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Abstract— One of the main challenges when creating an
undergraduate introduction to robotics course is connecting
the theory taught in the lectures with the current practices of
research. The primary cause of this difficulty is an inability to
find a hardware solution that is powerful enough to run complex
cutting-edge algorithms yet inexpensive enough to be purchased
by an undergraduate class budget. An ideal system needs to
have a gentle learning curve to allow students with minimal
background in the field to get a robot up and running. Lastly,
a fleet of classroom robots needs to be easy to administrate
and maintain given the limited time of a Teaching Assistant.
Our approach is to implement a centralized server system.
In this system individual robots are inexpensive yet capable
of establishing a WiFi link to a main server so that all the
compilation and system administration, as well as much of the
computationally intensive processing, are done on that server.
We find that this solution saves both time and money and
provides an effective teaching tool. This paper describes the
hardware and software architecture of the system, and example
applications implemented by undergraduate students.

I. INTRODUCTION

For many students, an undergraduate Introduction to
Robotics course represents the first taste of what it would be
like to work in the field. Invariably, one of the main purposes
of such a class is not just to provide a basic knowledge or
content of the history and current state of robotics, but at
the same time to motivate students and instill in them an
excitement for the subject.

A primary means of achieving this important thrust is
through a hands-on laboratory experience that engages stu-
dents to think more deeply about different approaches to
solving a variety of problems faced by roboticists. We
find that laboratory experiences which lead to “moments
of discovery” after a series of trial-and-errors, off-the wall
ingenuity, and a bit of luck make all the difference in
engaging students and making them want to learn even more.
This, we believe, cannot be reproduced by lectures alone, or
even a simulator-based lab.

However, like many universities which have offered these
type of courses [1], [2], [3], [4], in the past ten years the Uni-
versity of Southern California (USC) [5] has offered a cur-
riculum which has focused more on the mechatronics rather
than the computer science aspects of robotics. For example,
previous iterations of the class — using a microcontroller-
based system — could only implement robotic movement
at the level of PWM or PID control and had no facilities
to explore more modern probabilistic approaches to motion.
Our class was structured in this way only because the
university did not possess a suitable hardware platform to
run complex algorithms. Since the course’s creation nearly

ten years ago, the lab curricula has remained fairly static,
while robotics research had progressed considerably, thus
widening the gap between what is taught in the lab and the
state-of-the-art covered in the lectures. Thus, while lectures
could easily be updated to follow the latest advances in
machine vision, probabilistic learning, simultaneous local-
ization and mapping, group robotics, sensor networks, and
neuromorphic algorithms, none of these more advanced and
computationally-intensive techniques could be tested in the
lab. In essence, the lectures were keeping up with the
forefront of research but the lab was stuck at the hobbyist
level.

Prior to our proposed solution, we used LEGO as hardware
building blocks and the relatively low-cost of $250 ($ de-
notes US dollars hereafter) although computationally limited
Handyboard featuring a Motorola HC11 8-bit microprocessor
with 32KB RAM [6] as a computing platform in the class.
Despite the computational limitations of the Handyboard,
new students can learn most of the nuances of programming
them within a three-hour laboratory session through the use
of easily understandable Interactive-C software. Furthermore,
these boards are fairly lightweight, low-power and small in
size, which allows for a smaller, and thus, cheaper robot
locomotion system.

A very different approach which is taken by many uni-
versities [7], [8], [9], [10], [11] is to utilize much more
capable, though expensive (in the range of $3000 to well
above $10,000 per robot) alternatives such as MobileRobots
Pioneer [12], AIBO [13], and Chiara [14] robots for their
undergraduate robotics courses. These robots, which tend
to be larger in size, can carry a full-size laptop as the
designated main computing module. However, these complex
robot systems may not be as easily used by first-year students
or easily maintained by the Teaching Assistant. The ER1
by Evolution Robotics [15] is the most affordable in this
category of solution ($499) as it uses bare-bones 8020
aluminum frame to hold together the locomotion system and
the laptop. Note that the price of the laptop also has to be
accounted for as we cannot assume that students will be
able to provide their own. We decided to forego this type
of solution because we believe that building robots from the
ground up provides a valuable learning experience and a taste
of the cross-disciplinary requirements of the field.

We introduce a robotics system architecture (figure 1),
which is composed of a mobile robot platform that is capable
of communicating with a remote but powerful server. In this
way, the mobile robots are not bound by their own on-board
computational power. By adding seamless communication



Fig. 1. ”Gumbot” Robot Controllers And Server

between server and robot, our system allows the implemen-
tation of much more advanced capabilities than is possible
with isolated systems. Additionally, the centralized server
environment lends itself to easy administration of the whole
system which is an important feature in the classroom. While
the concepts used to implement our system are not new, the
following paper is a case study in designing a state-of-the-
art classroom system and should provide enough details to
allow interested educators to follow suit.

II. DESIGN AND IMPLEMENTATIONS

In this section, we first describe the mobile robot’s on-
board hardware (subsection II-A), and then the software
components which run on that hardware and the centralized
server in the following subsection II-B. The key to the system
is the seamless integration between the two. Thus, we will
touch on communication issues such as establishing reliable
connection with enough throughput for high bandwidth data
such as images from the robot’s camera. In addition, we also
have to ensure that the on-board platform has enough ability
to perform most of the common tasks required for a mobile
system, while relying on the server to execute specialized
computationally intensive algorithms.

A. Mobile Computing Platform

The two tasks of the mobile robot’s on-board computer
are to control the robot and to be able to communicate with
the server. We decided early on to only research platforms
capable of running Linux. This would allow us to use our
in-house expertise to facilitate easy set up of a programming
and administration toolchain, as well as to reduce costs
by utilizing the many open source tools available for this
operating system. Furthermore, because of our familiarity
with the Handyboard controller, we decided to make our
feature wishlist resemble the low-level characteristics of the
Handyboard, but with much more computational power. Our
final feature requirements were as follows:

• Ability to run Linux with little hassle

• Minimum 500Mhz CPU
• USB Connectivity
• 802.11 Connectivity
• 10 Digital I/O
• 10 Analog I/O
• 6 Servo Outputs
• 4 DC Motor Drivers
• 8 - 13V input voltage for use with Ni-Cd batteries
• Cost below $500 per unit
In selecting a mobile platform, we were faced with many

options which were roughly broken into two categories:
microcontroller-based designs, and full-featured CPU-based
designs. Traditional microcontrollers [16], [17] were ruled
out as too limited and cumbersome to handle the types
of algorithms planned for the course. Additionally, there
were no plug-and-play solutions for performing the kind of
wireless communication we envisioned for the architecture.

We then researched many existing CPU-based systems, but
found all to be unsuitable for our exact needs due to factors
such as current consumption [18], limited computational
power [19], or unavailability [20]. The clear winner for our
needs was the Gumstix Verdex [21] (a miniature 600MHz
XScale-powered system), which could be coupled to both
a Robostix board (an I/O board designed around an Atmel
microcontroller), and a WifiStix board (an 802.11g board).
We passed on this design, however, because it lacked both
DC motor drivers and USB connectivity, despite meeting our
other criteria.

To remedy this, we decided to use the Gumstix Verdex
computer board and the WiFiStix, but replace the RobotStix
with a custom interface board to provide the remaining
basic robotics interfaces. A Console-Vx board adds both
USB connectivity as well as easily-accessible header pins to
functions such as I2C and UARTs on the XScale processor.
These header pins were used to provide easy electrical and
mechanical interfaces to the underlying baseboard. In order
to fulfill our remaining requirements the baseboard needed
to be able to drive up to 6 servos, provide up to 10 analog
inputs, and 10 digital I/Os, drive 4 DC motors, as well
as distribute power to the Gumstix and all other peripheral
hardware. Taken together, these components form a system
that we call the Gumbot (see Figures 2 and 3).

Satisfying all of these requirements with the Gumstix
alone would be impossible due to the low number of I/O
pins available. We thus decided to use a microcontroller to
implement the remaining functionalities, which would then
communicate with the Gumstix via a serial link through
the header pins of the Console-Vx board. The Parallax
Propeller [22] was chosen as the microcontroller due to its
impressive computational power (eight 80Mhz cores) and
32 I/O pins. These parallel cores enabled us to quickly
implement the many different functions required without
needing to implement a complex scheduler, and the high pin
count eliminated the need for any kind of I/O multiplexing.

The Propeller is connected to two Texas Instruments
L293N ([23]) 1-Amp dual H-Bridges capable of simultane-
ously driving four of the LEGO motors that are used in our



Fig. 2. Gumbot Data and Power Connections.

classroom. The Propeller also interfaces with three National
Semiconductor ADC0834 ([24]) 8-bit analog-to-digital con-
verters (ADC) with four channels each. These ADCs are
set up to sample voltages between 0 and 5V with optional
pullups to 5V. Digital I/O and servo control is shared between
the remaining twelve pins of the Propeller, and operate with
3.3V output and 5V tolerant input. An onboard 20A DC-DC
switching power supply provides power regulation from any
8V-15V input down to the 5V required by the board and any
attached servos, and a single 3.3V linear regulator provides
power to the Propeller.

The software side of the classroom system consists of three
components:

1) Server side software which allows students to log into
the centralized server, compile code, and run it on their
robots;

2) Software on the Gumbot which is mostly in charge of
interfacing with the physical world (reading sensors,
activating actuators), possibly via the Propeller;

3) A set of software libraries (both server-side and
Gumbot-side), which provide functionality for basic
access to the controller board’s hardware interfaces,
as well as image processing and other advanced func-
tionalities.

1) Server Side Software: The machine designated as the
server is a quad-core 3.6 Ghz Xeon server running Mandriva
2008 with a GNU C++ cross-compilation toolchain set up
for the XScale processor on the Gumstix. Additionally, the

machine runs an SSH server and has user accounts for every
student team in the class. SSH clients are installed on all of
the existing Windows terminals in the lab so that students
can use any of the available machines, or their own laptops,
to log into the server. A source code management system
[25] enables seamless backups of students’ code to an off-
site storage machine and allows for easy updating of shared
code libraries. GNU Make was used to create scripts which
allow the compilation and transfer of student code to their
robots via SCP.

As mentioned above, one of the motivations for using a
centralized server was to be able to provide extended com-
putational power in order to remotely run algorithms which
would otherwise be impossible on an embedded platform. In
our undergraduate class, we like to give the students a broad
overview of many of the available state of the art vision
algorithms. By implementing these algorithms as server-side
applications, we not only offload the computation but also
abstract away the details of the algorithm to a level that is
easily manageable by an undergraduate student. The details
of the actual image transfer from the Gumbot to these server-
side applications are made trivial by an RPC library from
ZeroC called the “Internet Communication Engine”, or “Ice”
[26]. The use of Ice allows us to concentrate solely on the
implementation of the needed algorithms rather than being
burdened by the details of the transport.



Fig. 3. Features of the Gumbot.

B. Software System

1) Robot Side Software: In order to keep Gumbot ad-
ministration as simple as possible, the Gumstix run a light
distribution of Linux 2.6 with an SSH server. Cross compiled
binaries are transferred to the boards via SCP from the server,
and are then run remotely through an SSH connection. All
of this communication takes place over an 802.11g WiFi
connection so that robots may be left on the lab floor while
students program them and monitor their programs’ output
from their desks. Additionally, the Gumstix is loaded with
a USB camera driver so that students may acquire images
from commonly available webcams.

To perform physical actions, the Gumstix sends control
words over a serial connection to the attached Propeller
microcontroller. The Propeller is running very simple soft-
ware which waits for control words from the Gumstix, and
on receiving a valid command executes the proper action
and returns a value if one was requested. Example serial
commands include setting a motor speed, setting a digital
output, or requesting a voltage reading from one of the
analog to digital converters. More complex functionalities
were also implemented allowing easy communication with
some of the common sensors that we use in the classroom
such as compasses and sonars.

2) Software Libraries: In order to concentrate students’
lab time on the development of robotics algorithms, a set of
C++ software libraries was written to abstract away many of
the details of the hardware. A single C++ class encapsulates
simple methods for accessing all necessary functionality of
the robot. Additionally, a sophisticated Image class allows
easy access and manipulation of image data, including
many built-in primitive image processing operations (see
http://iLab.usc.edu/toolkit/).

For example, the following code demonstrates the simplic-
ity of writing a program for the Gumbot. In this program, we

turn the robot, access the commonly used sonar and compass
sensors, and grab an image from an attached USB webcam.
Then, we run a visual saliency algorithm, which analyzes the
image along several multiscale feature dimensions thought
to exist in the primare brain, to find the most “interesting”
point in the image. The algorithm used for this computation
is an implementation of Itti et al.’s model [27]. Because
this algorithm is computationally intensive (12 multiscale
image pyramids are created for each input image), we offload
the processing to the central server, yet the details of this
are hidden from the user. This function call shows both
the simplicity and power afforded by the centralized server
architecture.

#include "gumbot/Gumbot.H"
int main()
{

Gumbot g;

//Set motor 0 to 75% power forwards,
//and motor 1 to 100% power backwards
g.setMotor(0,75);
g.setMotor(1,-100);

//Get a heading from a CMPS03 compass
//connected to pin 1
int heading = g.getCompass(1);

//Get a distance from an SRF04 sonar
//connected to pins 2 and 3
int distance = g.getSonar(2,3)

//Grab a new image from the
//USB webcam, draw a red pixel
//in the middle, and send it to a
//server side application for display
Image<PixRGB<byte> > img;
img = g.getImage();
img.setVal(img.getWidth()/2,

img.getHeight()/2,
PixRGB<byte>(255,0,0)

);
g.displayImage(img);

//Ask the server to compute saliency
//(Itti & Koch, 2001) on the image,
//and return the location of the
//most salient point.
Point2D<int> p =
g.getSalientPoint(img);

return 0;
}

In order to compile and run an application like the one
written above, a student needs only to:

1) SSH into the server



Fig. 4. Students completing coursework with the Gumbot and Server in the lab.

2) Write the above code in their favorite text editor or
IDE

3) Compile the code using a provided makefile by typing
make

4) Transfer the compiled binary to robot by typingmake
install

5) Run the program by executing a shell script gen-
erated automatically by the makefile by typing
./run MyProgramName

The shell script generated by the makefile opens an SSH
connection to the Gumbot and executes the binary that was
created in step 4.

III. EVALUATIONS

In the first semester of using this system, we found
both the hardware and the software components to have
exceeded our expectations in easing the job of teaching
robotics algorithms. The Gumbot boards were very stable
and hassle free. For example, the high efficiency DC-DC
converters allow for a very good runtime. During normal
operation, the board draws only∽1 Amp, giving students
up to 2 hours of runtime using 2000mAh NiCad batteries.
The on-board WiFi connection proved to be indispensable

for both programming the robots wirelessly and for printing
out debugging information during testing.

Architecturally the system worked very well, as the cen-
tralized server allowed for an extremely fast initial setup. The
process of installing Linux and the GNU cross-compiling
toolchain, as well as setting up the necessary user accounts
took only a day. Administration of the class was equally easy,
as all user accounts were accessible from a privileged teacher
account. A few shell scripts were all that were required to
update the software on all user accounts, and such updates
could be performed in minutes. Having only one set of
shared libraries eliminated any potential versioning problems
that could arise from trying to create build environments on
multiple machines, and any problems that were found could
be fixed on all user accounts simultaneously.

Because of the increased power and flexibility of the
system over our old Handyboard based lab, we were able
to vastly increase the scope of material that was covered.
The first lab session taught the basics of DC motor control,
and had the students implement PWM bit-banging directly
on the Propeller microcontroller. By the second lab session,
the students had learned the details of the server compilation
system and were able to write code for the Gumstix to drive



their robots around the classroom remotely. Over subsequent
lab sessions, the students learned and implemented concepts
in both control theory and sensor filtering. We then moved
on to cover basic image processing, in which the students
developed their own blob tracking algorithms which they
used to follow various objects around the classroom. The
final assignment in the lab was to implement a grid-based
Bayesian Markov localization algorithm to localize and nav-
igate their robots in an arena on the floor of the classroom.

The cost of the system consists of the price of the server,
a WiFi router and the Gumbots. The Additional costs of
terminals to log into the server, sensors, and LEGO parts
to build physical robots are left out as they are outside the
scope of this paper, and independent from the system we
have described. The cost of an individual Gumbot is:

• Gumbot: $377 each

– Carrier Board PCB: $11
– Carrier Board Components: $93
– Gumstix Verdex Pro XL6P: $169
– Gumstix Console VX: $25
– Gumstix WiFiStix: $79

The exact specifications of the server are determined by
the unique needs of a class. In particular, the number of
students in the class will determine how powerful a server
is necessary. In our case we had 5 groups (robots) per lab
session, and a quad-core Xeon 3.6 GHz machine with 4GB
of RAM and a 200GB harddrive was more than sufficient.
Such a machine typically runs in the $1500 range.

IV. CONCLUSIONS AND FUTURE WORK

While the system is currently fully usable, there are
many additions and modifications that are planned for the
future. The current Gumbot boards are only a first pass,
and there are a few minor kinks that will be worked out
in the next revision. For example, a few of the mechanical
interfaces on the boards ended up being a source of trouble
as the connectors chosen proved quite fragile for every day
classroom use. The main structure of the boards was quite
robust, however, and was shown to be more than capable of
the demands we required. If time and funding allow, we plan
to build a new version of the boards based on Gumstix’s new
Overo platform [21]. The design of the board will remain
similar, but the new Overo modules will allow us to decrease
size and costs as well as provide a direct image sensor
interface and an upgrade to USB 2.0. The Overo modules
can also have a much sturdier mechanical connection to the
Gumbot main board due to their connector layout.

On the software side, we plan to make only additions to
the system in the form of more image processing modules
to be run on the server. Currently in the works are a SIFT
[28], gist [29], face detector, and shape recognizer modules,
but more will be developed as the lab curriculum matures.
The main benefit of these modules is that it allows us to
brush on advanced topics in vision and allow the students to
get a feel for the tools without necessitating a level of detail
inappropriate for an undergraduate class.

Importantly, we found that this new platform has also
allowed us to significantly enhance the lecture portion of our
class. This was not only achieved by allowing the students
to gain hands-on experience with algorithms covered in
the lectures, but also by introducing students to modern
computer science tools used in today’s robotics research.
Indeed, an ancilliary benefit was to present a more modern
view of robotics, which is closer to the research state-of-the-
art and farther removed from hobbyist-grade microcontroller
hacking. Namely, students spent little time worrying about
microcontroller or assembly-code details, except during an
introductory lecture to the Propeller. In further lectures,
students were exposed to a robotics platform that employs
distributed Linux-based computing, cross-compiling, remote-
login into your robot, wireless communications, the Ice
transport library, using a central source code versioning sys-
tem, makefiles, the C++ Standard Template Library, etc. We
believe that using these essential computer science tools on
a robot provides a drastically different perspective, whereby
classroom robots become powerful computing machines with
sufficient brainpower to support high-level algorithm design
using modern tools, rather than being limited to spinal-cord-
grade algorithms designed using low-level tools on limited-
computation microcontrollers.
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