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 Abstract — The ability of mobile robots to generate feasible 

trajectories online is an important requirement for their 

autonomous operation in unstructured environments. Many 

path generation techniques focus on generation of time- or 

distance-optimal paths while obeying dynamic constraints, and 

often assume precise knowledge of robot and/or environmental 

(i.e. terrain) properties. In uneven terrain, it is essential that the 

robot mobility over the terrain be explicitly considered in the 

planning process. Further, since significant uncertainty is often 

associated with robot and/or terrain parameter knowledge, this 

should also be accounted for in a path generation algorithm. 

Here, extensions to the rapidly exploring random tree (RRT) 

algorithm are presented that explicitly consider robot mobility 

and robot parameter uncertainty based on the stochastic 

response surface method (SRSM). Simulation results suggest 

that the proposed approach can be used for generating safe paths 

on uncertain, uneven terrain. 

I. INTRODUCTION 

UTONOMOUS mobile robots are increasingly being used 

for operation on uneven, rugged terrain. A fundamental 

requirement for robots in such environments is the 

capacity to quickly generate a feasible trajectory that results in 

safe, rapid traversal while avoiding obstacles. This path 

planning capability is therefore critical to the safety and 

efficient operation of mobile robotic systems. 

 Substantial work has been performed in the field of motion 

planning over the years. Major techniques that have evolved 

include the A* and D* methods [1], potential field approaches 

[2], the probabilistic roadmap technique [3] and the 

rapidly-exploring random tree (RRT) algorithm [4]. These 

methods determine suitable control inputs to move a robot 

from its initial position to its destination while obeying 

physics-based dynamic models and avoiding obstacles in the 

environment. Recently, randomized approaches to 

kinodynamic motion planning [5] have proven to be a very 

efficient tool for the purpose of path generation, with RRTs 

proving to be a highly effective framework.  

 Since its introduction, many extensions to the basic RRT 

algorithm have been developed to improve its performance 

and better adapt to demands of specific systems [4]. However, 

little research has explicitly addressed the challenge of 

autonomously assessing a robot’s mobility over a given terrain 

region while planning a path.  Consideration of robot mobility 

is important in field conditions, where terrain inclination, 

roughness, and/or mechanical properties can significantly 

impede robot motion. Such scenarios include planetary 
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surface exploration, some search and rescue tasks, and many 

defense/security applications. Previous research has 

employed heuristically-biased expansion to generate efficient 

paths [6] while satisfying dynamic constraints. Another recent 

approach [7] explicitly models a robot’s closed-loop 

controller in the planning methodology, thereby resulting in 

trackable paths. However, these works do not explicitly 

address mobility aspects during the planning process. 

 Further, there has been little research that addresses the 

challenge of autonomously generating a path while explicitly 

considering uncertainty in the terrain and/or robot parameters. 

Most techniques rely on deterministic analysis that assumes 

precise knowledge of robot and terrain parameters. In field 

conditions, however, robots generally have access only to 

sparse and uncertain terrain parameter estimates, and robot 

parameters may be uncertain and time-varying (due to, for 

example, fuel consumption and mechanical wear). Failure to 

consider parameter uncertainty may therefore lead to failure 

of the robot to track generated paths, especially during high 

speed navigation in unstructured environments. Recently 

though, research work in this area has used a particle 

filter-based approach within the RRT framework, producing a 

distribution of robot states at each tree node [8], to capture 

uncertainty induced effects.  

 In summary, while many planning approaches have been 

developed that incorporate dynamic robot models and satisfy 

a variety of constraints (e.g. related to actuator physical 

limitations, kinematic constraints, etc.), very few explicitly 

consider robotic mobility in the planning process. Moreover, 

they typically employ a deterministic analysis and do not 

explicitly consider parameter uncertainty. This paper 

addresses these concerns through several extensions to the 

basic RRT algorithm that contribute to generation of a safe 

path over uncertain terrain. 

 This paper is organized as follows: Section 2 introduces the 

uncertainty analysis techniques employed in this work. The 

basic RRT algorithm is briefly presented in Section 3. This is 

followed in Section 4 by a description of various extensions to 

the RRT framework that consider robotic mobility. Section 5 

discusses the integration of uncertainty analysis within the 

planning framework. The dynamic robot model employed for 

algorithm analysis is presented in Section 6 and simulation 

results are shown in Section 7. It is shown that safe trajectories 

can be generated for rapid traversal over unstructured terrain 

using the proposed framework. 

II. UNCERTAINTY ANALYSIS TECHNIQUES 

There exist numerous techniques to estimate the outputs for 

processes that are subject to uncertainty [9]. These may be 

applied to predict the ability of a robot to successfully traverse 
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a given route during trajectory planning, while rigorously 

considering parameter uncertainty. A traditional method for 

estimating the probability density function of a system’s 

output response while considering uncertainty is the Monte 

Carlo method [10]. However, a large number of simulation 

runs are generally required to obtain reasonable results, often 

leading to high computational cost. Recently, efficient 

approaches to uncertainty analysis have been introduced and 

include the polynomial chaos approach [11] and the stochastic 

response surface method (SRSM) [12]. The latter has been 

employed in the present study and is described below. 

A. Stochastic Response Surface Method (SRSM) 

The stochastic response surface method involves 

representing inputs and outputs of a system under 

consideration via series approximations using standard 

random variables, thereby resulting in a computationally 

efficient means for uncertainty propagation through complex 

numerical models. In this approach, the same set of random 

variables that represents input stochasticity is used to express 

the output(s). For normally distributed random inputs, an 

equivalent reduced model for the output may be reproduced in 

the form of a series expansion consisting of multi-dimensional 

Hermite polynomials of normal random variables, as: 
1

1 1 1 2 1 2

1 1 2

0 1 2

1 1 1

( ) ( , ) ...
in n

i i i i i i

i i i

y a a aξ ξ ξ
= = =

= + Γ + Γ +∑ ∑ ∑  (1) 

where y refers to an output metric, ξi1, ξi2,… are i.i.d. uniform 

random variables, Γq(ξi1, ξi2,…, ξiq) is the Hermite polynomial 

of degree q and ai1, a i1i2,… are the corresponding coefficients. 

For notational simplicity, the series may be written as: 

0

( )
qN

j j

j

y y ξ
=

= Φ∑  (2) 

where the series is truncated to a finite number of terms and 

there exists a correspondence between Γq(ξi1, ξi2,…, ξiq) and 

Ф(ξ), and their corresponding coefficients. 

The series expansion contains unknown coefficient values 

that can be estimated from a limited number of model 

simulations to generate an approximate reduced model. This 

is achieved by choosing a set of suitable sample points 

(collocation points) and generating model outputs at these 

points. A regression based approach is then utilized to obtain 

the values for the unknown coefficients. Once the statistically 

equivalent reduced model is formulated, it can be used to 

facilitate analysis of the system under uncertainty, and obtain 

relevant output statistics [12]. 

III. BASIC RRT ALGORITHM 

 The basic RRT planning algorithm can be briefly 

summarized as follows: Given a robot in an initial 

configuration in an environment, sample a point in space 

(either randomly or according to a specified probability 

distribution), then find its nearest node in the current search 

tree based on an appropriate distance metric. Then, 

forward-simulate a system model from the nearest node 

towards the sampled point. If various constraints are satisfied, 

a new location is reached and added to the search tree. A 

search tree is thus constructed with a combination of random 

exploration and (possibly) biased motion towards the goal, 

while obeying various constraints. The algorithm terminates 

when a node is selected that lies within some threshold 

distance to the goal. For more details about the RRT 

framework, refer to [4]. 

 A primary advantage of this framework is that it can be 

implemented for real-time, online planning, even for high 

degree-of-freedom dynamic models. Further, its flexibility 

allows trajectory-based checking of complex constraints and 

integration of the proposed stochastic modeling approach. 

IV. MOBILITY-BASED RRT EXTENSIONS 

 This section provides an overview of various extensions to 

the basic RRT framework that aim to (implicitly or explicitly) 

consider robot mobility, and thereby result in motion plans 

that are safe and efficient, even over unstructured terrain. 

A. Distance Metric Calculation 

 Most approaches to RRT-based planning employ the 

Euclidean distance to calculate the distance from a node to the 

sample point. However, many mobile robots employ 

Ackermann (or Ackermann-like) steering, which restricts their 

path following capability to following smooth paths. Here, a 

distance metric similar to the Dubins path length [14] is 

employed for such robots. While Dubins curves consider 

paths of the CCC/CSC sequence type (where C represents a 

circular arc and S refers to a straight line segment) to move 

between prescribed initial and terminal robot configurations, 

here paths of the CS/SC sequence type are considered, since 

the robot orientation at the target point is not critical.  

The proposed metric is more appropriate than a Euclidean 

distance-based metric since it considers the initial robot 

heading and minimum turning radius, resulting in a more 

accurate estimate of the minimum path length a robot must 

travel to reach a sample from a given node (see Figure 1). 

To calculate this metric, the coordinates are first 

transformed such that the node of interest (i.e. the potential 

nearest node) lies at the origin. Then, based on the location 

and orientation of the robot at a node, the targeted sample 

point and the minimum turning radius of the robot ρ, the 

Dubins-like distance calculations are performed [15]. It 

should be noted that these calculations rely on a simple 

kinematic robot model, and thus serve as an approximation for 

high speed, dynamic systems.  

 For paths of type CS, 2 2( )D x y ρ= + −  and 2 2L D ρ= − , 

where ( )1tan /Lβ ρ−= , 1tan (( ) / )y xα ρ−= − , and 

/ 2 ( )θ π β α= − − . Then, sinAx ρ θ=  and cosAy ρ ρ θ= − .  

 For paths of type SC, 1sin (( sin ) / )Dϕ α ρ−= , ( )γ π ϕ α= − +  

and ( / sin )sin ( / sin )sinL Dρ α γ ϕ γ= = . Then, 
Ax L= , 0Ay = , 

and (3 / 2)θ π ϕ= − . 
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Fig. 1. Path length calculations for 2-D Dubins-like curves: CS (left) and SC 

(right) 

B. Use of Multiple Nearest Nodes 

 To enhance planning algorithm performance, M (here taken 

as 3) nearest nodes are calculated instead of just one during 

tree extension. These nodes are arranged in order of 

increasing cost (see Section IV.C). The least cost node is then 

chosen for expansion, provided the resulting trajectory 

towards the sample point has a reasonably high probability of 

safe traversal. This condition is satisfied when the rollover 

metric (see Section VI), averaged over the path segment, has 

an absolute value lower than a suitable threshold value (i.e. 

Ravg_s < Ro). Keeping track of M nearest nodes prevents 

re-searching the entire tree in case the mobility-based criterion 

is not satisfied for the selected node. This improves the 

planner’s performance in rapidly finding a safe path. 

C. Mobility-based Heuristic 

 Costs are assigned to nodes considering both temporal and 

mobility-based factors. While the former takes into account 

the time taken to reach a particular node, the latter considers 

the probability of successfully negotiating the terrain to do so.  

This may be defined based on a metric related to the 

nearness of the robot to rollover. Here a rollover metric R is 

used to assign cost by computing it along the path leading to a 

node from the start location, thereby explicitly including 

mobility considerations in the planning process. By using this 

heuristic cost function, it is expected that paths that are safely 

traversable by the robot will be generated. This node cost 

function is calculated as follows: 

( )
3

, ,

1

/ max( )               , 1...k i k i j

i

Q C C j k M
=

= =∏  (3) 

where 

C1,k = tk (4)  

C2,k = (Ravg_p,kRmax_p,k)
h 

(5) 

C3,k = dk (6) 
Here tk refers to the time to reach the k

th
 node from the 

robot’s starting position, Ravg_p,k and Rmax_p,k are, respectively, 

the average and maximum values of R along the entire path 

leading up to the node, dk is the value of the distance metric to 

the sample point from the node, and h is a parameter to bias 

the search according to the relative importance of time and 

vehicular mobility, and depends on the particular application. 

D. Pure Pursuit Controller 

 Closed-loop (rather than open-loop) model simulation is 

integrated in the proposed RRT framework, as in [7]. Here, a 

controller based on the pure pursuit algorithm [16] is 

employed to track a reference path input from the least cost 

node to the sample location. The use of a closed-loop control 

methodology has various advantages. First, upon integration 

with the RRT, the technique allows the planning framework to 

be applied to complex dynamic models by (potentially) 

transforming a high-dimensional search problem through the 

robot’s state space to a low-dimensional search through 

Cartesian space. Second, it yields trajectories that, by 

construction, are likely to be dynamically feasible. The 

technique also enables generation of reasonably long paths 

and associated sequences of robot steering inputs. 

 The reference input to the closed-loop controller is the 

same as the Dubins-like curve described in IV.A. Note, 

however, that only a section of the reference path might be 

tracked. An illustration of this approach is depicted in Fig. 2. 

 
Fig. 2. Illustration of reference path tracking from two nearby nodes. 

E. Intermediate Nodes 

While long paths may be efficiently generated from the 

closed-loop control method, additional nodes are also placed 

along the trajectory at short intervals. These are added to the 

tree if the mobility criterion (described in IV.B) is satisfied for 

the path segment preceding the node under consideration.  

This has been found to yield dense exploration and can save 

significant computational time in cases where there are 

collisions with obstacles, or if the mobility cost is exceeded 

for nodes at the end of long path segments (see Figure 3). 

 
Fig 3. Placing of intermediate nodes along the traversed path. 

V. INTEGRATION OF SRSM WITH THE RRT FRAMEWORK 

A. Integration of SRSM with RRT framework 

 Parameter uncertainty, if not explicitly considered in the 

planning framework, can lead to uncertainty in robot mobility 

and stability, and path following characteristics. As depicted 

in Fig. 4, for identical initial condition, various paths may be 

tracked by a closed-loop system depending on the values of 
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uncertain terrain and/or robot parameters. Further, while 

traversing certain paths, the robot may collide with an 

obstacle, or may have a heightened possibility of rollover (as 

determined through the averaged rollover metric Ravg_s).  

 
Fig. 4. Path and rollover unpredictability under uncertainty 

To explicitly consider uncertainty during planning, SRSM 

is here employed. The general procedure is as follows: 

Let N uncertain parameters, considered to be normally 

distributed about their mean values, be represented using 

standard normal random variables ξm as: 

          1...
m mm P m PP m Nµ ξ σ= + =  (7) 

S state variables of interest are then represented using 

Hermite polynomials of these standard normal random 

variables as: 

,

0

( , ) ( ) ( )          1...
qN

i i j j

j

x t x t i S
=

= Φ =∑ξ ξξ ξξ ξξ ξ  (8) 

where ξ = [ξ, ξ2 … ξN]. 

Spectral stochastic analysis [13] is then performed using the 

above expansions, resulting in the time evolution of the mean 

and variance values of the state variables during expansion of 

a given node. As a result, a description of the robot’s likely 

path of travel is obtained. 

B.1. Confidence Ellipse Construction 

 SRSM provides reduced order expansions for calculation 

of the robot path coordinates, which are then utilized to obtain 

relevant statistics such as the mean and variance [12]. Based 

on these, the mean path can be augmented with ellipses [17] 

that indicate confidence levels for the predicted position of the 

robot in the presence of uncertainty. These are then used to 

perform collision checks to avoid paths that are likely to 

collide with obstacles (see Figure 5). The approach represents 

an improvement over Monte Carlo methods by reducing the 

number of paths that must be generated to estimate the path 

distributions. 

 
Fig. 5. Collision check using confidence ellipses 

 Confidence ellipses centered at the mean path coordinate 

can be generated (see Figure 6) based on the following 

equation: 
2 2

2

2 2 2

1 ( ) ( )( ) ( )
2

1 x x y y

x x x x y y y y
r C

r s s s s

 − − − −
− + = 

−   

 (9) 

where 
2

2 2

1 1

1 1 1
(1 ) 1 , ,

n n

n
i i

i i

n
C P x x y y

n n n
−

= =

 − = − − = =  
  

∑ ∑     

x  and y  are the mean path coordinates, sx and sy are the 

sample standard deviations, r is the sample correlation index, 

n is the number of samples generated from the reduced model 

and P is the confidence level of the predicted position, which 

may be chosen based on the criticality of the operation. 

The principal semi-axes of the ellipse are given as: 

,  
x x y y

a cs a cs′ ′= =  (10) 

where ( )
1/ 2

2 2 2 2 2 2 2 2

, [ ( ) 4 ] / 2x y x y x y x ys s s s s r s s′ = + ± − +      

  The ellipse orientation is denoted by the inclination angle β: 

1

2 2

21
tan

2

x y

x y

rs s

s s
β −=

−
 (11) 

 
Fig. 6. Confidence Ellipse Construction 

Information obtained from this analysis (such as the average 

variation in the robot position along the path, or the 

probability of collision with an obstacle) can also be used to 

alter the node costs in the RRT expansion heuristic. This has, 

however, not been considered in the present analysis. 

B.2. Expansion Heuristic 

 As described in Section IV.C, a rollover metric value R can 

be employed as a cost during tree expansion. This results in 

explicit consideration of robot mobility, albeit in a 

deterministic manner. To consider robot mobility in a 

stochastic manner, SRSM can be employed to yield an 

expected rollover metric E[R]. This result can also be used 

during tree expansion. Once the expected value for the 

rollover metric (E[R]) and its variance σR along a trajectory is 

obtained, Ravg_s of Equation (9) can be replaced by R’avg_s, 

where the latter is the path-averaged value of Rs, given as: 

[ ] , 0s RR E R f     fσ= + ≥  (12) 

Thus, while extending towards a sample point from the 

least-cost node, R’avg_s is used to compare with the threshold 

Ro. Further, the stochastic values are utilized while assigning 

the node costs during the heuristically biased tree expansion. 

B.3. Selective Implementation of SRSM 

It can be inferred that the application of stochastic analysis 

along each path segment during tree growth can lead to 

increased computation times during planning. However, it 

may not be necessary to apply stochastic analysis for scenarios 
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where the path segments are relatively smooth and flat. SRSM 

should be invoked only for tree expansions that may have a 

high likelihood of robot rollover. Here, the technique is 

employed when the following criterion is met: 

_| | , where avg s I I oR R     R R> <  (13) 

Hence, if a path segment is likely to have an Ravg_s value 

close to the threshold Ro, SRSM is used to obtain a refined 

estimate of rollover risk. 

Using the above extensions, an RRT algorithm that 

considers parameter uncertainty can be obtained, which yields 

smooth and safe paths. The modified algorithm is outlined in 

Table 2. 

TABLE 2 

MODIFIED RRT-BASED PLANNING ALGORITHM 

VI. SIMULATED APPLICATION TO ROBOTIC SYSTEM 

 In this section the performance of the proposed 

mobility-based planning method is studied in simulation. 

Section VI.A describes the robot model, and Section VI.B 

describes the simulation scenario. 

A.1. Dynamic Robot Model  

 Here a three degree of freedom robot model (see Figure 7) 

is considered that includes lateral acceleration, yaw and roll 

dynamics, as in [13]. The roll and yaw moments of inertia are 

represented by Ixx and Izz respectively, m is the total robot 

mass, ms is the sprung mass, V is the longitudinal velocity of 

the robot and δ represents the front wheel steering angle. The 

linearized equations for this model are given as: 

2 2

2
1

f s s s
io o

xx xx

C G m hM m ghGC KG G
T

mV mV mV mVI mVI mV
β β ψ δ ϕ = − + − + + + + + 

 
∑ɺ ɺ

 

(14) 

f ss s s s s
io o o o o o

xx xx xx xx xx xx

C m hm gh M m Ch m Kh m h
T

I I mI mVI mI mI
ϕ ϕ β ψ δ= + − + + + ∑ɺɺ ɺ

 (15) 

1f f

i i

zz zz zz zz

C lK D
Tl

I VI I I
ψ β ψ δ= − + + ∑ɺɺ ɺ

 (16) 

where 

f rC C C= + , 
r r f fK C l C l= − , 2 2

f f r r
D C l C l= + , 

2 2

1 s

o

xx

m h
G

mI
= + , 

and ( )2
1 /

o

xx xx s sI I m h m m= + − . Cf and Cr are the cornering 

stiffness values of the lumped front and rear wheels, g is 

gravitational acceleration, and lf and lr are the distances of the 

front and rear axles, respectively, from the center of gravity. 

 In addition to forces from tire compliance, lateral 

components of the contact forces on the robot can arise due to 

terrain unevenness. Given terrain elevation modeled as a 

continuous, differentiable function of planar position z(x,y), 

the terrain disturbance force Ti acting at each wheel is: 

( )ˆ ˆ ˆ( / ) ( / )i i o o o oT N z x x z y y y= ∂ ∂ + ∂ ∂ ⋅ , i = 1…4 (17) 

where Ni is the normal contact force at wheel i, ˆ
ox  and 

oŷ  are 

unit vectors of the inertial reference frame, and ŷ is a unit 

vector lateral to the reference path. 

 

Fig. 7.  Robot model for mobility analysis under uncertainty 

The suspension moment Ms, including the body roll due to 

uneven terrain, is given as: 

( ) ( ) ( ) ( )
s f f r r f f r r

M k k b bϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ=− − − − − − − −ɺ ɺ ɺ ɺ  (18) 

where kf and kr are the roll stiffness values, bf and br are the 
damping rates of the front and rear axles, and fϕ and rϕ  are 

the terrain roll angles. 

To compute terrain roll angles and rates, it is assumed that 

the wheels always remain in contact with the terrain. Then, 

using knowledge of the position and velocity of each wheel 

and terrain elevation z(x,y), the disturbances are calculated as: 

1 1( ) /  , ( ) /i i i w i i i wz z y z z yϕ ϕ+ += − = −ɺ ɺ ɺ  (19) 

where the rate of elevation change can be computed as: 

( )( / ) cos( ) ( / )sin( )iz V z x z yψ β ψ β= ∂ ∂ + + ∂ ∂ +ɺ  (20) 

For measuring vehicular mobility, a rollover coefficient is 

defined, as in [13]. Using the principle of balance of moments 

and vertical forces, the rollover metric for the linear model 

under consideration is given as: 

( )2
( ) ( )s

a

w

m
R h h v h

mgy
β ψ ϕ= + + −ɺ ɺ ɺɺ

 (21) 

where ha is the height of the roll axis above the ground and yw 

is the track width. For this metric, |R|>1 indicates robot wheel 

liftoff and thus impending rollover. 

01.  function create_tree(Xstart,Xgoal,E); 
 [Get start location (Xstart), goal location (Xgoal) & environment (E).] 

02 T = initialize(Xstart); 
 [Initialize tree (T) using Xstart.] 

03. while ~reached(Xgoal,T); 
 [Repeat steps below until Xgoal is reached.] 

04. Xs = sample_uniform(E); 
 [Choose sample node (Xs) in E.] 

05. [Xnear]= nearest_nodes(Xs,T); 
 [Search tree for N nearest nodes [Xnear] to Xs.] 

06. Xnear= nearest_node([Xnear]); 
 [Choose nearest node (Xnear) based on node costs.] 

07. [path] = create_path(Xnear,Xs); 
 [Create Dubins-like path to Xs from Xnear.] 

08. [Xnew] = extend_pure_pursuit([path]); 
 [Move towards Xs from Xnear to get nodes [Xnew] along the path.] 

09.      If Ravg_s>RI,, [Xnew ,R’avg_s]=SRSM([path]); 
 [Call SRSM function if required, do collision-check using    

         confidence ellipses.] 

10. if ~constraints([Xnew],T,E); 
 [Check if constraints are satisfied.] 

11. T = add([Xnew],T); 
 [Add [Xnew] to T if there is no collision.] 

12. end 

13. end 

14.  return T; 
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A.2. Inclusion of Uncertainty  

In the present analysis, values of the front and rear axle roll 

stiffness values are considered to be normally distributed 

about their mean values, and are represented as: 

1f ff k kk µ ξ σ= +   
2r rr k kk µ ξ σ= +           (22) 

In the SRSM implementation, the output state variable Xi is 

represented as: 

 
,

0

( , ) ( ) ( )
qN

i i j j

j

X t X t
=

= Φ∑ξ ξξ ξξ ξξ ξ               (23) 

where [ ]1 2,ξ ξξ =ξ =ξ =ξ = . 

The roll stiffness parameter values employed in the study 

are shown in Table 3. 
TABLE 3 

UNCERTAIN ROBOT PARAMETERS IN ROLLOVER ANALYSIS 

PARAMETER MEAN (Nm/rad) STD. DEV. (Nm/rad) 

kf 60×103 15×103 

kr 60×103 15×103 

B. Description of Scenarios 

  Deterministic as well as stochastic analyses were performed 

for the environmental scenario in Fig. 8-9 to separately 

evaluate the improvements due to consideration of 

mobility-based features and stochastic analysis in the RRT 

framework. For the deterministic analysis, parameter 

uncertainty was neglected and the performance of a basic RRT 

algorithm was compared to the modified method that includes 

mobility-based features. Comparison metrics were calculated 

in terms of the travel time To and likelihood of safe traversal. 

To evaluate the latter, a trajectory quality metric (QTa) is 

defined as: 

QTa = max (Ravg_s,i)                (19) 

where Ravg_s,i is the averaged rollover metric along the path 

segment connecting the i
th

 node and its predecessor, and QTa 

refers to its maximum value among the nodes of the final path. 

The averaged rollover coefficient along the final trajectory 

(Ravg_p) from the two approaches is also noted. 

Uncertainty was then considered and the performance of 

the modified algorithm that included SRSM (without selective 

implementation) was compared to the non-SRSM case, in 

terms of the trajectory quality metric (QTb), defined as: 

QTb = |Ravg,s|                  (18) 

where Ravg,s is the path-average of the expected value of the 

rollover metric along the final trajectory, under uncertainty. 

For the deterministic case, this was obtained by using a Monte 

Carlo (MC) analysis for the final path, simulating over 

parameter value samples from the uncertain distributions, 

while applying the steering inputs determined from the 

original analysis. 

 The improvement in computational efficiency of SRSM 

over a Monte Carlo approach within the framework was also 

studied. Here, selective implementation was employed, where 

multiple simulations along a path segment were run only when 

the threshold RI is crossed. To compare the two methods, the 

ratio of the corresponding simulation time (T) to the 

computation time for the deterministic run (TD) was 

computed. 

 

Fig. 8.  Terrain environment considered in the analysis. 

 

Fig. 9.  Placement of obstacles for the scenario (top view). 

VII. SIMULATION RESULTS AND DISCUSSION 

A. Deterministic Analysis  

 Plans were generated between random start/goal locations 

for the terrain of Figure 8. Various values for h and Ro were 

considered and the typical values obtained for To, QTa and 

Ravg_p for the two scenarios are shown in Table 4. 

TABLE 4 

TRAJECTORY QUALITY AND TRAVEL TIME 

TECHNIQUE h RO QTa 
TRAVEL 

TIME, TO (S) 
Ravg_p 

RRT (Basic) - - 0.692 19.02 0.485 

1 0.4 0.397 18.01 0.331 

1 0.6 0.591 17.67 0.415 

1 0.8 0.776 17.38 0.531 

4 0.4 0.397 18.43 0.318 

4 0.6 0.588 17.98 0.403 

Modified RRT 

(Non-SRSM) 

4 0.8 0.767 17.57 0.507 

Paths generated by the proposed approach generally 

resulted in lower rollover coefficient values. This is because 

the threshold value Ro limits the selection of tree extensions to 

those with absolute value of rollover metric, averaged over the 

path segment, lower than its magnitude. Reducing Ro, 

therefore, results in paths with lower QTa and Ravg_p values. 

Similarly, increasing the value of the parameter h causes the 

expansion heuristic to select nodes on easily traversable paths, 

also leading to trajectories with marginally lower QTa and 

Ravg_p values. 

While the Ravg_p value may be lower for the basic RRT 

algorithm for certain scenarios, there is no control over the 

value of QTa in the modified approach. Therefore, for the path 

obtained using basic RRT, the tendency for the robot to 

overturn while negotiating the terrain is expected to be greater, 
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especially at high speeds. Similarly, To values may be lower as 

well; however this comes at a cost to robot safety while 

negotiating the terrain. The tree from a typical simulation of 

the modified planning algorithm is shown in Fig. 10. 

 

Fig. 10.  Resulting tree and final path obtained using the modified RRT 

algorithm (non-SRSM). (h=1,Ro=0.6) 

B. Stochastic Analysis under Uncertainty 

Further studies were conducted with varying values of Ro. 

Typical values obtained for QTb are shown in Table 5. 

TABLE 5 

TRAJECTORY QUALITY FOR GENERATED PATHS 

TECHNIQUE RO QTb 

0.5 0.378 

0.7 0.454 

Modified RRT 

(Non-SRSM,  

MC on final path) 0.9 0.584 

0.5 0.363 

0.7 0.437 
Modified RRT 

(SRSM: RI = 0) 
0.9 0.560 

For the non-SRSM case, larger values of QTb were 

observed, indicating that treatment of uncertainty is important 

to obtain accurate values for the expected rollover metric 

along a path segment during tree expansion. While the 

deterministic planning algorithm might assume that a path 

segment is safe for traversal using the threshold Ro, this 

assumption might be poor due to uncertainty that is present. In 

certain cases, the averaged rollover coefficient value may be 

significantly greater than Ro (or even 1, indicating failure). 

These paths, however, are disallowed in the stochastic 

planning framework. In the present analysis, the quantitative 

difference in QTb is somewhat marginal, especially for low Ro 

values, since moderate robot velocity was studied. However, 

the difference in QTb can be large for travel over highly uneven 

terrain and/or aggressive robot maneuvers. 

The computational efficiency of SRSM was compared to 

that of the Monte Carlo method in the planning framework. 

Typical results obtained for T/TD are shown in Table 6. The 

computational efficiency for SRSM is significantly better than 

for Monte Carlo, particularly for low values of Ro, when the 

stochastic analysis is frequently invoked. The metric QTb was 

found to be similar for the two techniques, as expected. 

 

 

TABLE 6 

TRAJECTORY QUALITY AND RELATIVE SIMULATION TIME 

METHOD Ro T/TD QTb 

0.5 288.6 0.369 

0.7 246.5 0.447 
Monte Carlo (400 runs) 

(RI = Ro – 0.1) 
0.9 127.1 0.575 

0.5 4.25 0.373 

0.7 4.17 0.449 
SRSM (2nd order) 

(RI = Ro – 0.1) 
0.9 4.02 0.571 

VIII. CONCLUSION AND FUTURE WORK 

 This paper has presented a framework for stochastic robot 

path planning that explicitly considers robot mobility and 

parameter uncertainty. Simulation results for planning on 

uneven terrain have shown that the proposed method can 

generate safer paths compared to a basic RRT algorithm, and 

can be used for robustly and efficiently predicting safe paths 

for mobile robots in unstructured, uncertain environments. 
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