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Abstract— As mass-market video game controllers have be-
come more advanced, there has been a recent increase in
interest for using these as intuitive and inexpensive control
devices. In this paper we examine position control for a robot
using a wiimote game controller. We show that human motion
models can be used to achieve better precision than traditional
tracking approaches, sufficient for simpler tasks. We also
present an experiment that shows that very intuitive control
can be achieved, as novice subjects can control a robot arm
through simple tasks after just a few minutes of practice and
minimal instructions.

I. INTRODUCTION

As robots become increasingly prolific, the number of
people that come into contact with them grows steadily. From
having been specialized tools used by trained specialists,
more and more effort is put into making robots into general
tools used by untrained operators. Therefore, it is important
to find intuitive modes of interaction that require as little
training as possible of the users. Also, the less effort the
user has to put into operating the robot, the more effort can
be put into solving the task at hand.

In recent years, mainstream computer game interfaces
have become more and more advanced and are beginning
to receive more interest as tools for robot interaction. By
their very design, these interfaces are meant to be used
by untrained laymen, while still enabling detailed enough
control to keep games interesting.

As reported in [1]–[6], the remote control device for
the Nintendo Wii video game, the accelerometer-equipped
“wiimote” interface is intuitive and easy to use. Even though
it might not be as accurate as a traditional control interface,
the cognitive load is lower, allowing the user to concentrate
on other things, or performing several tasks simultaneously.
Others report that wiimote control is less precise and lowers
task performance as compared to more traditional input
devices [7]. Recently, an industrial robot arm controlled with
a wiimote has attracted media attention [8], but so far this
has only been using task level control where the task is
not performed until the user input motion has ended. To
the knowledge of the authors, there are no reports of direct
position tracking using the wiimote accelerometers.

As the wiimote and other gaming interfaces are intended
for a mass market, they are cheap and easily available.
A drawback, however, is that the precision in the motion
detection hardware leaves a lot to be desired for high-
precision industrial or scientific applications.

In the present paper, we present a way to use human
motion models to accurately track human input using the
wiimote controller. With the presented approach using min-
imum jerk trajectories, position control to within a few
centimeters of a desired target is attainable. The method
enables simultaneous — and for some cases even predictive
— tracking, so the input can be analyzed in real time, making
it possible to implement task level control that performs the
task simultaneously with the user’s input.

The paper is structured in the following way: Section II
describes the motion models used, Section III describes the
technical details of the implementation, Sections IV and V
describe experiments used to verify the approach, and the
conclusions are presented in Section VI.

II. MODEL-BASED CONTROL

In this section we discuss the need for model based
control, present the minimum jerk model, and argue why
this is suitable for the present problem.

A. Position Tracking with Accelerometers

The wiimote uses MEMS accelerometers. Consequently,
the accuracy is limited and one has to consider the challenges
of using sensors that have limited accuracy.

The first challenge is one of observability. In the strict
sense of the word, position is not observable from acceler-
ation measurements alone, as one will not know the initial
position or velocity. In practice, however, one can assume
that a motion starts at rest at the origin, adding initial
conditions that resolve observability.

The second problem is more difficult. A measurement ˆ̈x
of acceleration ẍ will be corrupted by noise w. Thus, when
we integrate ˆ̈x twice to get an estimate x̂ of position x,
we will have that x̂ ∼ x + wt2. That is, the error is
now proportional to t2, and will tend to infinity over time.
In practical cases, just taking the naı̈ve double integral of
acceleration measurements from a wiimote will give position
estimates where the noise to signal ratios exceed 1 after
just a few seconds. This is a well-known problem, and has
been partially solved for shorter durations by removing bias
errors and filtering the results, with e.g. a Kalman filter [9],
[10]. However, these approaches only minimize the error
coefficient w, they do not eliminate the t2 dependency. Due
to these problems, up to now, accelerometers have mainly
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been used for qualitative input, such as gesture recognition
based interfaces [4], [11].

B. Minimum Jerk Motion Model

We propose to use human motion models to cope
with the aforementioned tracking problems. We assume a
parametrized model for possible motions and estimate the
parameters from measurements, thus guaranteeing that the
generated motion belongs to a subset of valid motions.

A well-known model for explaining the kinematics of
visually guided human reaching motions is the minimum
jerk (MJ) model. It was first proposed by Hogan for single-
joint motions in [12], and later extended to include multi-
joint planar motion in [13]. More recently, other, more
detailed models like minimum joint torque change, minimum
force, or minimum energy have been proposed and shown to
describe human motions more accurately [14], [15].

However, the more detailed models require detailed knowl-
edge of posture and intrinsic mechanical parameters of the
human subject, parameters that are not observable when
using a handheld wiimote for motion input. On the other
hand, as we shall see below, the MJ model can be completely
described in cartesian space coordinates with no explicit
knowledge of the subject’s intrinsic mechanical properties,
and is thus possible to implement in our scenario. Further-
more, when a subject is performing free motion of moderate
extents with the wiimote, it is reasonable to assume that no
external forces other than gravity act on the user, and that
posture does not change significantly during the motion. In
this case, it has been shown that trajectories predicted by the
MJ model do not differ significantly from ones predicted by
the more advanced models [14].

MJ theory is based on the observation that the trajectory
of voluntary arm motions when described in extra-corpular
cartesian space, can be described with a model in which the
square sum of the third derivative of position, jerk, integrated
over time is minimized [12], [13]. Given a starting point, an
end point and a time to move between the two, the trajectory
that minimizes the jerk on this interval is the MJ trajectory.
All MJ trajectories share the property that the 6th derivative
is zero for the duration of the motion, and that they thus can
be described as 5th degree polynomials, as in Equation 1.

x(t) = a1t
5 + a2t

4 + a3t
3 + a4t

2 + a5t + a6 (1)

If we also add the start and end points of the motion, x(t0)
and x(t1), and state the position, velocity, and acceleration at
these points, we get the following constraints on Equation 1.

x(t0) = x0, x(t1) = x1

ẋ(t0) = ẋ0, ẋ(t1) = ẋ1

ẍ(t0) = ẍ0, ẍ(t1) = ẍ1

The above constraints give us 6 equations, and we get a
well-defined system to find the 6 parameters a1 . . . a6. Thus,
there is only one possible MJ trajectory for a given start and
end, and it can be found by solving a simple system of linear
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Fig. 1. Y component of measured hand trajectory with MJ trajectory fitted.
In this case the hand trajectory contains only one major MJ component.

equations. This is illustrated with an example of a human’s
reaching motion recorded from an experiment in [16] with
the MJ trajectory superimposed, in Fig. 1.

C. Model-based Input Tracking

Using the assumption that the user only performs isolated
reaching motions, an input tracking system based on MJ
theory was designed. Here, “isolated” is used in the sense
that one motion does not start until the previous motion is
ended, in practice requiring a 100 ms separation. Thus, the
constraints are set so that ẋ0, ẍ0, ẋ1, and ẍ1 are all zero, and
each motion is assumed to start where the last motion ended.
This ensures that all motions end at zero velocity, eliminating
buildup error. Since the measurements are in acceleration
space, Equation 1 was differentiated twice to get Equation 2.

ẍ(t) = 20a1t
3 + 12a2t

2 + 6a3t + 2a4 (2)

We assume that all motions start and end with zero
acceleration, which gives the following constraints:

ẍ(t0) = 0, ẍ(t1) = 0

Then, Equation 2 can be rewritten parametrized by the
single constant a1, as in Equation 3.

ẍ(t) = a1(20t3 − 30(t0 + t1)t2

+10(t20 + t21 + 4t0t1)t
−10(t20t1 + t0t

2
1))

(3)

The remaining constants are found as:

a2 = − 5
2 (t0 + t1)a1

a3 = 5
3 (t20 + t21 + 4t0t1)a1

a4 = −5(t20t1 + t0t
2
1)a1

Given a consecutive stream of acceleration measurements,
Equation 3 can be fitted to a segment of these using least
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squares fitting. The initial state is assumed to be non-
moving, and all acceleration measurements beneath a certain
threshold are ignored. When four consecutive measurements
above the threshold have been recorded, the fitting process is
initialized. Thus, in the beginning of a motion, only a small
part of the curve will be fit to actual measured points — the
rest will be extrapolated.

Two of the parameters in Equation 3 are the unknown start
and end times of the motion, t0 and t1. These are found using
an exhaustive search. Results in [16] show that we should
expect motion durations from 0.4 s to 1.0 s, so we search an
interval from 0.3 s to 1.3 s to cover all expected durations.
We call the time where the acceleration threshold is exceeded
ttr. We then let t0 take all values from ttr − 100 ms to
ttr + 100 ms in 10 ms steps, and for each value of y0, we
let t1 take the values from t0 + 300 ms to t0 + 1000 ms,
also in 10 ms intervals. For each interval [t0, t1], we find
the least square fit using all available data for the interval.
The average residual error is calculated for each possible
interval by dividing the residual sum with the number of
measurement points, and the one with the smallest average
residual is chosen as the interval and trajectory to use.

Eventually, a more efficient way to find the start and end
points should be implemented, but as at most approximately
400 datapoints will be used for least squares fitting for 1400
possible time intervals, the trajectory fitting is easily run in
a few milliseconds, allowing realtime implementation on a
regular desktop computer. Therefore, this has not been an
urgent point of improvement.

The average residual error is summed over all three
dimensions, so large distinct minimum jerk type motions in
one or more dimensions will take precedence over noisier,
less distinct motions in the remaining dimension(s). As it is
the same motion, it should start and end simultaneously in
all dimensions, and any deviation from this can be viewed as
noise and ignored. In order to get the trajectory in position
space, the polynomial is integrated, using zero initial velocity
and the last known position as the constants of integration.
For an illustration of acceleration measurements and the fit
function, see Figure 2.

When the endpoint t1 has been passed, the system will not
attempt to detect the next motion until 100 ms have passed, in
order to avoid treating the end of one motion as the beginning
of the next.

In this control mode, the current velocity and position
obtained from integrating the polynomial one or two times
respectively can be sent directly to the robot controller for
real-time control. As time progresses, more and more points
will be used for fitting the curve, and thus the precision
improves as the trajectory is executed. As was shown in [17],
the trajectory is stable enough that further measurements
have little impact after about half of the motion has been
performed. Since the endpoint of the polynomial trajectory
is trivial to find, this means that a decent approximation of
the endpoint of the hand trajectory is available after half of
the motion has been performed.

The limitations of this approach is that it is only possible
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Fig. 2. The left figure shows the third degree curve fit to measured
acceleration. The right plot shows the same data integrated to position space.
The dashed horizontal lines in the right figure show the positions of the
target.

to track (series of) isolated motions. It is not suited for
following complicated continous paths, as 100 ms of motion
would be cut out between each detected MJ trajectory,
resulting in severe drift as the robot moves less than the
user.

III. IMPLEMENTATION

The input tracking algorithm described in Section II-C was
implemented and evaluated on motion data using a wiimote
controller.

A. User Interface

The user interface consists of a stock wiimote video
game controller, see Figure 3. The features that are used
in this setup are 3 linear accelerometers with a range up to
±50 m/s2 and 0.38 m/s2 resolution, a 1024×768 pixel IR
camera, and a trigger button. User input is read at 100 Hz.
The accelerometers are reported to have an accuracy of
±10% [1], but this has not been verified in the present
setup. The accelerometers were calibrated so that constant
and linear bias errors were eliminated.

Fig. 3. The Wiimote input device.
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An IR LED setup provided with the wiimote is used
with the camera to determine the orientation when the user
is pointing forward. When the LEDs are not visible, an
EKF keeps track of the orientation, also making use of
the accelerometer data generated by gravity whenever the
wiimote is assumed to be nearly motionless. When the
LEDs are not visible, the orientation measurements become
slightly less accurate, but the main difference to using LED
data is that rotation can not be measured along the vertical
axis, limiting tracking to 5 DoF instead of 6. Apart from
tracking the direction the user is pointing, the orientation
data is also used to subtract the Earth’s gravity from the
accelerometer readings, as well as to convert measurements
from the wiimote frame of reference to the global frame of
reference. The trigger button is connected to a reset function
that sets position and velocity to zero, used to initialize the
reference zero position.

B. Evaluation setup

The system was evaluated with a series of simple experi-
ments. For these experiments, a ground truth measure of the
position was obtained using a simple motion capture setup
consisting of a stereo camera pair that tracked a marker at the
base of the wiimote. The stereo pair has a 60 cm baseline.
The tracking error is less than 1 cm in the workspace used,
and temporal resolution is 50 Hz.

IV. EVALUATION EXPERIMENTS

A series of trials were carried out to evaluate the perfor-
mance of the MJ based tracking method.

A. Proof of Concept

In the first trial, we demonstrate proof of concept by
moving the wiimote freely in space through a series of
distinct reaching motions. The motion capture data was then
compared with the trajectories generated by the MJ estimator.
The resulting trajectories are shown in Figure 4. These results
are illustrative of the MJ model based tracking performance.
In comparison, the performance when simply taking the
double integral of the accelerometer readings on the same
data does no longer fit in the plot after the first few seconds,
but the accumulated position error is 62.7 m and the velocity
error is 3.18 m/s at the end of the 37 second session.

B. Tracking Experiment

We conducted a tracking experiment where we collect
statistics on tracking performance and compare these to
other more straightforward methods, in order to achieve a
quantitative measure of precision.

In this experiment, a set of physical targets were set up.
These consist of colored plastic balls that can be touched
with the wiimote. One ball was designated as a starting point,
and three other balls were mounted on a line 0.3 m above
it, see Figure 5. Subjects were asked to start by touching the
starting point ball, and then touch the colored balls as called
out by the experimenter. The starting point was located at
about chest height in front of the subject, and the other targets
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Fig. 4. The trajectory of the wiimote estimated with the MJ approach
compared to the trajectory recorded by a motion capture system.

were located approximately at face height. Each subject was
asked to carry out 40 such touching motions, according to a
predetermined pattern. In total, 5 subjects were used. They
were not given any other instructions than to start stationary
and touch the colored balls as called out, and had not been
told the purpose of the experiment or the details of the
tracking system before the experiment.

Target
GrayYellow

Target
Red
Target

0.25 m0.25 m

0.
3 

m

Start Point (Blue)

Fig. 5. Schematic of targets used in tracking experiment. Subjects start
with the wiimote touching the start point, and move the wiimote to touch
the colored targets as called out by the experimenter.

The position as tracked by the motion capture system,
the position as tracked by the MJ based tracker, and all
raw measurement data were logged. For comparability, each
motion was analyzed separately, rather than measuring the
total error after all motions were completed.

The results of the MJ based tracker were compared to
the motion capture positions, and the error, expressed as
the distance between the two positions at the end of each
motion when the wiimote had stopped at the target ball, was
recorded. For a baseline of comparison, the raw data logged
from the wiimote was parsed offline through two alternative
tracking methods.

First, the result obtained when performing a naı̈ve double
integration of the acceleration was calculated. In this case,
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position and velocity was reset at the beginning of each
motion, to attenuate buildup error. Motion start and end times
manually picked from the motion capture tracker were used
for limits of integration. This minimized the buildup error
by excluding data not from the actual motion duration.

A more refined approach is to use a Kalman filter for
the tracker. The same acceleration data as with the naı̈ve
integrating approach was used, and the filter parameters were
tuned manually offline in order to minimize the error on this
dataset. This guarantees that we achieve the best possible
Kalman filter results, and minimize the negative impact of
filter tuning choices. In an online implementation, a Kalman
filter would perform worse than this.

The resulting errors at the motion endpoints are summa-
rized in Table I. As can be seen, the MJ based approach out-
performs the other two for precision. This is so even though
the MJ based approach detects motion start and endpoints
automatically. This detection has to be done manually for
the other systems, to prevent small errors in acceleration to
build up to considerable drift in velocity and position.

TABLE I
RESULTS FROM REACHING EXPERIMENT

Method avg error std error
Naı̈ve integration 0.097 m 0.108 m
Kalman Filter 0.074 m 0.082 m
MJ model 0.061 m 0.051 m

V. ROBOT CONTROL EXPERIMENT

The previous section showed that an MJ based tracker
can follow human motions more accurately than traditional
tracking approaches. To test the feasability of using this
type of input device for control of a robot manipulator, a
simple user experiment was carried out. In this experiment,
the subjects used the wiimote to steer a robot to touch colored
balls in a task similar to the one in the previous section.

A. Robot Platform

The robot used in this experiment is a fast and lightweight
manipulator with six degrees of freedom, see Figure 6.
If started in the center, the robot can reach any point in
its 60 cm × 60 cm workspace within 0.55 s, with the
settings used in this experiment. The end effector used in
this experiment is a floorball mounted on a 10 cm piece of
PVC pipe. A detailed description of the manipulator can be
found in [18].

B. Procedure

The colored ball targets described in Section IV-B were
placed so that they were reachable by the robot. The target
balls were mounted on PVC pipes so that they were situated
at 25 cm intervals 30 cm above the robots centered default
position. The targets will move when hit, but come att rest
in the original position within a few seconds. See Figure 6
for an illustration of the setup.

The subjects used the robot to carry out the same target-
touching tasks that were done directly with the wiimote in

Fig. 6. The manipulator and targets. From left to right, the target colors
are yellow, gray, and red.

the previous experiment. They were given a brief instruction
in how the control system worked, and were asked to hold
the wiimote so that its position parallelled the position of the
robot. Before the experiment started, they were given a few
minutes free practice to become acquainted with controlling
the robot. In total, 15 subjects were used, 12 male and 3
female. All subjects were right-handed and had normal or
corrected to normal vision.

1) Aid systems: In the user experiment, two types of
aid systems were also implemented and evaluated. These
systems grant the user less freedom of motion, but give
higher precision.

The first aid system used virtual fixtures. The resulting
motion from the MJ based system is projected onto a
straight line from the starting point to each of the possible
goal points. The line with the shortest euclidian distance to
the estimated position is chosen. Using this approach, the
possible motion trajectories of the robot arm are along a
straight line towards one of the three goal points, and the
user can control which goal to move towards, when and how
fast to do this, and how far towards the goal to move.

The second aid system implemented task control, for the
highest possible precision. In this control mode, the user’s
input is used to choose between 4 possible predefined tasks:

1 Touch red target
2 Touch gray target
3 Touch yellow target
4 Stay in start position
In order to choose which task to execute, a polynomial

trajectory estimate is calculated as in the MJ control system,
and the endpoint of the motion is extrapolated. The target
closest to the endpoint is then touched. If the endpoint of
the motion is not close enough (within 15 cm) to any of the
targets, task 4 is chosen and the arm remains motionless.
In the first few centimeters of a motion, before an accurate
target estimate is available, the arm will follow the directly
tracked position of the wiimote. The arm will therefore start
moving almost at the same time as the user, long before the
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TABLE II
THE PERCENTAGE OF HITS WITH EACH OF THE THREE SYSTEMS.

MJ Control Virtual Fixtures Task Control
median 37.5% 72.5% 85%

best 75% 97.5% 100%
worst 17.5% 37.5% 42.5%

user’s motion is completed, and if the user moves straight
towards one of the possible target postions, the result will
be an exact mimic of the user’s motion in real time. If the
extrapolated endpoint is recalculated to be closer to another
target during the execution of a motion, the task will be
changed in mid-motion.

C. Task

Each subject was asked to stand next to the robot so that
all motions were carried out in parallel, as shown in Figure 7.
The colors “red”, “gray” and “yellow” were called out to the
subject, who in turn tried to touch the corresponding target
with the robot end effector by carrying out the same motion
with the wiimote.

Fig. 7. The subject and the robot.

The subjects were asked to first perform the 40 motions
with the MJ based tracker directly controlling the robot
in real time, and then repeat the procedure with first the
virtual fixtures and then the task control system. Each subject
had to touch the 40 targets in a predetermined order that
was identical for all experiments. In total, 120 motions
were recorded for each subject. The fastest subjects took
approximately 12 minutes to complete the experiment, the
slowest subject needed 18 minutes.

D. Performance

The task completion performance was measured in a “hit-
or-miss” fashion. Each time the user would hit the indicated
target in one try without hitting any other targets counted
as a hit, and a failure to do this, however close, counted as
a miss. This means that the allowed margin of error is the
diameter of the balls, 6 cm. The results are given in Table II.

E. Trajectory Estimation Performance

While the “hit-or-miss” metric gives an overview of the
performance, analyzing the tracked positions of the wiimote
controller gives quantitative measure of precision. Figure 8
shows the cumulative percentage of tries that came closer
than given distance of the targets. The most eye-catching
result is that the performance is the worst for the yellow
target, which had the right-handed subjects reaching to their
left. Another observation is that for the most part, the user
input has higher precision for the MJ mode. This is to be
expected, as the subjects are likely to notice that they can
complete the tasks with less effort when different levels of
aids are added.

The motion caption system we employ is only usable
within the robot workspace, and it was therefore not possible
to use this for ground truth measurements when users were
controlling the robot. We assume, however, that the precision
of the MJ based tracker in this experiment is similar to what
was shown for the experiments in Section IV-B. If we isolate
the three best performing users, we see that their average
errors — as measured as the distance from the actual target
position — are only slightly larger than the inherent error in
the tracker. Their average error was 11 cm.

The average error over all 15 subjects was 19 cm in total,
but the error in the horizontal plane was smaller than the
error in the vertical direction, 11 cm as opposed to 16 cm.
A probable reason for this is that moving too far in the
vertical direction would still score a “hit”, while a miss in a
horizontal direction resulted in a “miss”.

F. Observations

Some subjects were fairly close to the targets when they
missed in MJ control mode. The performance of these
subjects improved greatly from the added aid of virtual
fixtures or task control, the largest improvement being from
22.5% success without aids to 87.5% and 92.5% success
rates for the two aided modes.

Other subjects, with a larger standard deviation in their
input, did not improve their performance with added aids. In-
deed, some subjects’ performance even degraded. They made
motions that were too large and rapid, in effect saturating the
acceleration sensors. They thus miss the targets by more than
15 cm. The effect of this is that the robot does not move as
they expect it too. They make the false assumption that the
motion was too small for the control system to register, and
adjust by making even more exaggerated motions, further
worsening the performance.

VI. CONCLUSIONS

When estimating hand trajectories from the accelerometer
data gathered from a wiimote, imposing minimum jerk mo-
tion models improves performance significantly over simply
integrating the acceleration or using Kalman filtering. One of
the main advantages with the MJ approach is that drift caused
by buildup error is eliminated, but the MJ based tracker
performs better even when the buildup error is manually
removed from the Kalman tracker.
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(a) Cumulative performance for red target.
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(b) Cumulative performance for gray target.
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Fig. 8. User performance

However, the precision is still only good enough for the
simplest of manipulation tasks, and when physically sepa-
rated from the task, as in the robot experiment described in
Section V, the users themselves introduce a larger positioning
error than the input tracking system.

Adding virtual fixtures greatly improves precision while
retaining enough sense of direct control to allow users to
improve their input motions. Even the completely novice
users in the experiment in the present paper could achieve
good success rates after a few minutes of operation. Giving
more control to the robot, as in task control mode, raises
the success rates further for most users. However, this
control mode can be less intuitive and users that have poor
performance may not understand how to improve it.

Given the results in the present paper, it is reasonable to
expect future applications utilizing these types of intuitive
controllers for manipulation tasks. Several simple modifica-
tions could also be added to the approach described here in
order to raise precision. As suggested for other applications,
a tetrahedronal IR array can be used to give absolute 6
DOF pose measurements when the wiimote is centered on
the array [19]. This could be combined with the approach
used in the present paper to cover a large range of possible
poses. Also, it is highly probable that the Wii MotionPlus, a
gyroscope sensor extension for the wiimote, can be used to
further improve motion tracking.

Furthermore, as more and more handheld devices such as
cell phones and PDAs are equipped with accelerometers and
other sensors, this approach could also be applied to novel
input interfaces for these.
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