Traffic Control for a Swarm of Robots: Avoiding Target Congestion

Leandro Soriano Marcolino and Luiz Chaimowicz

Abstract— One of the main problems in the navigation of
robotic swarms is when several robots try to reach the same
target at the same time, causing congestion situations that
may compromise performance. In this paper, we propose a
distributed coordination algorithm to alleviate this type of con-
gestion. Using local sensing and communication, and controlling
their actions using a probabilistic finite state machine, robots
are able to coordinate themselves to avoid these situations.
Simulations and real experiments were executed to study
the performance and effectiveness of the proposed algorithm.
Results show that the algorithm allows the swarm to have a
more efficient and smoother navigation and is suitable for large
groups of robots.

I. INTRODUCTION

The use of large groups of simple and inexpensive robots
to perform complex tasks has become an important research
topic in robotics. Generally called swarms, these groups
bring several advantages over single robot solutions. The
division of work among the team generally improves the effi-
ciency of the system. Moreover, robustness is also increased,
since with a large number of robots it is easier to have
redundancy and therefore to design fault-tolerant systems.
However, there are many challenges when working with
swarms of robots. Generally, they must work in a distributed
fashion and use limited communication resources. Hence,
new algorithms must be developed to coordinate these large
groups of robots.

A key requirement for swarms is to be able to efficiently
navigate in different scenarios. One of the main challenges
in swarm navigation is congestion: a large number of robots
moves towards the same region of the environment in the
same time interval, causing conflicts that waste time and
resources. This problem may appear when groups of robots
move in opposite directions and encounter while navigating
or when a specific region is a target for many robots.
This second case, in particular, appears very often. For
example, during waypoint navigation there might be a critical
waypoint that will be used by many robots. Particularly,
in the methodology proposed in [1], we observed several
congestion situations as robots had to navigate through the
same waypoints to overcome local minima. Other poten-
tial conflicting targets in swarm navigation may include a
recharge station to which several robots need to move at
the same time or some narrow passage that only allows few
robots at a time.

This work is partially supported by Fapemig and CNPq. The authors
would like to thank Renato Garcia for his help with the localization system
and the development of the epuck driver.

The authors are with the Vision and Robotics Laboratory (VeRLab),
Computer Science Department, Federal University of Minas Gerais, Brazil.
emails: {soriano,chaimo}@dcc.ufmg.br

However, this problem is not easy to solve. In general
scenarios, robots may come from any direction, making so-
lutions based in delimited lanes (such as roads and crossings)
not applicable. Besides, as fault-tolerance is desirable, it
is not a good idea to have a centralized server or design
leaders to coordinate the movement towards the goal. But
unfortunately, without a centralized server, it is harder to
find an adequate time schedule for all robots. Common
solutions for shared resources, such as a token ring, may
be not feasible since robots are constantly moving and have
a limited communication range. Regular collision avoidance
algorithms do not solve the problem either, because avoiding
collisions does not mean avoiding congestions. So, even
using collision avoidance algorithms, we can still have
performance problems when a large number of robots must
navigate to a common target. As can be seen, it is necessary
to design a robust and decentralized solution that does not
depend on a structured environment. Moreover, the solution
must be efficient and guarantee that eventually all robots will
reach the target, i.e., there will be no deadlock situations.

Hence, the objective of this paper is to investigate and
develop methodologies to control the traffic of large groups
of robots when they are moving to a common target in
unstructured environments. We propose a distributed coor-
dination algorithm that makes some robots wait while others
move towards the common target, alleviating congestion and
improving performance. Robots control their actions using a
probabilistic finite state machine and rely on local sensing
and communication to coordinate themselves. We analyze
the performance of the algorithm and show its effectiveness
by executing a series of experiments using both a simulator
and a group of real robots and also develop proofs that
the algorithm is able to solve the proposed problem. In
a companion paper [2], we also developed a solution for
the congestion situation where groups of robots move into
opposite directions.

II. RELATED WORK

The traffic control problem is an important research topic.
In [3], it is characterized as a resource conflict problem and
the importance of its study is emphasized. Works dealing
with traffic control started to appear in the late 1980s. In [4],
for example, many policies are presented to avoid congestion
of robots in a factory, and in [5] traffic rules are shown to
navigate a group of robots. In general, these works assume
that the robots navigate in delimited lanes (like streets or
roads). These lanes meet in intersections, where congestion
may happen. The traffic control, in general, is executed only
in these intersections.

More recent works can be found both in the cooperative
robotics field and in the multi-agent systems field. Some
works use a manager agent to administrate the traffic at
intersections where congestion may happen, as in [6]. A
similar approach, in the robotics field, can be seen in [7],
where a sensor network is used to coordinate the traffic
of a group of robots. Others are working in manager free
scenarios, as in [8], which presents a completely distributed
algorithm that, based on a spatial temporal pattern, coordi-
nates the movement of robots into intersections or junctions.
However, these methods do not solve the problem discussed
in this paper. In the common target case, robots may arrive
from and depart to any direction. Besides, this target can
be located in any place of an unstructured environment, not
only in fixed locations such as intersections or junctions.

In [9], a mechanism is proposed to avoid congestion
in crowd simulations. The authors propose an approach in
which agents plan early to avoid a congestion, enabling
smoother trajectories than when using local repulsion forces.
The method, however, is too centralized to be used with a
swarm of robots. Besides, it focuses on the case where agents
move in opposite directions, not on the case where many
robots try to reach the same target.

Instead of dealing with traffic control, there are works that
try to find more efficient approaches to collision avoidance
than using local repulsion forces. In [10], an algorithm is
proposed in which robots coordinate their velocities in order
to avoid a collision. The coordination may entail not only
the robots directly involved in the probable collision, but the
robots in the neighborhood as well, which might have to
change their velocities to help the robots involved. Other
works that deal with collision avoidance are [11], [12].
However, as mentioned, collision avoidance algorithms may
not be sufficient for preventing congestion situations mainly
when a large number of robots converge to the same place.
Hence, even with a good collision avoidance behavior, the
system may still become cluttered and inefficient.

Therefore, although there are many works dealing with
traffic control and collision avoidance, to the best of our
knowledge there is no algorithm that deals directly with
the proposed problem, in which many robots converges to
a common target in a unstructured environment and must
coordinate themselves in a distributed, robust and fault-
tolerant fashion. This problem often happens in swarm
navigation, for example, when they are using waypoints.
We propose a decentralized coordination mechanism based
on a probabilistic finite state machine that allows a swarm
of robots to prevent congestion in waypoint navigation,
without assuming the use of delimited lanes nor needing an
external infra-structure to control the traffic. This is the main
contribution of this paper.

III. METHODOLOGY

The general idea of the coordination algorithm is to force
some robots to wait while others converge to the target.
Therefore, a small number of robots try to reach the same
target at the same time, decreasing the congestion problem.

IMPATIENT

Fig. 1. Probabilistic finite state machine showing the possible states and
transitions for each swarm member.

Note that we will not prevent that two or more robots head
towards the target at the same time interval, we only want to
reduce the number of robots that try to do it simultaneously.
With few robots at the target region, common collision
avoidance techniques are able to work accordingly.

We modeled our solution as a Probabilistic Finite State
Machine [13], in which edges are annotated with proba-
bilities that define which transition will be taken. Figure
1 shows the probabilistic finite state machine used in this
paper. As can be seen, robots in the swarm can be in one of
four different states: normal, waiting, locked and impatient.
From the waiting state, the robot can switch to the impatient
state with probability p > 0 or stay on the same state with
probability 1 — p.

We will begin by explaining general ideas about the
algorithm and making some necessary definitions. We define
a free region as a circular region with radius o around the
target. Around this region, we define a danger region as
a ring-shaped region with inner radius ¢ and outer radius
~. The general idea is that the robots that reach the danger
region will coordinate so that only few of them will enter the
Jree region at the same time. Upon entering the free region,
robots will move straight to the target.

We also define a sub-area in the robot’s sensor region as
an o-area. Considering a coordinate system centered at the
robot’s position with the y axis pointing towards the target,
the a-area will be defined by the circular sector [—a, «]
centered in y with radius 6 (see Figure 2). As will be
explained later in this section, this «-area will be used to
detect other robots that may interfere with the navigation to
the target.

We consider that a robot is able to detect the presence
of another and avoid collisions when the distance between
them is lower than 6. Every time that a robot, ¢, detects the
presence of another, 7, it sends a message saying its target
and its current state. In order to decrease the number of
messages, each robot can send only one message informing
its target at every e iterations. Moreover, a robot will only
send a message if it is inside the danger region or if it is in
the locked state.

The coordination algorithm works as follows: a normal
robot, 7, moves in the direction of the target while avoiding
collisions. When it is in the danger region and detects
another robot, 7, it will check if that robot is within its «-
area and if they have the same target. The constant o used
in the area verification will be called «,,. If both conditions

sTarget

Fig. 2. Sensing area («-area) considered by a robot to change its state.

are true, j will change its state to waiting. This situation can
be seen in Figure 3(a).

A waiting robot will not move in the direction of the target.
It will try to remain stationary in the point where it changed
its state while at the same time avoiding collisions. Avoiding
collisions must have a higher priority than staying at the same
place where it changed state; we only want to prevent that
the robot changes too much its position due to the influence
of other robots. At every 7 interactions, a waiting robot will
check if it can change its state. As mentioned, the robot will
change its state to impatient with probability p and will keep
its state in waiting with probability 1 — p.

A normal robot may also change its state to locked. This
happens when the robot detects a waiting or a locked robot
with the same target as its own. However, this time the robot
can change its state even outside the danger region. In this
case, the a-area is narrower, i.c., a smaller « is used to check
whether a certain neighbor should be considered to change
the robot’s state. We will call this value «;. This situation can
be seen in Figure 3(b) and (c), where robot k& stops moving
in the direction of the target because robot j is in the waiting
state in the «-area of k. In the locked state, the robot behaves
in the same way as a waiting robot: it will not move in the
direction of the target. However, the transition from this state
does not depend on probabilities. A locked robot will switch
back to normal when there are no more waiting or locked
robots in its a-area.

Finally, an impatient robot moves in the direction of
the target, in a similar way as a normal robot. However,
an impatient robot will not stop anymore, i.e., it cannot
change its state to waiting nor locked. Only after the robot
reaches the target, it will change its state back to normal.
This situation can be seen in Figure 3(d), where robot j
resumed its movement towards the target in the impatient
state. Moreover, robot k£ changes its state to normal and also
starts to move in the direction of the target. We can see in the
figure that other robots changed their state to waiting upon
reaching the danger region and, therefore, will not impose
difficulties for robot j to reach the target and leave its region,
enabling a smoother navigation.

We can use an analogy with a car traffic jam to better
understand the algorithm. Consider a five lane highway,
in which a mud slide closed four lanes. The first cars
approaching the region will stop (enter the waiting state).
Eventually, one of them will get impatient and pass first.

(d

Fig. 3. Steps of the execution of the proposed coordination algorithm.
Green (dark) robots are in the waiting or locked states. The arrows indicate
message transmission.

We can consider this decision as a random process, in which
each driver has a probability p of getting impatient. The other
cars coming on the highway will see the first cars stopped
in front of this accident and will also stop (enter the locked
state) forming several lines. As the cars on the front row pass
through the single lane, the locked cars move forward and
approach the accident, waiting their turn to go through the
single lane. This type of approach works without the need
of a traffic guard or any kind of centralized mechanism.

It is important to mention that the proposed coordination
algorithm does not depend on the knowledge of the global
position of the robots. A robot only needs to know the
direction and the distance to its target in order to detect
whether it is in the danger region or in the free region,
and must be able to locally sense if a neighbor is in its a-
area. As this algorithm is an improvement on methods where
robots must move towards a target, they would already have
an estimate of the direction and distance to the target in
order to be able to converge to it. The robots could estimate
it using an on-board sensor such as a stereo camera or a
laser. Therefore, the coordination algorithm does not impose
additional requirements to the system besides the ability to
locally sense and communicate with neighbors.

IV. ANALYSIS

In this section we are going to analyze some aspects
of the proposed algorithm. First, we are going to prove
two important characteristics: (i) the system is effective in
preventing that many robots go to the target at the same time
interval (ii) all robots eventually go to the target.

Before developing the proofs, we need to find an appro-
priate model for the system. The situation in which a waiting
robot might change its state to impatient with a probability
p > 0 or remain in the waiting state with a probability 1 —p
can be considered a Bernoulli trial. Therefore, the number
of robots that will change their state to impatient in a set of
n waiting robots can be modeled as a binomial distribution.
Let X be a random variable that defines the number of robots
that changes their state to impatient and Pr(X) be the mass
distribution function of the binomial distribution with n trials
and probability p.

The robots are not necessarily synchronized, but the inter-
val between attempts to change state is approximately equal
for all robots. Hence, we will consider that, in a given time
interval, all waiting robots will make exactly one attempt to
change state. This time interval will be called an iteration.

Proposition 1: Given a set of n waiting robots, the prob-
ability that r robots go to the target at the same iferation
converges to zero as r gets higher.

Proof: The probability that the number of robots that
will change their state to impatient in a given iteration is
higher than r is given by 1 — Pr(X < r). The second term
is the cumulative distribution function of the binomial, that
tends to 1 as r increases. Hence, this clearly tends to zero.

|

Therefore, we showed that the system is effective in
preventing that many robots go to the target at the same time
interval. Now we are going to show that all robots eventually
go to the target.

Proposition 2: Given a set of n waiting robots, the prob-
ability that all robots remain in the waiting state converges
to zero as the number of iterations gets higher.

Proof: The probability that all robots will remain in the
waiting state is given by Pr(X = 0). After m iterations, the
probability that all robots will remain in the waiting state is
given by Pr(X = 0)™, which clearly tends to zero as m
gets higher since Pr(X =0) < 1. [|

We did not consider locked robots in our analysis because
they will eventually move after waiting or locked robots in
their a-area move. We can model this situation as a directed
graph, showing the dependencies between the robots. A robot
can depend on robots in front of it to move, but cannot
depend on robots behind it (given that alpha; < 90°).
Besides, all the «-areas of the robots are directed towards
the same target, avoiding situations where an indirect cycle
would be formed. As we can see, there is no cycle in the
graph dependency, thus no deadlock situations will happen.

It is also important to discuss some aspects concerning
the selection of the parameters. One of the most important
parameters in the definition of the system behavior is p,

the probability that a robot will leave the waiting state. If
it is low, the system will be “conservative” and robots might
remain stationary longer than necessary. If it is high, the
system will be “aggressive” and congestion situations might
happen. Between these two extremes, there is a value that
will minimize the time needed for task execution. This point
can be estimated by an experimental evaluation. As a general
guideline, if the designer expects a large number of robots
trying to reach a certain target, it is better to use a smaller
value of p. If the designer expects a small number of robots
trying to reach a certain target, it is better to use a larger
value of p.

As for the size of the free region, if it is small we might
have a lot of waiting robots too near the target, which makes
it more difficult for other robots to reach and leave the target
region. If it is large compared to the size of the danger
region, the area in which robots might change their state
to waiting will be small and congestions might happen. A
similar analysis can be made for the size of the danger
region. If it is large, robots that are far away from the target
will unnecessarily give up their attempt to reach it. If it is
small we will not have enough waiting robots to decrease the
congestion problem, and they might stop too near the target,
making the movement of normal and impatient robots harder.
So it is necessary to find a good compromise point.

V. EXPERIMENTS

We ran a series of simulations and real experiments
to study the performance and feasibility of the proposed
algorithm. For the simulations, we used the Player/Stage
framework [14], a well known framework for robotics
programming and simulation. The real experiments were
performed using a dozen e-puck robots. The e-puck is a
small-sized (7cm diameter) differential drive robot that is
very suitable for swarm experimentation [15]. Each robot is
equipped with a ring of 8 IR sensors that allows proximity
sensing and a group of colored LEDs to indicate robot status.
Local processing is performed by a dsPIC microprocessor
and a bluetooth wireless interface allows robot to robot
communication and remote control. Figure 4 shows the
robots used in the experiment.

P L L
LA LR LY

Fig. 4. Dozen e-puck robots used in the experiments.

In our experiments, robots were controlled using a com-
mon potential field algorithm: an attractive force moved them
towards the goal while local repulsion forces were used to
avoid collisions among the group. We decided to use that
collision avoidance technique because it is very common in
works dealing with a large number of robots, for example
[16], [17], [18]. However, the coordination method could be
tested with other controllers, as it does not directly depend

12000 — T u T T
Not Coordinated
11000 F| — — — Coordinated

10000 [

9000 [

8000 [

7000

6000 [

Number of Iterations

5000 [

4000

3000

2000

30 35 40 45 50 55 60 65 70 75
Number of Robots

Fig. 5. Time used by both algorithms. The bars show the confidence
interval of the results, with 95% level of confidence.

on potential fields to work. Both in simulations and in real
experiments we used non-holonomic robots, with a control
equation similar to the one presented in [19].

A. Simulations

In order to evaluate the proposed coordination algorithm
we ran a series of simulations using the algorithm (Coord)
and not using it (NotCoord). We consider a scenario where
robots should move to a common target and leave in another
direction after that. In every execution, the robots were
randomly positioned in the scenario outside the danger and
the free region. We varied the number of robots and measured
the execution time and the number of messages sent. As a
measure of time, we used the number of iterations necessary
for the last robot to reach the target. Each simulation was run
20 times and the mean results were considered. We used the
following values for the main constants: 6 = 2m, € = 25,
v = 3.5m, 0 = 1.5m, o, = 95°, a; = 45°, n = 40,
p=0.15.

Figure 5 shows the execution time for a varying number
of robots. As can be observed, the proposed algorithm has
a better performance when the number of robots increases.
In fact, we executed a t-test that showed that the Coord
algorithm was better in all analyzed points with more than
42 robots with 95% level of confidence. The performance
improvement reached 20% with the use of the proposed
algorithm. We also computed the standard deviation of the
results, which showed that with more than 42 robots the
Coord algorithm has a smaller deviation from the mean.

In Figure 6 we can see the number of messages used by the
proposed algorithm for a varying number of robots. The best
model found for the curve was the quadratic y = 0.510722+
7.4987x — 30.2645, with a coefficient of determination (R?)
of 0.9964. Although the model is a quadratic function, we
can see that the quadratic term is small. This result shows
that the algorithm scales well and is suitable for large groups
of robots.

A visual log of one simulation with 48 robots is presented
in Figure 7. Robots are represented by different shapes
according to their states: normal (+), waiting (o), locked
(A) and impatient (x). Robots in the normal state that have

3500

Data
3000 Quadratic Model

Confidence Interval

2500

2000

Number of Messages

1500

1000 -

500 L—
30 35 40 45 50 55 60 65 70 75
Number of Robots

Fig. 6. Number of messages sent for a varying number of robots. The
confidence interval corresponds to a level of confidence of 95%.

already reached the target and are moving to another one are
represented by the symbol (*). The outer circle represents the
danger region while the inner one represents the free region.
As can be observed, the waiting robots form a barrier in the
danger region, while the locked robots tend to wait outside
that region. That enabled all robots to reach the target in a
smoother fashion, as the number of disputes is a lot smaller
in comparisson to the no coordinated version.

B. Real Robots

As mentioned, we also tested the proposed algorithm using
a dozen e-puck robots. These experiments are important to
show the feasibility of the algorithm in real scenarios, with
all the uncertainties caused by sensing and actuation errors,
communication failures, etc.

To simplify the implementation, we used a localization
system specifically designed for swarm localization in indoor
environments [20], although, as mentioned, the algorithm
does not depend on global localization. Also, as the IR sen-
sors of the e-pucks have a very small range, we implemented
a virtual sensor based on the localization system to detect
neighbors.

We ran many scenarios, varying the initial position of
the robots and the value of parameter p. The sequence of
snapshots of one execution can be seen in Figure 8 (a short
video is accompanying the paper). E-pucks with all LEDs
on are in the waiting or locked state, while e-pucks with all
LEDs off are in the normal or impatient state. The graphs
on the bottom depict the robots’ positions and states, as well
as the danger and the free regions, as in Section V-A. We
used the following values for the main constants: § = 0.18m,
e=2,v7v=0.3m, 0 =0.1m, oy, = 115°, a; = 45°, n = 60,
p = 0.045.

Twelve e-pucks are distributed around the target region
(indicated by a small mark in the snapshots) in groups of
three. After reaching the common target, each robot must
move to its own individual target in the upper or bottom side
of the scenario. In Figure 8(a) we can see the initial position
of the robots (numbered from 1 to 12). Upon entering the
danger region, robots change their state to waiting (o) as
soon as they detect another robot with the same target in

+ Ty Lot
6 + 4 5| +
. * + + 7 + f
4 + * N -
* T TR e e N
of + + S + of + " Xb‘\ +
+ A ot + BN A
, AT LT 0y o,
+ \ i+t RN ' At
4+ - e + + . + +
2 + N / -2 + o
i, I Lt bR I
“ +7 ot ! + T
+ T+ + . + + +
. + + s + +
. + o+
() (b)
. N s
+ +
B IN A . N N A
,x,rﬂ RENVIN A LOO A A
7 . A . S
o+ A O,,Q\X o a 2 ¢ + ° Ko x oy A o
AN xS
o B Al 10918, D IS S
o N Jo A 5 L X% Sk 4
. B - / A ¥ Q % A
A A0] ,,O A A A * o a
A A +\\‘**'A' A ©.0 _0-
AN
‘ A A D ! A D oa IN A
6 + + 6
() (@
. s
. !
o -
* % ' X
2 ke XN 2ok / _ .
LTI NNV Dok v
0 ¥ K X | ! 0) !
* % * >\<\ %//:x ; * ! N //
o * X E a 2 * B
<N o A
+ & Q. [
. L O N 4
. s
8 6 4 2 0 2 4 6 8 -8 6 4 2 0 2 4 3 8
(e) ®
Fig. 7. Simulation results using the coordination algorithm.

their a-area (Figure 8(b)). Robot 10 changes its state to
impatient (x), and starts moving towards the target (Figure
8(c)). Robots 3 and 6, which are outside the danger region,
upon detecting waiting robots in their a-area, change their
state to locked (/) (Figure 8(d)). Their state change back to
normal (+) only when they detect no other waiting robots
in their c-area (Figure 8(e)). As time passes, robots change
their state to impatient and approach the target (Figure 8(f)).
Soon, many of them succeed at reaching the common target
(*) and are heading towards their second objective (Figure
8(g)), leading to the final state where all robots completed
the specified task (Figure 8(h)).

As can be seen, using the proposed algorithm the robots
were able to complete the task in a smooth and efficient
manner. The total time of this execution was 7 minutes. We
also ran the same scenario using only local repulsion forces,
which needed 9 minutes for a complete task execution. Thus,
the convergence time gain was 22%, a better result from what
we found in the simulations, as it was achieved with a smaller

number of robots. With more robots, the convergence time
gain might be even better. Therefore, these proof of concept
experiments indicate that the algorithm can work well to
coordinate a swarm of robots, allowing them to smoothly
reach a common target.

VI. CONCLUSIONS

In this work, we proposed an algorithm to control the
traffic of a swarm of robots, avoiding congestion situations.
We focused on the case where many robots try to reach the
same target, a situation that often appears in robotics.

To study the algorithm, we mathematically proved its effi-
cacy and executed simulations and real experiments. We ran
executions with and without the proposed algorithm in order
to evaluate the impact of its presence. The results showed
that, besides allowing a smoother navigation, the proposed
algorithm has a better performance when the number of
robots increase. We noticed a quadratic tendency in the
number of messages used by the algorithm, but the quadratic
term was small. We believe, therefore, that this algorithm is
scalable to a large number of robots. Real experiments were
successfully executed with a dozen e-puck robots, showing
the effectiveness and applicability of the proposed approach.

We intend to investigate the common target problem
even further, and improve the algorithm to obtain lower
convergence times. Specifically, we noticed that sometimes
robots that already reached the common target have difficulty
leaving the danger region because of conflicts with other
robots. A better coordination in this situation might lead to
even higher improvements in the common target case.

REFERENCES

[1] L. S. Marcolino and L. Chaimowicz, “No robot left behind: Coordina-
tion to overcome local minima in swarm navigation,” in Proceedings of
the 2008 IEEE International Conference on Robotics and Automation,
2008, pp. 1904-1909.

[2] ——, “Traffic control for a swarm of robots: Avoiding group con-
flicts,” in Proceedings of the 2009 IEEE International Conference on
Intelligent Robots and Systems, 2009.

[3] U. Y. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile
robotics: Antecedents and directions,” Autonomous Robots, vol. 4,
no. 1, pp. 7-23, March 1997.

[4] D. Grossman, “Traffic control of multiple robot vehicles,” Journal of
Robotics and Automation, vol. 4, pp. 491-497, 1988.

[5] S. Kato, S. Nishiyama, and J. Takeno, “Coordinating mobile robots
by applying traffic rules,” in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, 1992.

[6] K. Dresner and P. Stone, “Multiagent traffic management: an improved
intersection control mechanism,” in AAMAS ’05: Proceedings of
the fourth international joint conference on Autonomous agents and
multiagent systems. New York, NY, USA: ACM, 2005, pp. 471-477.

[71 K. Viswanath and K. M. Krishna, “Sensor network mediated multi
robotic traffic control in indoor environments,” in Proceedings of the
International Conference on Advanced Robotics, 1997.

[8] Y. Ikemoto, Y. Hasegawa, T. Fukuda, and K. Matsuda, “Zipping, weav-
ing: Control of vehicle group behavior in non-signalized intersection,”
in Proceedings of the 2004 IEEE International Conference on Robotics
and Automation, New Orleans, USA, 2004, pp. 4387-4391.

[9]1 A. Treuille, S. Cooper, and Z. Popovi¢, “Continuum crowds,” in
SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers. New York, NY,
USA: ACM, 2006, pp. 1160-1168.

[10] K. M. Krishna and H. Hexmoor, “Reactive collision avoidance of
multiple moving agents by cooperation and conflict propagation,” in
Proceedings of the 2004 IEEE International Conference on Robotics
and Automation, 2004, pp. 2141-2146.

[11]

[12]

[13]

[14]

[15]

06 06

06

*6 KT 32 %34 x5 6
4
04 04 04 * 0.4
D LT PR Lo
02 & o Y, 0.2 8 z \\ 0.2 ; N 0.2 & \\
P, }P12 @ & & & g 512 { = &
0 ! \ el 0 Xt 11 0 | \ 0 I g b
\ ! \ ~ - O \ ~ - %11 \ ~ - i
0.2 2 // 0.2 b x2 10 // 0.2 \%7 // 0.2 3 //
! ~N i ~N s = ~
XS jrgG \63'01 ;1@ s o=
-04 -04 -04 -04
11
7 %8 %9
-06 -086 -086 -086 ** * *1* *12
-04 -02 0 02 04 06 -04 —0:2 0 02 04 06 -04 L 0 02 04 06 -04 -02 0 02 04 06
(e ® ® ()
Fig. 8. Real execution using the coordination algorithm.

A. Yasuaki and M. Yoshiki, “Collision avoidance method for multiple
autonomous mobile agents by implicit cooperation,” in Proceedings
of the 2001 IEEE International Conference on Intelligent Robots and
Systems, IROS 2001, Maui, USA, 2001, pp. 1207-1212.

C. Cai, C. Yang, Q. Zhu, and Y. Liang, “Collision avoidance in
multi-robot systems,” in Proceedings of the 2007 IEEE International
Conference on Mechatronics and Automation, Harbin, China, 2007,
pp- 2795-2800.

E. Vidal, F. Thollard, C. de la Higuera, FE Casacuberta, and R. C.
Carrasco, “Probabilistic finite-state machines-part i,” [EEE Trans.
Pattern Anal. Mach. Intell., vol. 27, no. 7, pp. 1013-1025, 2005.

B. Gerkey, R. T. Vaughan, and A. Howard., “The player/stage project:
Tools for multi-robot and distributed sensor systems.” in Proceedings
of the 11th International Conference on Advanced Robotics, Coimbra,
Portugal, June 2003, pp. 317-323.

C. M. Cianci, X. Raemy, J. Pugh, and A. Martinoli, “Communication
in a Swarm of Miniature Robots: The e-Puck as an Educational Tool
for Swarm Robotics,” in Simulation of Adaptive Behavior (SAB-2006),

[16]

[17]

[18]

[19]

[20]

Swarm Robotics Workshop, ser. Lecture Notes in Computer Science
(LNCS), 2007, pp. 103-115.

M. A. Hsieh, L. Chaimowicz, and V. Kumar, “Decentralized con-
trollers for shape generation with robotic swarms,” Robotica, vol. 26,
pp. 691-701, September 2008.

A. E. Turgut, H. elikkanat, F. Gke, and E. ahin, “Self-organized
flocking in mobile robot swarms,” Swarm Intelligence (Special Issue:
Swarm Robotics), vol. 2, no. 2-4, pp. 97-120, 2008.

I. Navarro, J. Pugh, A. Martinoli, and F. Matia, “A distributed scalable
approach to formation control in multi-robot systems,” in Proceedings
of the International Symposium on Distributed Autonomous Robotic
Systems, Tsukuba, Japan, 2008.

A. De Luca and G. Oriolo, “Local incremental planning for nonholo-
nomic mobile robots,” in Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, 1994.

R. Garcia, P. Shiroma, L. Chaimowicz, and M. Campos, “A framework
for swarm localization,” in Proceedings of VIII SBAI - Brazilian
Symposium on Intelligent Automation, October 2007, in Portuguese.

