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Abstract— In this paper we describe a method for bridging
internet time delays in a teleoperation scenario. In the scenario,
the sizes of the time delays is not only stochastic, but it is
also large compared to the task execution time. The method
proposed uses minimum jerk motion models to predict the
input from the user a time into the future that is equivalent to
the one-way communication delay. We present results from a
teleoperated ball-catching experiment with real internet delays,
where we show that the proposed method makes a significant
improvement over traditional methods for teleoperation over
intercontinental distances.

I. INTRODUCTION

The desire to transfer human action over space, time and
scale is well-known by now. One of the most widely adver-
tised examples is the NASA Mars Rover Program. Other uses
of teleoperation include medical robotics, hazardous material
handling and teleoperated drones for military surveillance.

Teleoperation has been widely used in a variety of applica-
tions and is in many respects considered a mature technology,
but few studies have considered teleoperation in the presence
of significant dynamics [1]–[4]. The qualifier “significant”
dynamics is used here to specify a process where the time-
delay is a large fraction of the process cycle time.

A time-delay challenges control as it introduces a phase
shift that make the control more difficult. For small time-
delays it is easy to model it explicitly. For applications
with time delays longer than the process time, such as the
Mars rover program or control of some systems on-board the
international space station or the space shuttle, the adopted
strategy has been to use task oriented control [1], [2], [5].

A model frequently used with shorter time delays is
to introduce a Smith predictor for compensation for the
system delay [6], [7]. The Smith predictor inherently limits
bandwidth of the overall system and in addition it is only
well suited for systems with deterministic delays. Wave
variable approaches have been successful in producing stable
bilateral teleoperation with force feedback [8]. These have
been extended with predictive systems with varying time-
delays for handling stochastic channels, as in [9]. However,
the bandwidth of interaction is still limited, leaving highly
dynamic tasks untractable.

To understand this problem we have chosen to study the
challenge of teleoperated catching. When catching an object
thrown across a room, the flight time is on the order of
600–900 ms, and for intercontinental teleoperation across

the internet typical roundtrip delays are in the range of 100–
200 ms for normal socket operations, which is on the order
of 15–25% of the overall flying time. How does one select
a control strategy for such systems?

It is well known that humans are visually dominated [10],
and there are clear models that suggest that much of hu-
man actions are feed-forward driven rather than feedback
driven [11]. Under such a control regime one would expect
that motion for interaction is largely prospective, in particular
for dynamic situations. If a person were to catch a thrown
object directly then s/he would perform a ballistic arm
movement followed by some correction [12], [13]. Given
such a strategy, how can the early motion by the user be
estimated and predicted with sufficient accuracy to allow it
be to used to generate an early motion control signal for
the end-effector? In previous work, it has been shown that
minimum jerk motion models can be used to predict the
input of a human operator [14], [15]. The novel contribution
of the present paper is integrating these predictions into a
closed loop teleoperation control system with time delays,
and verifying the performance in experiments.

We study the estimation of commands issued by the user
under significant time pressure. The questions addressed are:

• What are good estimation models for identification of
the trajectory specified by the user?

• How can these models be integrated into the control
system?

• What kind of performance can be achieved with a real
system?

It is worth noting that others have studied the design
of ball-catching strategies earlier. Autonomous robotic ball-
catching has been described since the 1980’s [16]–[19].
Human ball-catching has also been widely studied [20], [21].
At DLR, human catching has been analyzed with the aim
of improving trajectory generation for robotic catching [22],
and at NTUA human motion models have been employed in
order to use EMG to control robot catching for 1-dimensional
trajectories [23]. However, teleoperated catching with free-
flying 3-dimensional trajectories is a novel problem, to the
best knowledge of the authors. Minimum Jerk models have
also been applied in real time to human input in other
work, with the aim of generating virtual fixtures that help
an operator to avoid collisions while maintaining as much
transparency as possible [24].

The paper is organized as follows: Section II describes the
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teleoperated ball-catching task and the associated problems,
Section III describes the solution approach using user input
prediction, Section IV describes the time delayed teleopera-
tion experiment used for evaluation and presents its results,
and Section V concludes the paper.

II. TASK DESCRIPTION

Ballcatching has been chosen as an example task in order
to study teleoperation of a process where the time-delay
is a large fraction of the process cycle time. The task for
the operator is to guide the robot’s end effector so that it
intercepts the ballistic trajectory of the ball. The operator
has to perform this without any direct observations of the
ball or the manipulator, with all information being relayed
through a user interface.

Given the specifications of the available experimental
setup, the task can be specified more exactly as catching
a ball that has been thrown a distance of 4 meters for a
flight time of approximately 900 ms. The ball is caught in a
cylinder if the spatial precision of the catch is within 4 cm.
A detailed description of the manipulator and the catching
task can be found in [25].

As an illustration of the difficulties that arise with delays,
the setup was teleoperated with the user being located in
Pontedera, Italy, and the manipulator being in Stockholm,
Sweden. The average round-trip delay when using a public
internet connection was measured to 50 ms. In that test, one
single ball was caught, possibly the first successful trans-
continental teleoperated ball-catching experiment of its kind.
However, an examination of the subsequent misses showed
that in most cases a correct intercept position was reached,
but too late to be in time to catch the ball. Thus it is of
interest to find a technique to bridge the time-delay problem.
The current paper aims to find a means to do this so that
a human operator can successfully perform a dynamically
challenging task even in the presence of these significant
delays.

III. IMPLEMENTATION

A. Control Strategy for Teleoperation

A classical control theory approach to coping with fixed
time delays is the Smith predictor [6], [7]. More recently,
time delays in bilateral teleoperation have been succesfully
dealt with using wave variables [8]. Combining this approach
with Smith predictors and Kalman filtering, it has also
been successfully applied to stochastic time delays [9]. One
main reason for the success of wave variables is that they
force passivity, and thereby stability, onto the time delayed
teleoperation setup. However, this stability comes at the cost
of responsiveness, and it has been shown that the perfor-
mance degrades significantly as the magnitude of the delay
approaches the time constants of the control signal [26]. In
the scenario described here, the order of magnitude of the
time constants is around 100 ms.

Another reason for the success of wave variables is their
applicability to bilateral force-feedback control. In our ball-
catching scenario, force feedback is not thought to be of

mδ(  −τ  )t
+

τa

τcτm

t τv

t τv t τv

vτ

Operator Haptic
Device

ControllerLP Filter

of robot
Simulation

+

−
+

corr

+

local controller
Robot, includingy(t) u(t)

τ τv m

y    (  +   ) Haptic

Communication link

simy   (  +   )

u(  +   )

Fig. 1. Control structure A, with Smith predictor only (skewed boxes
represent delays).

importance, as the manipulator will only move freely through
space without contact with any other objects than the balls.

Therefore, we select a slightly different approach. We
apply both Smith predictor and Kalman filtering as in [9], but
do not include the wave variable transform. With the Smith
predictor approach, the remote slave site is simulated locally
at the master site, and measurements are used to correct the
simulation to prevent it from diverging from the actual state
of the remote site. In the employed scheme, everything dis-
played to the operator through the user interface is generated
interacting exclusively with the dynamic simulation running
on the operator interface computer. Since this interaction
does not involve a time delay, the risk of instabilities is
significantly reduced. This limits the approach to tasks where
all significant aspects of the environment can be modeled
with sufficient accuracy.

To close the control loop over the robot via the commu-
nication link, we can use a non-linear, multivariate Smith
predictor control structure (depicted in Figure 1). The details
of this implementation can be found in [27].

The command and measurement communication delays,
τc and τm respectively, are handled in two parts. The first
part handles the stochastic aspect of the delay by adding
an artificial delay τa to the command delay τc when a
command packet arrives at the robot so that their sum, the
virtual delay τv , is constant, as described in [27], [28].
In effect, the stochastic delay is exchanged for a slightly
longer deterministic delay. Since the internet time delay is
stochastic, it is expected that a small portion of packets
will be delayed more than τv . These are treated as dropped
packets and ignored. Since the average time delay may vary
over time, τv is continously recalculated. The allowed rate
of change is very slow compared to other time constants in
the system, typically τv can change with a millisecond or
less over several hundred packets.

The simulation result ysim(t+τv) is then delayed by τv +
τm before it is compared to the measured state y(t − τm)
to form the simulation correction δ. This means that when a
measurement packet arrives from the robot, the current value
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of τm is calculated from timestamps and an old simulation
result ysim(t− τm) retrieved from memory for comparison.

The net effect of this compensation is that the simulation,
the haptic controller, and the operator all perceive time τv

ahead of real time. That allows the generated command
signal u to travel to the robot before it is needed by the
robot controller. Values of τv upto 200 ms have been tested
successfully.

The correction signal δ is low pass filtered to reduce zero
order hold noise that would otherwise be felt by the operator
as vibrations of the same frequency as the communication
link, 100 Hz.

The largest drawback with this approach is the need to
simulate the entire roundtrip delay, including the artificial
padding. The time difference between the simulation and
the measurements is thereby τv + τm. This does not pose
a large problem for aspects of the remote site that are easy
to simulate, such as the robot dynamics or ball in ballistic
flight. However, it is problematic when unexpected events
occur. For instance, there is no advance warning for when a
new ball is launched, and the trajectory can therefore not be
simulated until the ball has already been in flight for a time
corresponding to τv +τm. Thus, the operator’s reactions will
be delayed by the entire roundtrip delay.

We therefore propose a slightly different control structure.
Instead of handling the entire roundtrip delay when predict-
ing the remote state with a simulation, the delay handling
is split into two separate predictors. The simulation of the
remote site needs only bridge the shorter delay τm, while
the delay in the outgoing signal τv is handled by predicting
the future control signal, û(t + τv). The principal structure
for this approach is shown in Figure 2. With this approach,
the operator’s reaction to an unexpected event will only be
delayed by the one-way delay τm. The design of the input
predictor is described in the following section.

B. Simulation Models

In the present setup, models of the manipulator and ball
path are well-known and simple enough to simulate within

small error margins. This only solves one part of the time-
delay problem. The operator will have access to a good
simulation of real-time information, but there will still be
delays as the user reacts to this information, and as the
system relays user input to the remote manipulator. In the
present paper, the first steps towards including a simulation
of the operator’s input in the system are taken. This requires
a model of the user’s input that relates previous and present
inputs to future ones.

A well-known model for explaining the kinematics of
visually guided human reaching motions is the minimum
jerk (MJ) model. It was first proposed for single-joint
motions in [29], and later extended to include multi-joint
planar motion in [30]. It was observed that the trajectory
of voluntary arm motions, when described in extra-corpular
cartesian space, follow certain constraints. The trajectories
can be predicted by using a model in which the square sum
of the third derivative of position, jerk, integrated over time is
minimized. I.e, given a starting point, an end point and a time
to move between the two, the trajectory that minimizes the
jerk on this interval is the MJ trajectory. Observations in [13]
and [22] on the motions that humans make when freely
catching a thrown ball indicate that they start by moving
towards the expected point of impact with a distinct MJ-type
reaching motion, and later add smaller corrective MJ-type
motions to accurately catch the ball.

More recently, other, more detailed models like minimum
joint torque change, minimum force, or minimum energy
have been proposed and shown to describe human motions
more accurately [12], [13]. However, the more detailed
models require detailed knowledge of posture and intrinsic
mechanical parameters of the human subject, parameters that
are not observable when using a hand-held haptic device
for motion input. On the other hand, the MJ model can
be completely described in cartesian space coordinates with
no explicit knowledge of the subject’s intrinsic mechanical
properties, and is thus possible to implement in our scenario.
Furthermore, when a subject is using the haptic device it
is reasonable to assume that no external forces other than
gravity act on the user, and that posture does not change
significantly during the motion. In this case, it has been
shown that trajectories predicted by the MJ model do not
differ significantly from ones predicted by the more advanced
models [12].

All MJ trajectories share the property that the 6th deriva-
tive is zero for the duration of the motion, and that they thus
can be described as 5th degree polynomials, as in Equation 1.

x(t) = a1t
5 + a2t

4 + a3t
3 + a4t

2 + a5t + a6 (1)

If we also add the start and end points of the motion, x(t0)
and x(t1), and state the position, velocity, and acceleration at
these points, we get the following constraints on Equation 1.
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Fig. 3. Y component of measured hand trajectory with MJ trajectory fitted.
In this case the hand trajectory contains only one major MJ component.

x(t0) = x0, x(t1) = x1

ẋ(t0) = ẋ0, ẋ(t1) = ẋ1

ẍ(t0) = ẍ0, ẍ(t1) = ẍ1

The above constraints will give us 6 equations, and we
get a well-defined system to find the 6 parameters a1 . . . a6.
Thus, there is only one possible MJ trajectory for a given start
and end, and it can be found by solving a simple system of
linear equations.

The trajectories described by the MJ model are limited
to one single motion. What happens if a more complex
motion is desired or if the target of the motion is changed in
mid-motion can be described by superpositioning several MJ
trajectories. If the added MJ trajectory has an initial position,
velocity, and acceleration of zero, this will still result in a
continuous motion where the 6th derivative is zero, so the
jerk is still minimized. This is described thoroughly in [31]
and [32].

C. Human Input Estimation

The MJ trajectory model described in Section III-B will be
used to predict future user inputs. To predict future motions,
it is necessary to know when the motion starts and stops.
Given that the goal is predicting the outcome of a motion, it
is plausible to register the starting point of the motion after
it starts, but the point in time at which the motion ends has
to be found before it can be observed. Using Equation 1, we
see that if the start of a motion is known, but not the end,
there are two unknowns — the time and position at which the
motion ends. Thus, in theory, if two points on the trajectory
are known, the system of equations can be solved to find
these two unknowns and thereby specify the entire motion
exactly. Since this involves solving a 5th degree polynomial,
the solution will be very sensitive to error, especially in the
time domain. However, if the start and end times are known,
extrapolations that fit well with observed data are possible.
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Fig. 4. 4th degree MJ velocity profile fitted to Kalman filtered velocity data.
The solid line is the data used for fitting, the dotted lined is the (unused)
remainder of the measured velocity, and the dashed line represents the fit
MJ velocity profile.

A robust way to detect the start time t0 and the end
time t1 is proposed in the following. Since the motion itself
is expected to follow a 5th degree polynomial curve, the
velocity profile is expected to follow a 4th degree polynomial
curve that starts and ends at zero value, with zero first
derivative. Such a curve is symmetric around the apex.
Empiric analysis of recorded motion data shows that by using
an extended Kalman filter, the point of maximum velocity
tvmax is easy to detect [15]. Using a least square approach,
the 4th degree velocity profile can be fit around this peak,
fitting only to data before the peak, see Fig 4. The zeros
of the polynomial found with this approach are used as
candidates for the start and end of the motion, and used
when fitting the motion data to a MJ trajectory.

A weakness in this approach is that half of the motion has
to be observed before a prediction can be made. In order to
facilitate earlier predictions, the EKF observer can be used to
predict when tvmax will be reached. This involves estimating
higher derivatives, and is prone to high uncertainties in the
presence of observation noise. In practice this means that
a stable estimate of when tvmax will be reached can be
achieved after approximately one third of the motion. The
implementation used in the experiments described later in
this paper therefore uses a tvmax predicted from the EKF
until tvmax is reached, when the algorithm switches to using
the observed value.

When t0 and t1 are known, along with the start position
x0 of the motion, Equation 1 can be rewritten as in 2.

x(t) =
x(t0) +
a1

(
t5 − 5

2 (t1 + t0 )t4 + 5
3 (t1 2 + 4t1 t0 + t0 2)t3−

5(t1 t0 2 − t1 2t0 )t2 + 5t0 2t1 2t−
1
6 t0 5 + 5

6 t0 4t1 − 5
3 t0 3t1 2

)
(2)
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This equation only contains one unknown, a1. By fitting
to the latest measured data points with a least squares
fitter, a fairly robust trajectory prediction is possible. This
approach has been shown to predict accurately for delays up
to approximately 70 ms [14]. This is comparable to the one-
way internet delay between Stockholm, Sweden and Atlanta,
Georgia, which has been measured to average 63 ms.

D. Robot Platform

The robot used in this experiment is a fast and lightweight
manipulator with six degrees of freedom, see Figure 5. The
robot can reach any point in its 60 cm × 60 cm workspace
within 550 ms if it is started in a centered position, with the
settings used in this experiment.

Fig. 5. The manipulator with cameras and ball-catching end effector.

The end effector used is a simple cardboard cylinder with
a 7 cm radius. This means that the 7 cm diameter balls used
in this experiment are caught if the center of mass hits within
4 cm of the center of the cylinder, as all hits to the rim tend
to bounce off.

The system uses a 60 cm baseline stereo camera pair at
50 Hz to track thrown balls. Using a Kalman filter, this
setup can predict the future trajectory of the ball within a
few centimeters after approximately 5 images, or 100 ms.
A detailed description of the manipulator and of the control
setup and the camera tracking system has been presented in
earlier work [15], [25], [27].

E. User Interface

The user interface (shown in Figure 6) used for the ex-
periment consists of a stereo display realized with a 21-inch
CRT monitor and shutter glasses, connected to a computer
with a professional grade graphics board. An Omega haptic
unit from Force Dimension served as input channel for user
hand motion. This haptic device uses parallel linkage, and
provides high stiffness and force output in a large workspace.
A loudspeaker was used for audio feedback.

Fig. 6. User interface hardware configuration, with a CRT stereo display,
an Omega haptic device, and a loudspeaker.

Fig. 7. The user’s view in the ball-catching experiment.

The user interface receives estimated positions of the ball
from the stereo vision system of the physical robot setup.
It also gets the complete state of the vision system Kalman
filter to be able to estimate future ball positions, which are
used to show the projected trajectory of the ball as a red
line through the ball, with the uncertainty inherent in the
future Kalman states displayed as a semi-transparent shell
at a distance of one standard deviation from the predicted
trajectory. A predicted ball trajectory and its uncertainty
representation are shown in Figure 7.

When a throw started, the word ‘go’ was output to the
speaker to alert the user. Another sound was played when
the ball was caught. The user interface is described in detail
in [15].

IV. EVALUATION EXPERIMENTS

The MJ based predictor was evaluated by an experi-
ment using a ball-catching task that requires fast execution,
while all signals were subject to significant time delays.
For comparison, a Smith predictor setup, as detailed in
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Section III-A was also evaluated in the same setting. In the
following description, the traditional Smith predictor is called
system A, and the Smith predictor augmented with the MJ
input predictor is called system B, c.f. Figures 1 and 2.

A. Experimental Procedure

10 Novice subjects were asked to catch thrown balls using
the teleoperation setup. The subjects were student volunteers,
all male, ages from 23 to 30. They had no prior experience
with the setup, and were not told any details of the control
systems prior to the experiments. The subjects were given a
brief instruction to the user interface and the ball-catching
task, and were allowed to get acquainted with the setup by
practicing catching balls until they felt comfortable with the
task. This took between 30 and 50 tries for most subjects.

The performance in the presence of time delays was tested
using actual internet time delays, for maximum realism.
For practical reasons, both the slave and master sides were
located in the same laboratory, but all communication signals
between the two were delayed according to actual internet
delays (includeing completely dropped packets) sampled
during 24 hours starting from 11:40 GMT, Sep 25 2008.

One sample set consisted of delays measured between the
Royal Institute of Technology (KTH) in Stockholm, Sweden
and the University of Genua (UGE) in Italy. The median
one-way delay time for these packets was 26.6 ms, and the
standard deviation was 59.1 ms. The other sample set was
generated by timing packet travel times from KTH to Georgia
Institute of Technology (GT), in Atlanta, Georgia, USA.
These packets had a median travel time of 63.0 ms, but with
a much lower standard deviation of 0.2 ms. A deterministic
one-way time delay of approximately 2.5 miliseconds was
added by the rest of the communication loop.

In the experiment, for each subject 5 different settings
were tried, with 20 throws per setting. The ordering of
the settings were randomly permuted between subjects. The
settings were:

• No delay, used for comparison.
• System A, UGE delays
• System A, GT delays
• System B, UGE delays
• System B, GT delays
To ensure repeatability of the experiment, the balls were

launched using a mechanical launcher with a precision of
±10 cm for this distance (see Fig 8). The balls were sent
according to a pregenerated random pattern that was the same
for all trials.

Earlier studies have shown that teleoperated ball-catching
is a difficult task, and that high failure rates discourage
subjects from performing their best [15]. Therefore the task
was made slightly easier overall by adding a corrective action
to the robot controller. This tries to center the end effector
on the predicted trajectory, if the setpoint for the end effector
comes within 5 cm of the predicted ball trajectory. This
means that the subject only has to come within 5 cm of
the ball trajectory in order to catch successfully, instead of
4 cm, and the effective target area is increased by 56%.

Fig. 8. The mechanical ball launcher

TABLE I
RESULTS FROM BALL-CATCHING EXPERIMENT

Setup Success rate (±2σ)
No delay 0.288 (±0.045)
System A,
UGE delay

0.256 (±0.062)

System A,
GT delay

0.160 (±0.052)

System B,
UGE delay

0.275 (±0.063)

System B,
GT delay

0.280 (±0.065)

B. Results

The performance results are presented in Table I. With the
longer GT delay times, the performance with System A drops
to approximately half the success rate that was achieved with
zero delays, while the success rate of system B drops by less
than 0.01 compared to the zero delay baseline. This result is
statistically significant at p < 0.05.

With the shorter UGE delays, the success rate of System A
drops by 0.03, while the success rate of System B drops
by 0.01 as compared to the zero delay baseline. However,
here the difference in performance is not large enough to be
statiscally significant.

The average virtual delay τv used by the system was
31.8 ms for the University of Genua delays, and 69.3 ms
for the Georgia Tech delays.

These results show that the MJ predictor approach can
succesfully bridge time delays of more than 60 ms, while
a traditional Smith predictor approach encounters problems.
A probable cause for this is that, with the Smith predictor,
transient events such as the firing of a ball with the ball
launcher will be delayed the entire roundtrip time, or ap-
proximately 130 ms in the case of GT delays. Given that
the subject only has a few hundred milliseconds to react,
this delay is too large for succesful task completion. On the

5626



other hand, with the MJ approach, the transients will only be
delayed by half as much, giving the user just enough time
to react. As shown previously, user input can be predicted
succesfully up to 70 ms, so this is close to the limit of what
the MJ predictor approach would be expected to cope with.
In geographic terms, the difference of the two approaches
is if a dynamic internet-based teleoperation task is limited
to the same continent (within Europe), or if it is feasable
to perform it intercontinentally (between Europe and North
America).

V. CONCLUSIONS

When time delays in a teleoperation setting begin to
approach the time constants associated with performing the
desired task, it is difficult to bridge the delays with traditional
approaches. As shown in the experiment in the present
paper, a setup with a minimum jerk based input predictor
outperforms a standard Smith predictor with local simulation
when the roundtrip delays approach 130 ms.

There are some limitations to the proposed approach. In
its current implementation, it does not allow for sensory ex-
ploration of an unknown remote environment, as all relevant
aspects of the remote site must be simulated locally. Also,
the MJ model is limited to free motions, and is not suited
for contact interaction, where significant external forces act
on the manipulator.
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