
Traffic Control for a Swarm of Robots: Avoiding Target Congestion

Leandro Soriano Marcolino and Luiz Chaimowicz

Abstract— One of the main problems in the navigation of
robotic swarms is when several robots try to reach the same
target at the same time, causing congestion situations that
may compromise performance. In this paper, we propose a
distributed coordination algorithm to alleviate this type of con-
gestion. Using local sensing and communication, and controlling
their actions using a probabilistic finite state machine, robots
are able to coordinate themselves to avoid these situations.
Simulations and real experiments were executed to study
the performance and effectiveness of the proposed algorithm.
Results show that the algorithm allows the swarm to have a
more efficient and smoother navigation and is suitable for large
groups of robots.

I. INTRODUCTION

The use of large groups of simple and inexpensive robots

to perform complex tasks has become an important research

topic in robotics. Generally called swarms, these groups

bring several advantages over single robot solutions. The

division of work among the team generally improves the effi-

ciency of the system. Moreover, robustness is also increased,

since with a large number of robots it is easier to have

redundancy and therefore to design fault-tolerant systems.

However, there are many challenges when working with

swarms of robots. Generally, they must work in a distributed

fashion and use limited communication resources. Hence,

new algorithms must be developed to coordinate these large

groups of robots.

A key requirement for swarms is to be able to efficiently

navigate in different scenarios. One of the main challenges

in swarm navigation is congestion: a large number of robots

moves towards the same region of the environment in the

same time interval, causing conflicts that waste time and

resources. This problem may appear when groups of robots

move in opposite directions and encounter while navigating

or when a specific region is a target for many robots.

This second case, in particular, appears very often. For

example, during waypoint navigation there might be a critical

waypoint that will be used by many robots. Particularly,

in the methodology proposed in [1], we observed several

congestion situations as robots had to navigate through the

same waypoints to overcome local minima. Other poten-

tial conflicting targets in swarm navigation may include a

recharge station to which several robots need to move at

the same time or some narrow passage that only allows few

robots at a time.

This work is partially supported by Fapemig and CNPq. The authors
would like to thank Renato Garcia for his help with the localization system
and the development of the epuck driver.

The authors are with the Vision and Robotics Laboratory (VeRLab),
Computer Science Department, Federal University of Minas Gerais, Brazil.
emails: {soriano,chaimo}@dcc.ufmg.br

However, this problem is not easy to solve. In general

scenarios, robots may come from any direction, making so-

lutions based in delimited lanes (such as roads and crossings)

not applicable. Besides, as fault-tolerance is desirable, it

is not a good idea to have a centralized server or design

leaders to coordinate the movement towards the goal. But

unfortunately, without a centralized server, it is harder to

find an adequate time schedule for all robots. Common

solutions for shared resources, such as a token ring, may

be not feasible since robots are constantly moving and have

a limited communication range. Regular collision avoidance

algorithms do not solve the problem either, because avoiding

collisions does not mean avoiding congestions. So, even

using collision avoidance algorithms, we can still have

performance problems when a large number of robots must

navigate to a common target. As can be seen, it is necessary

to design a robust and decentralized solution that does not

depend on a structured environment. Moreover, the solution

must be efficient and guarantee that eventually all robots will

reach the target, i.e., there will be no deadlock situations.

Hence, the objective of this paper is to investigate and

develop methodologies to control the traffic of large groups

of robots when they are moving to a common target in

unstructured environments. We propose a distributed coor-

dination algorithm that makes some robots wait while others

move towards the common target, alleviating congestion and

improving performance. Robots control their actions using a

probabilistic finite state machine and rely on local sensing

and communication to coordinate themselves. We analyze

the performance of the algorithm and show its effectiveness

by executing a series of experiments using both a simulator

and a group of real robots and also develop proofs that

the algorithm is able to solve the proposed problem. In

a companion paper [2], we also developed a solution for

the congestion situation where groups of robots move into

opposite directions.

II. RELATED WORK

The traffic control problem is an important research topic.

In [3], it is characterized as a resource conflict problem and

the importance of its study is emphasized. Works dealing

with traffic control started to appear in the late 1980s. In [4],

for example, many policies are presented to avoid congestion

of robots in a factory, and in [5] traffic rules are shown to

navigate a group of robots. In general, these works assume

that the robots navigate in delimited lanes (like streets or

roads). These lanes meet in intersections, where congestion

may happen. The traffic control, in general, is executed only

in these intersections.







IV. ANALYSIS

In this section we are going to analyze some aspects

of the proposed algorithm. First, we are going to prove

two important characteristics: (i) the system is effective in

preventing that many robots go to the target at the same time

interval (ii) all robots eventually go to the target.

Before developing the proofs, we need to find an appro-

priate model for the system. The situation in which a waiting

robot might change its state to impatient with a probability

ρ > 0 or remain in the waiting state with a probability 1−ρ

can be considered a Bernoulli trial. Therefore, the number

of robots that will change their state to impatient in a set of

n waiting robots can be modeled as a binomial distribution.

Let X be a random variable that defines the number of robots

that changes their state to impatient and Pr(X) be the mass

distribution function of the binomial distribution with n trials

and probability ρ.

The robots are not necessarily synchronized, but the inter-

val between attempts to change state is approximately equal

for all robots. Hence, we will consider that, in a given time

interval, all waiting robots will make exactly one attempt to

change state. This time interval will be called an iteration.

Proposition 1: Given a set of n waiting robots, the prob-

ability that r robots go to the target at the same iteration

converges to zero as r gets higher.

Proof: The probability that the number of robots that

will change their state to impatient in a given iteration is

higher than r is given by 1 − Pr(X ≤ r). The second term

is the cumulative distribution function of the binomial, that

tends to 1 as r increases. Hence, this clearly tends to zero.

Therefore, we showed that the system is effective in

preventing that many robots go to the target at the same time

interval. Now we are going to show that all robots eventually

go to the target.

Proposition 2: Given a set of n waiting robots, the prob-

ability that all robots remain in the waiting state converges

to zero as the number of iterations gets higher.

Proof: The probability that all robots will remain in the

waiting state is given by Pr(X = 0). After m iterations, the

probability that all robots will remain in the waiting state is

given by Pr(X = 0)m, which clearly tends to zero as m

gets higher since Pr(X = 0) < 1.

We did not consider locked robots in our analysis because

they will eventually move after waiting or locked robots in

their α-area move. We can model this situation as a directed

graph, showing the dependencies between the robots. A robot

can depend on robots in front of it to move, but cannot

depend on robots behind it (given that alphal < 90o).

Besides, all the α-areas of the robots are directed towards

the same target, avoiding situations where an indirect cycle

would be formed. As we can see, there is no cycle in the

graph dependency, thus no deadlock situations will happen.

It is also important to discuss some aspects concerning

the selection of the parameters. One of the most important

parameters in the definition of the system behavior is ρ,

the probability that a robot will leave the waiting state. If

it is low, the system will be “conservative” and robots might

remain stationary longer than necessary. If it is high, the

system will be “aggressive” and congestion situations might

happen. Between these two extremes, there is a value that

will minimize the time needed for task execution. This point

can be estimated by an experimental evaluation. As a general

guideline, if the designer expects a large number of robots

trying to reach a certain target, it is better to use a smaller

value of ρ. If the designer expects a small number of robots

trying to reach a certain target, it is better to use a larger

value of ρ.

As for the size of the free region, if it is small we might

have a lot of waiting robots too near the target, which makes

it more difficult for other robots to reach and leave the target

region. If it is large compared to the size of the danger

region, the area in which robots might change their state

to waiting will be small and congestions might happen. A

similar analysis can be made for the size of the danger

region. If it is large, robots that are far away from the target

will unnecessarily give up their attempt to reach it. If it is

small we will not have enough waiting robots to decrease the

congestion problem, and they might stop too near the target,

making the movement of normal and impatient robots harder.

So it is necessary to find a good compromise point.

V. EXPERIMENTS

We ran a series of simulations and real experiments

to study the performance and feasibility of the proposed

algorithm. For the simulations, we used the Player/Stage

framework [14], a well known framework for robotics

programming and simulation. The real experiments were

performed using a dozen e-puck robots. The e-puck is a

small-sized (7cm diameter) differential drive robot that is

very suitable for swarm experimentation [15]. Each robot is

equipped with a ring of 8 IR sensors that allows proximity

sensing and a group of colored LEDs to indicate robot status.

Local processing is performed by a dsPIC microprocessor

and a bluetooth wireless interface allows robot to robot

communication and remote control. Figure 4 shows the

robots used in the experiment.

Fig. 4. Dozen e-puck robots used in the experiments.

In our experiments, robots were controlled using a com-

mon potential field algorithm: an attractive force moved them

towards the goal while local repulsion forces were used to

avoid collisions among the group. We decided to use that

collision avoidance technique because it is very common in

works dealing with a large number of robots, for example

[16], [17], [18]. However, the coordination method could be

tested with other controllers, as it does not directly depend



30 35 40 45 50 55 60 65 70 75
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

Number of Robots

N
u

m
b

e
r 

o
f 

It
e

ra
ti
o

n
s

 

 

Not Coordinated

Coordinated

Fig. 5. Time used by both algorithms. The bars show the confidence
interval of the results, with 95% level of confidence.

on potential fields to work. Both in simulations and in real

experiments we used non-holonomic robots, with a control

equation similar to the one presented in [19].

A. Simulations

In order to evaluate the proposed coordination algorithm

we ran a series of simulations using the algorithm (Coord)

and not using it (NotCoord). We consider a scenario where

robots should move to a common target and leave in another

direction after that. In every execution, the robots were

randomly positioned in the scenario outside the danger and

the free region. We varied the number of robots and measured

the execution time and the number of messages sent. As a

measure of time, we used the number of iterations necessary

for the last robot to reach the target. Each simulation was run

20 times and the mean results were considered. We used the

following values for the main constants: δ = 2m, ǫ = 25,

γ = 3.5m, σ = 1.5m, αw = 95o, αl = 45o, η = 40,

ρ = 0.15.

Figure 5 shows the execution time for a varying number

of robots. As can be observed, the proposed algorithm has

a better performance when the number of robots increases.

In fact, we executed a t-test that showed that the Coord

algorithm was better in all analyzed points with more than

42 robots with 95% level of confidence. The performance

improvement reached 20% with the use of the proposed

algorithm. We also computed the standard deviation of the

results, which showed that with more than 42 robots the

Coord algorithm has a smaller deviation from the mean.

In Figure 6 we can see the number of messages used by the

proposed algorithm for a varying number of robots. The best

model found for the curve was the quadratic y = 0.5107x2+
7.4987x− 30.2645, with a coefficient of determination (R2)

of 0.9964. Although the model is a quadratic function, we

can see that the quadratic term is small. This result shows

that the algorithm scales well and is suitable for large groups

of robots.

A visual log of one simulation with 48 robots is presented

in Figure 7. Robots are represented by different shapes

according to their states: normal (+), waiting (◦), locked

(△) and impatient (×). Robots in the normal state that have

30 35 40 45 50 55 60 65 70 75
500

1000

1500

2000

2500

3000

3500

Number of Robots

N
u

m
b

e
r 

o
f 

M
e

s
s
a

g
e

s

 

 

Data

Quadratic Model

Confidence Interval

Fig. 6. Number of messages sent for a varying number of robots. The
confidence interval corresponds to a level of confidence of 95%.

already reached the target and are moving to another one are

represented by the symbol (*). The outer circle represents the

danger region while the inner one represents the free region.

As can be observed, the waiting robots form a barrier in the

danger region, while the locked robots tend to wait outside

that region. That enabled all robots to reach the target in a

smoother fashion, as the number of disputes is a lot smaller

in comparisson to the no coordinated version.

B. Real Robots

As mentioned, we also tested the proposed algorithm using

a dozen e-puck robots. These experiments are important to

show the feasibility of the algorithm in real scenarios, with

all the uncertainties caused by sensing and actuation errors,

communication failures, etc.

To simplify the implementation, we used a localization

system specifically designed for swarm localization in indoor

environments [20], although, as mentioned, the algorithm

does not depend on global localization. Also, as the IR sen-

sors of the e-pucks have a very small range, we implemented

a virtual sensor based on the localization system to detect

neighbors.

We ran many scenarios, varying the initial position of

the robots and the value of parameter ρ. The sequence of

snapshots of one execution can be seen in Figure 8 (a short

video is accompanying the paper). E-pucks with all LEDs

on are in the waiting or locked state, while e-pucks with all

LEDs off are in the normal or impatient state. The graphs

on the bottom depict the robots’ positions and states, as well

as the danger and the free regions, as in Section V-A. We

used the following values for the main constants: δ = 0.18m,

ǫ = 2, γ = 0.3m, σ = 0.1m, αw = 115o, αl = 45o, η = 60,

ρ = 0.045.

Twelve e-pucks are distributed around the target region

(indicated by a small mark in the snapshots) in groups of

three. After reaching the common target, each robot must

move to its own individual target in the upper or bottom side

of the scenario. In Figure 8(a) we can see the initial position

of the robots (numbered from 1 to 12). Upon entering the

danger region, robots change their state to waiting (◦) as

soon as they detect another robot with the same target in



−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

(a)

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

(b)

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

(c)

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

(d)

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

(e)

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

(f)

Fig. 7. Simulation results using the coordination algorithm.

their α-area (Figure 8(b)). Robot 10 changes its state to

impatient (×), and starts moving towards the target (Figure

8(c)). Robots 3 and 6, which are outside the danger region,

upon detecting waiting robots in their α-area, change their

state to locked (△) (Figure 8(d)). Their state change back to

normal (+) only when they detect no other waiting robots

in their α-area (Figure 8(e)). As time passes, robots change

their state to impatient and approach the target (Figure 8(f)).

Soon, many of them succeed at reaching the common target

(*) and are heading towards their second objective (Figure

8(g)), leading to the final state where all robots completed

the specified task (Figure 8(h)).

As can be seen, using the proposed algorithm the robots

were able to complete the task in a smooth and efficient

manner. The total time of this execution was 7 minutes. We

also ran the same scenario using only local repulsion forces,

which needed 9 minutes for a complete task execution. Thus,

the convergence time gain was 22%, a better result from what

we found in the simulations, as it was achieved with a smaller

number of robots. With more robots, the convergence time

gain might be even better. Therefore, these proof of concept

experiments indicate that the algorithm can work well to

coordinate a swarm of robots, allowing them to smoothly

reach a common target.

VI. CONCLUSIONS

In this work, we proposed an algorithm to control the

traffic of a swarm of robots, avoiding congestion situations.

We focused on the case where many robots try to reach the

same target, a situation that often appears in robotics.

To study the algorithm, we mathematically proved its effi-

cacy and executed simulations and real experiments. We ran

executions with and without the proposed algorithm in order

to evaluate the impact of its presence. The results showed

that, besides allowing a smoother navigation, the proposed

algorithm has a better performance when the number of

robots increase. We noticed a quadratic tendency in the

number of messages used by the algorithm, but the quadratic

term was small. We believe, therefore, that this algorithm is

scalable to a large number of robots. Real experiments were

successfully executed with a dozen e-puck robots, showing

the effectiveness and applicability of the proposed approach.

We intend to investigate the common target problem

even further, and improve the algorithm to obtain lower

convergence times. Specifically, we noticed that sometimes

robots that already reached the common target have difficulty

leaving the danger region because of conflicts with other

robots. A better coordination in this situation might lead to

even higher improvements in the common target case.

REFERENCES

[1] L. S. Marcolino and L. Chaimowicz, “No robot left behind: Coordina-
tion to overcome local minima in swarm navigation,” in Proceedings of

the 2008 IEEE International Conference on Robotics and Automation,
2008, pp. 1904–1909.

[2] ——, “Traffic control for a swarm of robots: Avoiding group con-
flicts,” in Proceedings of the 2009 IEEE International Conference on

Intelligent Robots and Systems, 2009.

[3] U. Y. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile
robotics: Antecedents and directions,” Autonomous Robots, vol. 4,
no. 1, pp. 7–23, March 1997.

[4] D. Grossman, “Traffic control of multiple robot vehicles,” Journal of

Robotics and Automation, vol. 4, pp. 491–497, 1988.

[5] S. Kato, S. Nishiyama, and J. Takeno, “Coordinating mobile robots
by applying traffic rules,” in Proceedings of the IEEE International

Conference on Intelligent Robots and Systems, 1992.

[6] K. Dresner and P. Stone, “Multiagent traffic management: an improved
intersection control mechanism,” in AAMAS ’05: Proceedings of

the fourth international joint conference on Autonomous agents and

multiagent systems. New York, NY, USA: ACM, 2005, pp. 471–477.

[7] K. Viswanath and K. M. Krishna, “Sensor network mediated multi
robotic traffic control in indoor environments,” in Proceedings of the

International Conference on Advanced Robotics, 1997.

[8] Y. Ikemoto, Y. Hasegawa, T. Fukuda, and K. Matsuda, “Zipping, weav-
ing: Control of vehicle group behavior in non-signalized intersection,”
in Proceedings of the 2004 IEEE International Conference on Robotics

and Automation, New Orleans, USA, 2004, pp. 4387–4391.

[9] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,” in
SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers. New York, NY,
USA: ACM, 2006, pp. 1160–1168.

[10] K. M. Krishna and H. Hexmoor, “Reactive collision avoidance of
multiple moving agents by cooperation and conflict propagation,” in
Proceedings of the 2004 IEEE International Conference on Robotics

and Automation, 2004, pp. 2141–2146.




