-364, 2005. 

[5] K. L. Koay, K. Dautenhahn, S. N. Woods, and M. L. Walters, 
"Empirical Results from Using a Comfort Level Device in Human-
Robot Interaction Studies," Proceeding of the 1st ACM 
SIGCHI/SIGART conference on Human-robot interaction, Salt Lake 
City, Utah, USA, pp. 194-201, 2006. 

[6] D. Kirsch, "The Sentic Mouse: Developing a tool for Measuring 
Emotional Valence," Bachelor of Science in Brain and Cognitive 
Sciences, MIT, 1997. 

[7] C. Reynolds and R. W. Picard, "Designing for Affective Interactions," 
Proceedings from the 9th International Conference on Human-
Computer Interaction, New Orleans, 2001. 

[8] R. Picard, "Toward Machine Emotional Intelligence:  Analysis of 
Affective Physiological State," IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 23, no. 10, pp. 1175 - 1191, 2001. 

[9] P. Rani, N. Sarkar, C. A. Smith, and L. D. Kirby, "Anxiety detecting 
robotic system - towards implicit human-robot collaboration," 
Robotica, vol. 22, pp. 85-95, 2004. 

[10] T. Partala, M. Jokiniemi, and V. Surakka, "Pupillary Responses to 
Emotionally Provocative Stimuli," presented at Eye Tracking Research 
and Applications Symposium, pp. 123 - 129, 2000. 

[11] P. Rani, J. Sims, R. Brackin, and N. Sarkar, "Online stress detection 
using phychophysiological signals for implicit human-robot 
cooperation," Robotica, vol. 20, pp. 673-685, 2002. 

[12] J. Scheirer, R. Fernandez, J. Klein, and R. Picard, "Frustrating the User 
on Purpose:  a step toward building an affective computer," Interacting 
with Computers, vol. 14, pp. 93 - 118, 2002. 

[13] D. Kulic and E. Croft, "Anxiety Detection during Human-Robot 
Interaction," presented at IEEE International Conference on Intelligent 
Robots and Systems, pp. 616 - 621, 2005. 

[14] K. H. Kim, S. W. Bang, and S. R. Kim, "Emotion recognition system 
using short-term monitoring of physiological signals," Medical & 
Biological Engineering & Computing, vol. 42, pp. 419 - 427, 2004. 

[15] C. Liu, P. Rani, and N. Sarkar, "An Empirical Study of Machine 
Learning Techniques for Affect Recognition in Human-Robot 
Interaction," presented at IEEE Conference on Intelligent Robots and 
Systems, pp. 2051 - 2056, 2005. 

[16] A. Lanz and E. Croft, " On Line- Affective State Monitoring Device 
Design " presented at the 2007 ASME International Mechanical 
Engineering Congress and Exposition, Seattle, Washington, USA, 
2007. 

[17] C. Bartneck, D. Kulic, E. Croft, S. Zoghbi, "Measurement instruments 
for the anthropomorphism, animacy, likeability, perceived intelligence, 
and perceived safety of robots". International Journal of Social 
Robotics, 2009.   

[18] Kulic, D. and E. A. Croft. "Affective State Estimation for Human-
Robot Interaction." IEEE Transactions on Robotics 23(5): 991-
1000., 2007. 

[19] Kulic, D. and E. A. Croft (2007). "Pre-Collision Safety Strategies for 
Human-Robot Interaction." Autonomous Robots 22(2): 149-164. 

[20] M. M. Bradley, "Emotion and Motivation," in Handbook of 
Psychophysiology, J. T. Cacioppo, L. G. Tassinary, and G. G. Berntson, 
Eds., 2 ed. Cambridge: Cambridge University Press, 2000, pp. 602 - 
642. 

[21] M. M. Bradley and P. J. Lang, "Measuring Emotion:  Behavior, Feeling 
and Physiology," in Cognitive Neuroscience of Emotion, R. D. Lane 
and L. Nadel, Eds. New York: Oxford University Press, 2000. 

[22] P. J. Lang, "The Emotion Probe:  Studies of Motivation and Attention," 
American Psychologicst, vol. 50, no. 5, pp. 372 - 385, 1995. 

[23] J. A. Russell, "A circumplex model of affect," Journal of Personality 
and Social Psychology, vol. 39, pp. 1161, 1980. 

[24] Kulic, D. and E. A. Croft. "Experimental Validation of Affective State 
Estimation and Safe Motion Planning during Human Robot 
Interaction." Robotica 25(1): 13-27, 2007. 

  

3749


