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Motion Planning for Active Cannulas

Lisa A. Lyons, Robert J. Webster III, and Ron Alterovitz

Abstract— An active cannula is a medical device composed of
thin, pre-curved, telescoping tubes that may enable many new
surgical procedures. Planning optimal motions for these devices
is challenging due to their kinematics, which involve both beam
mechanics and space curves. In this paper, we propose an
optimization-based motion planning algorithm that computes
actions to guide the device to a target point while avoiding ob-
stacles in the environment. The planner uses a simplified active
cannula kinematic model that neglects beam mechanics, and
focuses on planning for the (piecewise circular) space curves.
The method is intended for use in image-guided procedures
where the target and obstacles can be segmented from pre-
procedure images. Given the target location, the start position
and orientation, and a geometric representation of obstacles, the
algorithm computes the insertion length and orientation angle
for each tube of the active cannula such that the device follows
a collision-free path to the target. We formulate the planning
problem as a constrained nonlinear optimization problem and
use a penalty method to convert this formulation into a
sequence of more easily solvable unconstrained optimization
problems. Simulations demonstrate optimal paths for a 3-tube
active cannula with spherical obstacles. The algorithm typically
computes plans in less than 1 minute on a standard PC.

I. Introduction

An active cannula is a continuously flexible (“continuum”)
robot composed of thin, pre-curved, telescoping tubes [32].
They can achieve curved, winding paths to reach distant tar-
gets in constrained spaces, as shown in Fig. 1, making them
well suited for application in minimally invasive surgery.
In an active cannula, bending actuation arises as tubes
elastically interact when they slide and rotate within one
another. Since active cannulas do not use mechanisms outside
the backbone like tendon wires or pneumatic chambers for
actuation, they can be very thin without sacrificing dexterity,
as shown in Fig. 2.

Planning tube configurations (translations and rotations
applied at tube bases) that correspond to desired spatial
tip coordinates or shaft curves is not intuitive for human
beings, motivating the need for efficient planning algorithms.
Active cannulas are actuated by grasping tubes at their bases
using manual [32] or robotic [28] actuation units that can
apply differential rotations and/or extentions telescopically.
Motions applied at the tube bases are transmitted along tube
shafts and result in the pre-shaped tube sections causing one
another to bend. The net result is a thin, hollow “tentacle-
like” device through which a variety of tools, liquids, or
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Fig. 1. Illustration of the clinical potential of active cannulas for
accessing deep brain structures for biopsy or electrode implantation [18]
while avoiding critical structures in an MRI scan [26]. Our motion planner
computes a path for an active cannula composed of 3 concentric tubes to
reach a target (green cross) while avoiding obstacles (red spheres).

forms of energy may pass and be aimed or manipulated in
constrained spaces.

Provided that appropriate motion planning and control
algorithms can be developed, active cannulas appear poised
to enable minimally invasive access to the lung via the throat
[31], [32], the heart [25], the brain for biopsy or electrode
implantation [18], and the fetus within the womb [12], and
to aid in transnasal skull base and transgastric surgery [14],
[16], [30]. These medical procedures require planning the
motions for active cannulas through constrained spaces to
reach clinical targets.

We propose an optimization-based motion planning algo-
rithm that computes actions necessary to guide the device to
a target point while avoiding obstacles in the environment.
Obstacles represent tissues that should not be contacted,
penetrated, or damaged by the cannula, such as nerves, blood
vessels, bones, critical brain structures, or other delicate
tissues defined by medical doctors. The planning method is
intended for use in image-guided procedures where the target
and obstacles can be segmented from pre-procedure images
such as Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), or Ultrasound. To our knowledge, this
is the first algorithm to plan collision-free motions for active
cannulas in environments with obstacles.

Our planner determines values for the two input degrees



Fig. 2. An active cannula with 4 concentric tubes. Each concentric tube is
pre-shaped with a different radius of curvature, with the thinner, inner tubes
having higher curvature.

of freedom for each tube in an active cannula: insertion arc
length, and axial rotation angle. The planner uses a penalty
method and gradient descent to compute locally optimal
values for these variables that deliver the cannula to the target
while avoiding obstacles.

II. RelatedWork

Prior work has applied optimization-based motion plan-
ning to minimally invasive medical procedures, particularly
needle insertion. Inserting a needle into soft tissue causes
the surrounding tissue to deform. Optimization-based motion
planning has been used to compute the insertion location
and insertion distance for rigid symmetric-tip needles to
compensate for tissue deformations in 2D [3] and in 3D [9].
It has also been applied to flexible, bevel-tip steerable needles
that are inserted into deformable soft tissue to reach targets
inaccessible to traditional, stiff needles [2].

These planners, using optimization-based motion plan-
ning, have focused on computing an optimal configuration
for the robot before beginning the motion. The optimization
computes the minimum of an objective function surface in
configuration space. This builds on the idea behind poten-
tial fields, which have been studied extensively for robotic
navigation. Potential fields provide a virtual field that robots
can follow to a goal while avoiding obstacles [7]. Khatib
proposed a model where a goal is represented as an attractor,
obstacles are represented as repulsers, and the overall field
is determined by the superposition of these fields [17].
Potential fields are used as vector fields that provide the
desired velocity vector for the robot at any location in space.
Numerous extensions to this approach have been proposed,
including methods to prevent the robot from getting trapped
at a local minimum [8] and methods to deal with moving
obstacles [17], [19]. In this paper, we focus on computing
an optimal configuration for an active cannula rather than a
vector field.

Active cannulas with a sufficient number of tubes are a

type of redundant manipulator. Recent work has explored
probabilistic planning algorithms for holonomic redundant
manipulators [6], [27]. However, we are not aware of prior
work that has considered planning subject to the kinematic
constraints of active cannulas.

In terms of mechanical design, active cannulas can be
considered a generalization of catheter and needle steering
strategies. Base-actuation of a thin flexible device with a
circular or annular profile has been widely applied to steer
surgical instruments inside the human body. The pervasive
catheter is the primary (and often only) means of accessing
the human circulatory system minimally invasively. Catheters
are directed through a network of blood vessels by “aiming”
(through axial rotation) a pre-curved tip down the desired
vessel branch, followed by axial insertion along the vessel.
Similar input degrees of freedom enable steerable needles
to traverse curved paths in soft tissues. One steerable needle
design incorporates a precurved tip that extends from a stiffer
outer tube to achieve controllable deflection [20]. Another
design harnesses the natural bending forces that arise when
a standard bevel tip is pushed through tissue, driving the
needle along a curved path [29]. Reorienting the tip using
axial rotation enables control of needle trajectory [15].

Since they use multiple tubes, active cannulas can be
thought of as a multi-element generalization of the base-
actuated steering concept. The key difference between ac-
tive cannulas and single-element designs like catheters or
steerable needles is that an active cannula need not rely
completely on tissue reaction forces to steer. Rather, it can
change shape using internal reaction moments that tubes
apply to one another. Thus, active cannulas are properly
considered miniature robotic manipulators, and belong to the
continuum robot family due to their continuously flexible
backbone [24], [32]. The most complete available model
of active cannula shape accounts for tube interaction using
beam mechanics. It captures the effects of bending, torsion,
and variable pre-curvature in an arbitrary number of tubes
[24], yielding the shape of the active cannula as a function of
tube base translation positions and axial angles. It is the most
descriptive and accurate in a series of models [12], [24], [25],
[30], [32] derived in the past few years, and includes all prior
models as special cases. The simplest of these special cases
assumes perfect bending rigidity of each outer tube with
respect to all tubes within it, and perfect torsional rigidity of
all tubes [12]. Though less accurate than the general model
above, this simplest available model provides a good starting
point for initial path planning studies, such as the one we
describe in this paper.

Prior work has explored motion planning for a variety
of continuum robots used in medical applications. Exten-
sive prior work has explored motion planning for steerable
needles, which, like active cannulas, follow curved paths.
As described above, optimization-based motion planning has
been applied to steerable needles inserted in 2D tissue slices
around polygonal obstacles [2]. Other approaches include
diffusion-based motion planning to numerically compute a
path in 3D stiff tissues [21], screw-based motion planning
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Fig. 3. Configuration q = (l1, θ1, l2, θ2, l3, θ3) for an active cannula with
N = 3 concentric tubes.

to compute steerable needle paths in 3D around spherical
obstacles [11], rapidly exploring random trees [33], and
planning methods that explicitly consider uncertainty in
the needle’s motion to maximize the probability that the
needle tip successfully reaches the target [1], [4]. The latter
method, combined with an imaging and control system,
has been successfully integrated with robot hardware [23].
Motion planning methods have also been developed for
guiding slightly flexible symmetric-tip needles to targets by
translating and orienting the needle base by modeling the
deformation of the needle and surrounding tissue [10], [13].
Though the methods described above provide useful intuition
about motion planning for continuum robots, they cannot
be applied directly to active cannulas due to fundamental
differences in the physical mechanisms and their motions.

III. Problem Formulation

A. Modeling Assumptions

Consider an active cannula composed of N tubes. The
tubes are numbered in order of decreasing diameter. Each
tube is pre-shaped with a constant radius of curvature ri,
i = 1, . . . ,N. As discussed in Section II, we follow the
simplified kinematic model of [12]. The assumptions of the
simplified model are that tubes are torsionally rigid, and that
the stiffness of each outer tube dominates all those within it.
This implies that each tube deploys along a circular path
defined by its radius of curvature, and that its shape is
independent of the motions of tubes within it. See [32] for
a discussion on the implications of these assumptions, and a
comparison of various models to experimental data.

Each tube has two degrees of freedom; it may be extended
or retracted from the previous tube and axially rotated,
reorienting the direction of deployment, as shown in Fig.
3. We define a cannula configuration as the 2N dimensional
vector q = (li, θi : i = 1, . . . ,N) where li is the length of the
i’th tube and θi is the rotation of the i’th tube. We assume
that the active cannula is inserted from a start point xstart and
is oriented along the vector vstart.

We define the function f (q) : R2N 7→ R3 as returning the
tip position in 3D space given the active cannula configura-
tion q. We define the transformation f (q) by multiplying a
concatenated sequence of translation and rotation matrices
that, when translated by the start position, yields the tip

position for the active cannula. This function is given by
(3) in [28].

We also define h(q, s) : R6 × R 7→ R3 as the function for
the curve of the cannula in the configuration defined by q.
The curve is parameterized by s in the range [0, 1], such
that h(q, 0) = xstart and h(q, 1) = f (q). The function h is
computed similarly to f using (3) in [28] computed to the
arclength defined by s (that is, including only the leftmost
several transformations, which define the circular arcs nearest
the base of the cannula). Note that in general s will not define
a point at the beginning or end of a circular arc. Thus the
last (rightmost) transformation uses an appropriate arc length
defined by how far along the last circular arc s lies.

Obstacles are defined in a set O of size M, O =

{O1,O2, . . . ,OM}. Obstacles can be defined using any ge-
ometric representation, as long as it is possible to compute
d(x,Oi), the Euclidean distance between a point in space x
and the obstacle Oi. In our current implementation, we use
spherical obstacles.

B. Planning Problem Formulation

We define the target by the coordinate xtarget in 3D space.
We assume the start location xstart and initial orientation vstart

are given and fixed implying that the physician has a single
opening through which the cannula may be inserted based
on the constraints of the procedure. In future work, we will
consider treating xstart and vstart as variables for cases in
which the physician may select the insertion pose of the
active cannula as part of the procedure.

Given the active cannula properties, the start pose, the
target coordinate, and the obstacles, we formulate the motion
planning problem as a nonlinear, constrained optimization
problem. First, we require that the active cannula tip reach
the target, which we represent as the constraint:∥∥∥ f (q) − xtarget

∥∥∥ = 0.

Second, we prefer solutions that avoid obstacles. We quantify
this using a potential field [17] by integrating the sum of the
obstacle potential field values along the path of the active
cannula:

c(q) =

M∑
i=1

∫ 1

s=0

1
d(h(q, s),Oi)2 ds. (1)

Finally, we require that the active cannula configuration be
valid, which we represent with the constraints li ≥ 0, θi ≥ 0,
and θi < 2π, i = 1, . . . ,N.

The motion planning problem may now be formulated as
a nonlinear, constrained optimization problem:

q∗ = argmin
q

c(q)

Subject to:∥∥∥ f (q) − xtarget

∥∥∥ = 0
li ≥ 0 i = 1, . . . ,N
θi ≥ 0 i = 1, . . . ,N
θi < 2π i = 1, . . . ,N

(2)

where q∗ is the optimal active cannula configuration. Because
we assume that the stiffness of each outer tube dominates



Fig. 4. Active cannula plans computed by the method for test cases with randomly placed spherical obstacles.

those within it (implying that it will deploy along its own
radius of curvature and stay there as other tubes deploy
within it), we can achieve this optimal configuration by first
axially rotating the outer tube to θ1, then deploying it to
a length l1, and then repeating for tubes i = 2, . . . ,N in
increasing order.

IV. Motion Planning Algorithm

Using the optimization-based formulation in (2), solving
the motion planning problem requires solving the con-
strained, nonlinear optimization problem. We solve for a
locally optimal solution q∗ using a penalty method. Penalty
methods solve a constrained optimization problem by con-
verting it to a series of unconstrained optimization problems
[5]. Given the constrained optimization problem min f (x)
subject to g(x) ≤ 0, we can write the unconstrained problem
min( f (x) + µmax{0, g(x)}) for some large µ > 0. Penalty
methods generate a series of unconstrained optimization
problems as µ → ∞. Each unconstrained optimization
problem can be solved using Gradient Descent or variants
of Newton’s Method. For convex nonlinear problems, the
method will generate points that converge arbitrarily close
to the global optimal solution [5]. For nonconvex problems,
the method can only converge to a local optimal solution.

Applying the penalty method to the active cannula mo-
tion planning problem, we move the non-trivial constraint∥∥∥ f (q) − xtarget

∥∥∥ = 0 to the objective function and define a

new optimization problem.

q∗ = argmin
q

(
c(q) + µ

∥∥∥ f (q) − xtarget

∥∥∥)
Subject to:

li ≥ 0 i = 1, . . . ,N
θi ≥ 0 i = 1, . . . ,N
θi < 2π i = 1, . . . ,N

(3)

The remaining constraints are limit constraints that can easily
be handled by unconstrained minimization algorithms.

For a given µ, we use the Gradient Descent algorithm
[22] to find a locally optimal solution for (3). We compute
the gradient numerically. For each gradient direction, we use
Armijo’s Rule [5] for line search with an initial movement
distance of ε = .0001.

We initially set µ = 10000 and increase µ by a factor of
β = 10 at each penalty method iteration. To ensure that the
constraint

∥∥∥ f (q) − xtarget

∥∥∥ = 0 is satisfied, the penalty method
is executed until the tip is within some small Euclidean
distance δ of the target. Decreasing δ results in more accurate
convergence to the target but requires more computation
time.

Computing c(q) in (1) requires numerically approximating
an integral over the active cannula path. We approximate this
integral by considering a finite set of points spaced a apart
along the active cannula path and converting the integral to
a summation.

Because we compute locally optimal solutions to the
optimization problem in (3), the planner may fail to find
a quality solution because it is trapped in a local minimum.
To address this, we select 10 random, uniformly distributed



initial configurations of q and execute the local optimization
on each initial configuration. The initial configurations were
chosen using the following criteria:

0 ≤ θi ≤ 2π, i = 1, 2, 3
0 ≤ li ≤ ri, i = 1, 2, 3 .

Although we automatically select the optimal solution based
on the lowest value of c(u), physicians or engineers may also
choose among the solutions found to optimize other criteria,
such as shortest tube deployment lengths, minimum torsion,
more rapidly healing tissues, etc.

V. Results
We illustrate the results of the planner in Fig. 1 and Fig.

4 for active cannulas with N = 3 tubes. All visualizations
were done using OpenGL. The results show that the planner
is able to find paths around spherical obstacles to targets
specified in 3D space. Each of these plans was computed in
under 1 minute on a 2.00 GHz Intel R©CoreTM2 Duo PC with
2 GB RAM.

To evaluate the performance of the method, we ran ex-
periments in five test environments, shown in Fig. 5. For
each test environment, a different random configuration of
six randomly sized obstacles was used in a workspace of
dimension 20cm × 20cm × 20cm. In all experiments, we
used active cannulas with N = 3 concentric tubes with radii
of curvature of r1 = 10cm, r2 = 5cm, and r3 = 2cm.

For these experiments, we set δ = 0.3cm for target
constraint satisfaction and set point spacing a = 0.5cm for
cost computation along the active cannula path. Since the
cost c(u) is computed at every iteration of the optimization
and is one of the most expensive routines, it is crucial
to set a to attain an accurate but relatively inexpensive
parameterization. For numerical stability, µ was only allowed
to increase by a maximum factor of 1000 from its initial
value.

For each test environment, we randomly selected 100
target locations using a uniform distribution inside the boxes
shown in Fig. 5. Sample target coordinates inside obstacles
were removed from consideration. For each target, we solve
the optimization for each of the ten randomly chosen initial
conditions to determine if a solution can be found using any
of them.

We achieved a 100% success rate for reaching the goal and
not colliding with any obstacles. Table I shows the average,
standard deviation, and median time per trial for each of
the five test environments. All tests were run on a 2.00 GHz
Intel R©CoreTM2 Duo PC with 2 GB RAM. The large standard
deviations are caused by the variation in difficulty of the
task for random target positions. For instance, a target that is
obstructed by two obstacles requires more planning time than
a target with no obstructions. Test environment (d) was the
most difficult for the planner because it had many obstacles
surrounding the target region.

VI. Conclusion
In this paper, we propose an optimization-based motion

planning algorithm for active cannulas that computes actions

(a)

(b) (c)

(d) (e)
Fig. 5. Five test environments, each containing 6 obstacles. Targets were
selected randomly using a uniform distribution inside the black boxes;
samples inside an obstacle were removed.

to guide the device to a target point while avoiding obstacles
in the environment. Given the target location, the start
position and orientation, and a geometric representation of
the obstacles, the algorithm computes the insertion length
and orientation angle for each tube of the active cannula such
that the device follows a collision-free path to the target. We
formulated the planning problem as a constrained nonlinear
optimization problem and used a penalty method to convert
this formulation into a sequence of more easily solvable un-
constrained optimization problems. We evaluated the method
for 3-tube active cannulas operating in environments with
spherical obstacles. For five test environments composed of
randomly located spherical obstacles, the method found a
solution 100% of the time. The algorithm typically computes
plans in less than 1 minute on a standard PC.

In future work, we plan to take steps to bring motion
planning for active cannulas closer to clinical application.
The planning algorithm is intended for use in image-guided
procedures where the target and obstacles can be segmented
from pre-procedure images. We plan to extend the imple-
mentation to properly handle obstacles defined by tetrahedral
meshes based on segmented tissue structures. We also plan



TABLE I
Computation times for 100 trials in five random obstacle environments.
All tests were run on a 2.00 GHz Intel R©CoreTM2 Duo PC with 2 GB

RAM.

Test Median Time Mean time σ
Environment (s) (s) (s)
(a) 11.79 15.81 12.46
(b) 13.05 21.01 20.99
(c) 6.33 11.03 17.33
(d) 20.48 295.09 25.51
(e) 0.34 1.38 4.62

to improve the accuracy of our active cannula model by
using the the most recent models which account for bending,
torsion, and arbitrary precurvature functions that are not
required to be circular [24]. We also plan to develop new
motion planning algorithms for active cannulas capable of
finding globally optimal solutions with guarantees on success
rate and to compute plans that consider uncertainty in active
cannula motion and obstacle locations. Finally, we plan to
integrate motion planning for active cannulas with robot
control hardware to automatically guide these devices to
targets while avoiding obstacles.
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