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On the Use of 2D Navigable Maps for Enhancing Ground Vehicle

Localization

Clément Fouque and Philippe Bonnifait

Heudiasyc UMR 6599, Université de Technologie de Compiègne, France.

Abstract— For ground vehicle localization, hybrid-GNSS lo-
calizers now use commonly dead-reckoning sensors, like odome-
ters or inertial units. They are designed to increase the accuracy,
the integrity and the availability of the localization information,
particularly in areas where the satellite signals are subject to
outages and multipaths. In this paper, a data-fusion method
is proposed to take benefits of 2D navigable road-maps in a
tightly-coupled approach. In such a problem, 3D modeling is
mandatory to process the pseudo-range information of the satel-
lites. Our proposal is to use a 2D map as a heading measure in a
Earth tangential frame. This is called “map-aided odometry”.
A Kalman filter, gating the normalized innovation signals, is
applied to merge the redundant exteroceptive information in
a cautious way. Experimental results are reported to quantify
the performance gain of the proposed approach relying on the
map-aided technique. We show that this fusion scheme increases
the accuracy and the availability of the provided localization
specially in GNSS-challenging environments.

I. INTRODUCTION

Nowadays, localization systems in ITS have become fa-

miliar with the use of proprioceptive sensors in hybrid Global

Navigation Satellite System (GNSS). These sensors, like

Wheel Speed Sensors (WSS) or inertial units for instance,

can be either loosely-coupled [1] or tightly-coupled [2]

with the GNSS measurements. Recently, the use of tightly

coupled methods in hybrid GNSS has proved to enhance

the performance of the localizer in urban area [2]. Indeed,

a tightly-coupled method allows the position computation

with less than 4 visible satellites, as the fusion is made at

the pseudo-ranges level. Nevertheless, a complete satellite

outage remains a challenging situation, as location estimation

relies only on proprioceptive measurements.

The use of a navigable road map is a promising technique

to tackle this issue. A navigable road-map is a source of

a-priory knowledge about the surrounding road network,

and the assumption of on-road vehicle is commonly made.

Several ways to introduce this knowledge have already been

studied. For instance, the road network can constrain the

snapshot GNSS computation [3], [4]. Moreover, an accurate

3D map can also be used to constraint the localization in a

dynamic fusion process since it provides altitude information

[5], [6] like a Digital Terrain Model [7]. A 2D navigable

road map can also be considered as a positioning sensor in

complement of a GNSS receiver [1]. Moreover, it can be

used as a virtual DGPS base station, providing corrections

to the vehicle localizer [8].

Every map-based methods has to handle particular issues

when using the map. Firstly, a common assumption is that

the vehicle is parallel to the current road segment, and

a map-matching step has been done to select the correct

road. Numerous map-matching algorithm are available in

the literature [9]. In case of mono-hypothesis map-matching,

each road junction can be considered as an ambiguous

situation. Secondly, these maps are often inaccurate because

of a limited spatial-sampling of the road geometry, biases

(absolute errors), and absence of altitude information. Thus,

using the map for providing a estimated location introduces

non-zero mean errors, and computing a map-matched lo-

cation leads to global estimation errors. Fortunately, map

precision is often better than map accuracy. This precision

can be exploited for enhancing global localization.

Since 2D navigable road maps are now affordable and

already embedded in many navigation systems, we address

the problem of taking benefit from this information for

enhancing global localization. Therefore, a method to merge

a 2D navigable road map with a hybrid GNSS system is

presented in this paper. Given the low accuracy of a navigable

road map, our proposal uses the road-map as a vector

field. Hence, the road-map provides heading information

in a Earth-tangential frame, like a compass sensor does.

Unfortunately, both the map measurement and the GNSS raw

measurements can introduce outliers in the fusion process.

According to the mono-hypothesis Kalman filter framework,

a cautious strategy, based on gating innovation signals, will

be used to reject these outliers. Since error modelling is

of particular importance, EGNOS/WAAS corrections are

exploited to eliminate as much as possible biases on the

pseudo-ranges, and estimate the noise variances.

The paper is organized as follow. First, an hybrid GNSS

fusion system is stated. Due to the Kalman filter framework,

a state-space description of the system is introduced, includ-

ing the process model and the observation model of the

dead-reckoning measurements and of the GNSS raw mea-

surements. The second section introduces navigable road-

maps and the map observation model will be stated. The

next section presents the data-fusion framework. A cautious

strategy used to handle GNSS and map outliers is described.

Finally, experimental results are given to illustrate the effi-

ciency of the introduced framework, particularly regarding

the proposed map-aided odometry.

II. HYBRIDIZED GNSS SYSTEM

A. Working frame

In order to merge GNSS measurements, expressed in a

Earth Centered-Earth Fixed (ECEF) frame, and propriocep-

tive measurements, expressed relatively to the vehicle body



frame, a local working frame must be defined [10, Chap.

10.4]. For that, a East - North - Up (ENU) navigation frame

is used. This frame is tangent to the Earth ellipsoid at a

given reference point, close to the working area. This frame

is valid only for a limited area and thus, must be updated

from time to time. The used reference point is linked to the

map. This will be introduced later.

B. Process model

Let us consider the process model used for the prediction

step of a Kalman filter. The process model derives from

a vehicle motion model. Hereafter, the vehicle motion is

depicted using a differential-drive motion model under the

following assumptions:

• Locally planar and locally circular motion at the rear-

axle middle point,

• Rigid body and pure rolling.

This motion model is then defined in a local plane. Hence,

state components must be added to take into account 3D

GNSS measurements. The vehicle altitude must be intro-

duced. Since we considered hereafter navigation areas of

little altitude variation, a constant elevation model is used.

Moreover, the raw GNSS measurements are biased due to

the receiver internal-clock offset. This clock offset must be

estimated on line too. To allow this offset to evolves during

an outage, the clock drift is also considered. Therefore, the

following state vector Xk is :

Xk =
[

x, y, z, ψ, v, ω, d, ḋ
]

(1)

Where (x, y, ψ) describes the 2D vehicle pose, z its alti-

tude, (v, ω) the linear and angular velocities of the vehicle,

and (d, ḋ) the GNSS receiver clock offset and drift. So, a

discrete motion model can be given by, Te being the sampling

period:
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(2)

The vehicle evolution model is then depicted by a set

of input-free, non-linear equations, where αk is the process

model errors:

Xk+1 = f (Xk) + αk (3)

C. Sensors models

1) Dead-Reckoning: The Dead-Reckonnig (DR) measure-

ments relies on three sensors: a yaw-rate gyro and two

rear WSS. They are provided by the ABS system of our

experimental vehicle . By neglecting their latency, they

provide a direct measurement of the vehicle kinematics.

Since DR is crucial in the presented method, a fiber optic

gyrometer (KVH400) is used for the yaw-rate sensing. Such

a sensor does not require any offset observation process and

provides directly the angular velocity of the vehicle body. Its

measurement is denoted ωm.

According to assumptions of Section II-B, the rear WSS

provide good estimates of the linear speeds of the wheels.

With vl (resp. vr) denoting the left (resp. right) linear wheel

speed, the observation model of the DR sensors is given by

the following linear equation set:
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Where L is the rear axle length.

This formalization allows isolating the sensor measure-

ments which can be useful for a fault detection and isolation

strategy.

2) GNSS measurements: The GNSS raw measurements

are provided by a Septentrio PolarX2e GPS receiver, working

at 10Hz. We have chosen to use only the L1 pseudo-ranges

(PR). The measured PR are estimated by the receiver regard-

ing the time of flight of the signal through the atmosphere

[10]. So, the PR observation model for a given satellite

(denoted s) is given by:

ρm = R+ c (dt− dts) − δatm −M (5)

With:

• ρm: measured PR,

• R: true geometrical distance between the observed SV

and the receiver,

• dts: Space Vehicle (SV) clock offset,

• δatm: elongation due to atmospheric effects,

• M : multipath error.

Fortunately, some assumptions are often made to simplify

this general model. First, let us assume that the signal is

not affected by multipath (it is the case in the reported

experiments). Second, the SV clock offset is estimated using

the broad-casted ephemeris. Third, Satellite Based Augmen-

tation Systems (SBAS) like WAAS/EGNOS broad-casted in-

formation is available. With these corrections (fast and long-

term, SV clock bias, ionosphere and troposphere), corrected

pseudo-range errors are assumed to be zero-mean, Gaussian

and uncorrelated [11]. The PR error variance (denoted σρ)

is also provided by these corrections. Therefore, the PR

observation model is reduced to:

ρ = R+ d+ βρ (6)

Where βρ represents the resulting noise with a covariance

matrix Qρ. Assuming n visible SV, the observation model is

non-linear and non-stationary:

{

ρi = hi (Xk) + βik
Qi,iρ = σiρ

∀i = 1, . . . , n (7)



Qi,iρ denotes the ith diagonal term of the noise covariance

matrix Qρ.

III. NAVIGABLE ROAD MAPS

A. Description

Commonly, a road database contains a vectorial descrip-

tion of the road network where each road is defined as an

object. A road object in the database is described by both

geometrical and topological information and is identified by

a single identification (Id).

Each road is spatially sampled and described by a set of

shape points and two nodes (origin and end). These points

form a polygonal curve describing the shape of the road

center-line. The number of carriageways and lines width are

also often known. In addition, a connectivity table is given,

allowing the user to known which roads are connected with

a given Id. This connectivity table is usually used for path

planning. It can also improve the tracking of the roads [12].

Unfortunately, a digital road map is subject to bad preci-

sion (ie. low spatial sampling) and bad accuracy (ie. absolute

offsets). Therefore, using the road shape for constraining

the position estimation induces non zero-mean errors which

can affect badly any Bayesian estimation process. Since

the precision of the map is often better than its accuracy,

we suggest to use the heading information provided by the

polygonal curve describing the road, under the hypothesis

that the car heading is parallel to the road. The DR process

can take advantage of this information, as its drift is very

dependent of the quality of the heading estimate [13].

B. Road Cache

A complete navigable road map represents a huge amount

of data that requires high computation capabilities, even

for offline computation. According to a real-time context,

a reduced road cache is extracted around a given point from

the database [12]. This given point is chosen as the origin

of the local tangent frame (see Section II-A). Thus, the

working frame must be updated when a new road cache is

requested. The coordinates of the nodes and shape points

are then converted into the working frame. Finally, during

the extraction, several road features, such as road segment

heading or length, are computed in order to accelerate the

map-matching computation. This is a second advantage of

using a road cache.

C. Map observation

In order to handle unavoidable position offsets, the map

observation itself is quite simple since it is only a heading in-

formation, according to the driving direction. Let suppose for

simplification that the right segment has been map-matched.

By denoting ψr this segment heading, the observation model

used for map update is:

ψr = ψk + βψ (8)

Where βψ is the heading error.

As a Kalman Filter is used, the measurement variance must

be known. Considering that the vehicule can maneuver at

low speed, this variance is computed according to vehicule

velocity v and the road width W . By modeling the vehicle

trajectory by a triangular wave on the road, we can compute

the maximum deviation angle ξ between the vehicle heading

and the segment heading. ξ is given by:

{

sin ξ = W
v

if v ≥W

sin ξ = 1 else
(9)

Taking ξ as the 3σ confidence zone for the map observa-

tion ψr, we are now able to quantify the variance (denoted

σr) for the map observation:

σr =
ξ

3
(10)

Equation (10) relaxes the hypothesis of having a heading

strictely parrallel to the road at low speeds.

IV. GLOBAL FUSION ALGORITHM

We present in this section a cautious strategy for tightly-

coupling raw GNSS measurements with 2D geographic infor-

mation and DR measurements. We suppose here that the DR

measurements are trustworthy. This an important parameter

since the DR estimate has to be reliable in our data fusion

process. So, the fusion of the DR sensors with the predicted

state is always carried out (see Fig.1). On the opposite, we

consider that both the GNSS measurements and the map

heading measure can be defective. Indeed, GNSS signals can

suffer from multipath or other propagation troubles, and the

map-matching stage can provide a wrong road, leading to a

faulty map measurements for example. Before doing the data

fusion of the prediction with the exteroceptive information,

validations of the map heading and of the GNSS PR are

done by checking the consistency of the innovations of the

Kalman filter.

A. GNSS validation process

A validation stage is made on the GNSS PRs to avoid

the fusion of biased measurements. This validation is made

before the second state update (Fig.1). The gating of

the measurements is done using the Normalized Innova-

tion Squared (NIS) test that uses the estimated state <

Xk|k−1,DR, Pk|k−1,DR > coming from the odometric up-

date. The NIS is given by:

ηk =
1

2
νk.Q

−1
ν .νk (11)

Where ν is the innovation and Qν its covariance matrix.

The innovation vector is the difference between the current

PRs vector ρk and the predicted measurement corresponding

to the predicted state Xk|k−1,DR:

νk = ρk − h(Xk|k−1,DR) (12)

Where h(Xk|k−1,DR) is the non-linear observation model

derived from the GNSS observation model (6).

In case of an Extended Kalman Filter, the innovation

covariance matrix is given by:



Fig. 1. Algorithm flowchart.

Qν = Hk.Pk|k−1,DR.H
T
k +Qρ (13)

Where Hk is the Jacobian matrix of the PR observation

model.

Based on the Gaussian assumption underlying the Kalman

filter theory, normally-distributed errors, with zero-mean, are

assumed. Therefore, the NIS has to follow a χ2 distribution

under normal operation. A threshold value is computed using

the χ2 distribution given a False Alarm probability. If the

normalized innovation ηk is greater than this threshold, the

measurement is not consistent with the noise model with a

high probability [14]. In this case, the PR is rejected.

B. Cautious Map-matching strategy

In opposition to GNSS that provides distinguished mea-

surements (ie each measurement is associated with a satel-

lite), the use of a navigable map involves a data association

step called map-matching. Many map-matching methods

have been studied in loosely coupled schemes [9]. It is

well known that every method can lead to miss-matching,

particularly if a mono-hypothesis strategy is used. As we

do mono-hypothesis selection here, the consistency of every

selected road segment has to be assessed relatively to the

DR state. The most-likely segment is selected as follow.

For every segment in the road cache, a selection criterion

is computed according to an estimation of the vehicle 2D

pose after the DR update. In this algorithm, the map-

matching is state-based, contrary to the measurement-based

method presented in [3]. It allows using the map even when

the GNSS satellites are totally blocked. The selection is

done using a normalized Mahalanobis distance based on the

vehicle-to-segment distance d and the angular distance ∆ψ
between the road segment and the vehicle current pose, in a

similar way than in [1]:

∆r =
d2

σ2
d + λ2

max

+
∆ψ2

σ2
r + σ2

ψ

(14)
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Fig. 2. ENU estimated trajectory using map-aided DR and pure DR.

Where σ2
d and σ2

r are the lateral variance and heading vari-

ance associated with the road segment. σψ is the estimated

variance of vehicle heading and λmax is the maximum eigen

value of the 2D position covariance. Next, the most likely

segment is chosen as the one with the lowest ∆r. Similarly

to the GNSS validation stage, the normalized innovation

of the most-likely segment is compared to a threshold,

computed again using a χ2 distribution. If ∆r is greater

than this threshold, the selected road-segment is considered

as inconsistent and the estimated state is not map-updated.

This improves the internal integrity of the method [15]. For

instance, if a road cache extraction error occurs, the map will

be always rejected.

The estimated variance of the position influences also the

map usage. If the position variance is small, the algorithm

tends to reject any incoherent map information, whereas the

map is used more often if the position variance increases.

This remark illustrates an additional risk due to the mono-

hypothesis approach: road junctions create ambiguous areas

where the risk of miss-matching drastically increases. To

prevent from this, ambiguity zones are defined around every

road junction in the road cache. The size of these zones

depends on the map quality. In practice, when the vehicle is

located within an ambiguity area, the map is considered as

unavailable.

C. Kalman-based algorithm

The global fusion process relies on a mono-hypothesis

Extended Kalman Filter (EKF) using serialized state esti-

mation stages. At a first step, a predicted state Xk|k−1 is

computed using (3). Then, a first state estimate Xk|k,DR is

computed using DR measurements (4). After this stage, map

data and GNSS measurements are treated simultaneously.

EGNOS corrections are applied to the PRs, and finally the
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consistency of the PR vector is tested according to (11). For

the map measurement, we first check if the vehicle is located

within an ambiguous area. If the map is available, then the

road selection is made according to (14). After that, the DR-

estimated state is updated with the map heading and/or with

the PRs, or not updated at all if both are rejected.

This algorithm is well adapted to asynchronous sensor

fusion, as each update stage is conducted separately. With

an efficient implementation of the map-matching method,

the map update can be realized at the DR sensor frequency,

where as GNSS correction can be done at a lower frequency.

V. EXPERIMENTAL RESULTS

Experiments have been carried out in May 2007 using

an experimental vehicle of the lab Heudiasyc. The reference

path of the vehicle has been recorded using a Trimble 5700

DGPS PPK receiver and 4 base stations from the French

Orpheon network. The car was driven in Compiegne suburbs,

which constitute an open area with occasional tree foliage

leading to GPS errors and bad geometrical configuration of

the SV constellation. For all the following experiments, a

unique road cache was used with the reference point located

at N 49˚23′6.36”, E 2˚47′2.04”. The GPS raw data were

recorded using a Septentrio PolarX2e at 10Hz.

A. Map-aided DR

In this first experiment, the benefit of the map heading

information on the DR estimates is shown. GPS is used up to

the first vehicle displacement for filter initialization purposes.

The initialization stops after 45s. Fig.2 depicts the vehicle

trajectory in the working frame. It also shows the estimated

trajectories using only the DR measurements (dashed-blue),

the map-aided DR estimates (red-solid) with an emphasis on

the locations where the map information was used in the

position computation (red-stars). Fig.3 points out the RMS

error for the DR-only and map-aided DR estimates, and the

1σ lateral uncertainty of vehicle estimated location.
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Fig. 4. RMS errors of hybridized GPS and Map-aided hybridized GPS.
The difference on the estimated standard deviation is also reported.

According to Fig.2, it can be clearly seen that the esti-

mated heading after initialization is not precisely estimated.

This poor initialization introduces a small initial heading

error into the DR-only process. When using the map to

correct DR estimates, this offset is reduced allowing a much

better estimation of the vehicle localization. In this test,

the map was used about 49% of the time, including the

initialization stage. The gain on the estimation process is

clearly visible on Fig.3, as the RMS error stays under

6m. The estimated lateral variance for the map-aided also

shows significant improvement as it stands under 25m. The

fluctuation of the lateral accuracy are due to the heading

angle variations which modifies the steady state behaviour

of the Kalman Filter [16].

According to these results, we can conclude that map-

aided DR is useful to recover from initialization errors, which

frequently occurs at the beginning of an outage. Moreover,

when using low-cost DR sensors, map-aiding odometry is

useful to handle longer outages with less drift. In that case,

the accuracy of the vehicle estimates degrades slower than

with DR only systems.

B. Map-aided hybridized GPS

In this second experiment, the emphasis is made on the

neutrality of map-aiding under good GNSS signal conditions.

Indeed, a well-tuned multisensor fusion technique has to

merge all the available information. When GNSS is running

with a good satellite configuration, the use of the map must

not degrade the performance. Often, because of the difficulty

to merge low-quality data with GNSS, aiding-systems are

mainly used as backup system into [1]. We have noticed that

our data fusion approach gives the same results when GPS

is available with or without the map. To evalute this, let us

consider the difference between RMS error for hybridized

GPS and for map-aided GPS under identical GPS signal

conditions. This is shown in Fig.4. A positive value means

that the RMS error for hybridized GPS without map-aiding
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is greater than the RMS error of map-aided hybridized GPS

estimates. The 1σ variance difference is also given in Fig.4.

Peaks are due to GPS errors.

According to the upper curve, the difference mean-value

is 3mm for the RMS error between hybrid GNSS and map-

aided hybrid GNSS. Likewise, the difference mean-value is

6mm for the estimated variance. According to these two

results, neither improvement nor degradation can be seen

when the GNSS receiver is under good signal conditions. It

should be noticed that the map is used 33% of time in this

test. This is an interesting feature that proves the efficiency

of the proposed fusion method. So, the map-aiding can be

used continuously since it gives similar results under good

signal conditions.

C. Degraded GPS signal conditions

For this final experiment, the GPS availability is intention-

ally degraded: Only the two highest SV were considered as

visible (PRN 1 and PRN 11). In such a situation similar to

an urban canyon, a standalone GPS receiver is not able to

provide a positioning solution. We compare the performance

of the hybridized GPS system with and without the map.

Fig.5 shows results of this experiment. The upper chart shows

the difference between the RMS error of the hybridized GPS

and the one of the map-aided hybridized GPS. The lower

chart depicts the estimated elevation error for both systems.

After the initialization stage, one can notice that the

hybridized GPS without map-aiding suffers from a bigger

error. The mean-value of this difference is around 1.5m. The

accuracy of the estimated state is so improved. Considering

the elevation deviation of both systems, we can notice that

the map-aided hybridized GPS suffers from a lower altitude

deviation. The mean value for the map-aided hybridized

GPS is 10.65m whereas the mean-value for the hybridized

GPS is only 12.02m. We can also establish a relationship

between the elevation difference (1.36m) and the RMS error

difference (1.5m). Under harsh reception conditions, the

estimation of the elevation is logically degraded.

VI. CONCLUSION

In this paper, a map-aiding technique for hybrid GNSS

systems has been presented. The proposed approach uses

only 2D maps in a 3D localization problem, thanks to the use

of an adequately chosen local frame and a road cache data

set. In this frame, the data fusion is easy to perform. After

the updating with the DR measurements, the map heading

is obtained after a road selection. Afterward, the estimated

state is corrected by the map heading. When the system

suffers from GPS outages, the map-aiding odometry allows

compensating vehicle heading errors.

The proposed data fusion scheme based on the detection

and the rejection of doubtful exteroceptive information com-

pared to the estimated movement of the vehicle has proved

good qualities. The map can be always fused, DR drift is

compensated and the GNSS measurements can be used even

when less than 4 satellites are visible. The experimental

results have shown that the use of a 2D navigable map

in an hybridized GPS system improves the 2D estimates.

Unfortunately, under challenging conditions, the altitude is

poorly estimated. Therefore, the use of future 3D navigable

maps constitutes the main perspective of this research.
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