
FAHR: Focused A* Heuristic Recomputation

Matthew McNaughton and Chris Urmson

Abstract— In this paper we introduce Focused A* Heuristic
Recomputation (FAHR), an enhancement to A* search that can
detect and correct large discrepancies between the heuristic
cost-to-go estimate and the true cost function. In situations
where these large discrepancies exist, the search may expend
significant effort escaping from the “bowl” of a local minimum.
A* typically computes supporting data structures for the
heuristic once, prior to initiating the search. FAHR directs the
search out of the bowl by recomputing parts of the heuristic
function opportunistically as the search space is explored.
FAHR may be used when the heuristic function is in the form
of a pattern database. We demonstrate the effectiveness of
the algorithm through experiments on a ground vehicle path
planning simulation.

I. INTRODUCTION

Good heuristic estimates are necessary for effective search.
One typically computes a function h(n) based on the prob-
lem instance that approximates the cost from n to the
goal. The heuristic function can take a variety of forms.
It may be static with respect to all problem instances. For
example, straight-line distance is often used as a heuristic
for the shortest path through a Euclidean space. It can also
be computed on a per-problem basis. In the case of path
planning, for example, this can be done by computing a
single-source shortest path table through a lower-dimensional
search space formed by a simplification of vehicle kinematics
or dynamics. In either case, once the heuristic data structure
is computed, its h(·) values typically do not change until
a solution is found or declared not to exist. In this paper
we show that it can be beneficial to recompute the heuristic
function h(·) using information obtained about the search
space while the search is underway, re-evaluate the open list
using the new h(·), and continue the search with the refined
heuristic. We validate our approach using a path planning
simulation for a ground vehicle.

The organization of this paper is as follows. In Section II
we discuss related work in heuristic search and path plan-
ning. In Section III we describe the FAHR algorithm. In
Section IV show how the technique is applied in a vehicle
motion planning context. Section V gives experimental re-
sults, and Section VI concludes with a discussion and ideas
for future research.

II. RELATED WORK

Culberson and Schaeffer[1] used the term pattern database
to describe a heuristic that takes the form of a table contain-
ing the shortest cost-to-go of any state in a subspace of the

Matthew McNaughton and Chris Urmson are with the Robotics Institute,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
mmcnaugh@ri.cmu.edu, curmson@ri.cmu.edu

problem. They applied their technique to the 15-puzzle and
Checkers. Korf[10] applied it to the Rubik’s cube. These
works precomputed large databases that could be used with
all problem instances. The work we present in this paper
may be seen as an attempt to recompute pattern databases
online for a single problem instance based on information
obtained during the search.

Holte et al. describe Hierarchical A*[7] and IDA*[6],
which implement the estimated cost-to-go h(·) by searching
for the true cost-to-go h∗(·) in an abstracted version of the
state space. A side-effect is the creation of a pattern database
tuned to a particular problem instance which can be reused
for other problem instances, depending on the abstraction.
The present work can be seen in contrast as re-evaluating
existing entries in the pattern database based on information
obtained at lower levels of the abstraction.

Zhou and Hansen[14] define the focused memory-based
heuristic as a heuristic table with entries that are computed
for just the nodes explored by A* in solving the search
problem. They use a multi-resolution heuristic approach to
focus effort into computing more accurate h(·) values for
states that are more likely to be on or near the optimal
path. Our work differs in attempting to focus effort on
regions of the heuristic table that may direct search effort
to unproductive parts of the search space.

Other authors have addressed the phenomenon FAHR is
concerned with, namely that an A* search may spend a
lot of time expanding all nodes within a bowl of search
space, in an effort to prove that there is no way through
the drain. Junghanns and Schaeffer[8] introduce relevance
cuts to address the issue that in a combinatorial problem
with multiple subgoals, the search algorithm will try all
transpositions of moves that advance independent subgoals.
Relevance cuts attempt to characterize which moves are
independent from each other and enforce that only moves
that are affected by the previous one should be considered.
They demonstrated results using the Sokoban puzzle, but
optimality is guaranteed only with IDA*. Our work differs
in that pathfinding for a single vehicle does not break down
into independent subproblems, so we look instead for areas
of the search space where the heuristic function is highly
misleading. Our work also differs in that it allows edge costs
to be non-uniform, whereas results for combinatorial games
often depend on a uniform cost of 1 for all actions.

Incremental replanning techniques such as Dynamic
A*(D*)[13] and D* lite[9] were developed in the context
of path planning, which often involves repeated searches to
the same goal on similar graphs. They re-use data from the
open and closed lists from previously completed searches

qGqI

(a) (b) (c)
Fig. 1. A gap (a) that the ball heuristic suggests may be passable, but (b)
cannot be navigated by the real vehicle, and (c) the “bowl” of search space
explored as a result

on similar problem instances. These algorithms depend on
the assumption that if the search space has only changed
a little, then much of the computation should be reusable.
We develop our work in the context of path planning, but
focus on accumulating changes in the heuristic table during
a single search.

In the next section we formally describe the problem we
are addressing in this work, and introduce our proposed
algorithm.

III. APPROACH

A. Problem Description

We term the bowl effect in heuristic search as the problem
that a large region, or “bowl” of configuration space must
sometimes be explored before all states within the bowl have
been examined, so that the search can overflow the bowl and
continue towards the goal.

Figure 1 illustrate how an A* search in vehicle path
planning can encounter a bowl effect if the heuristic used
suggests that it is possible to navigate a narrow gap, when
in fact it is not. The A* search must examine all states
within the bowl in order to prove that there is no way
through the gap. In this case, the heuristic is based on a
ball approximating the vehicle. Later in the paper we will
show how this heuristic is constructed and demonstrate that
it is efficient to compute and admissible for A* search. The
bowl is caused by a large discrepancy between the heuristic
function and the true cost function. Our proposed method
detects the presence of these bowls early in the search, and
modifies the heuristic to direct the search to more promising
areas of the space.

In the next section we formalize search on a graph and
describe the property that we exploit to detect bowls.

B. Formulation

An optimal search proceeds to find the lowest-cost path
from a given start node qI to a given goal node qG on a
graph G = (V,E) with edge costs c : V × V → R+. We
define c(u, v) =∞ for edges (u, v) /∈ E, indicating that the
edge cannot be part of a valid path.

To achieve a provably optimal result in A* and derived
algorithms such as D*, the heuristic function h(n) estimating
the cost from node n to the goal node qG must be admissible,
meaning that h(n) ≤ h∗(n), where h∗(n) is the true cost of
the minimum path from the node n to the goal. A* examines
nodes it encounters in order of increasing f(n) = g(n) +

u1
u2
u3

v1
v2
v3 uh vh

1
2

1 3
2

0.5≤min(1,1,2,...)

Fig. 2. Projection of the search graph to the heuristic graph

h(n), where g(n) is the proven minimum cost to reach n
from qI . This makes f(n) an under-estimate of the total cost
of the shortest path from qI to qG that passes through n.

For some problems, the graph is a discrete subset of a
continuous metric space. For example, in robot path plan-
ning, the search graph is a discretization of R2. In these
cases the heuristic can be a function derived directly from the
metric space, rather than indirectly through the search graph.
For example, the straight-line Euclidean distance d(n, qG)
from n to the goal qG is independent of the graph chosen to
discretize the space for the search.

One can also use a direct relaxation of the search graph
G as a heuristic. For example, one can construct a smaller
heuristic graph Gh = (Vh, Eh), where p : V → Vh for a
chosen Vh with |(Vh)| ≤ |(V)|, and

Eh = {(p(u), p(v)) : (u, v) ∈ E} .

The cost ch(u, v) must satisfy

ch(uh, vh) ≤ min
u,v∈V

{c(u, v) : uh = p(u), vh = p(v)} .

Figure 2 illustrates with a search graph. The full search
graph consists of the sets of nodes {ui}, {vj}, and the edges
between them. The projected heuristic graph contracts the
{ui} and {vj} into the single nodes uh, vh with a single
edge between them having a lower cost than any of the edge
costs c(ui, vj). In the figure, if c(uh, vh) ≪ mini c(ui, vi),
then the heuristic is misleading, and is potentially creating a
bowl.

In the next section we introduce FAHR, an algorithm to
detect areas where this condition holds, with the purpose
of recomputing the heuristic table to bring c(uh, vh) closer
to mini c(ui, vi). Doing this should decrease the amount of
search effort required to find the goal.

Increasing the value of h(q) for some nodes q while
retaining admissibility may reduce the number of nodes
expanded by A* and can never increase it[12]. Modifications
of h(·) come with a time cost, however. This cost must
be less than the time saved by expanding fewer nodes in
order for FAHR to yield a benefit. In a later section we
show how we applied FAHR to a path planning problem,
and demonstrate its efficiency.

C. The Focused A* Heuristic Recomputation Algorithm

The Focused A* Heuristic Algorithm (FAHR) is an ex-
tension to the standard A* algorithm[12] that finds bowls in
the search space. Figure 3 illustrates the basic idea behind
the algorithm using a small search tree, growing from the
left to the right. In part (a), nodes y and v are on the open
list (circles), and v is a successor of x, which is on the

y
x v

y
x v w

v'' w''

v' w'

p(v) = p(v')=...
p(w) = p(w')=...

(a) (b)

y

(c) (d)
Fig. 3. Illustration of bowl detection in the A* search tree structure

closed list (diamonds). In (b), the node v happens to have
the lowest f -value and is selected for expansion. The cost
to reach its potential successor w is very high, contrary to
expectation. Edges (v′, w′) and (v′′, w′′) are identified as all
of the edges that project to the same edge in the heuristic
table, i.e. (p(v), p(w)) = (p(v′), p(w′)) = (p(v′′), p(w′′)). It
is found that all of these edge transitions are actually much
more costly than the heuristic estimate, and so it can be
concluded that the cost of the edge (p(v), p(w)) as given by
the heuristic is misleading. In (c), nodes leading from v up to
the root node are marked as being part of a bowl, denoted by
the broken arrow symbol. In (d), y is expanded, and one of
its successors is x, which was already visited in the search
and is known to be in a bowl. Consequently, y is marked
as being part of the bowl, as are its predecessors up to the
root. In this illustration, the immediate predecessor of y was
already marked as being part of a bowl. Once the number of
nodes in the bowl has grown beyond a chosen threshold, the
state space in the neighborhood of v can be analyzed more
deeply to find the cause of the bowl, and the heuristic can
be recomputed so that the search is directed out of the bowl.

The FAHR algorithm itself is given in Figure 4. The main
body of the algorithm is similar to A*, with the additions
defining FAHR marked FAHR . Line 11 gives each node a
pointer to its parent so that the chain of nodes in the bowl can
be identified. It is common for A* implementations to keep
this pointer for convenience in reconstructing the solution
path, but FAHR requires it. Line 13 checks to see whether the
heuristic is highly misleading for the child v′ of v, the node
being expanded. If this test succeeds, it means that c(v, v′)
is much more expensive than the heuristic had predicted.
The checkBowl() function examines all nodes that use the
same edge in the heuristic graph, and if the heuristic severely
underestimates the actual edge cost in all cases, then the
given edge induces a bowl. Line 15 the child node v′ of v
is checked to see if it has already been expanded and been
marked as a member of a bowl, in which case v and its
parents are also marked in the bowl. If an edge is found to
be blocked(Line 14), then the edge is recorded in blockedE,
and incBowl() is invoked to mark all nodes from v up to
the root of the search graph as being in the bowl. The nodes

in E′ are not added since they are not necessarily part of
the search graph. In the final line of checkBowl(), the size
of the bowl is checked against a tuned threshold, and the
heuristic is recomputed if the threshold is exceeded. The
heuristic recomputation step is highly problem-dependent.
We will offer an example in the next section.

IV. APPLICATION OF FAHR TO PATH PLANNING

In the previous section we described the general FAHR
algorithm. In this section we describe how it can be applied
to a path planning problem for a simulated ground vehicle.

For the problem of path-planning for a mobile robot, one
possible search graph formulation is an 8-connected grid,
where the robot may take 8 unique orientations at each
grid position. See Figure 5(a). A widely used heuristic is
to approximate the vehicle with the largest ball (in two
dimensions, a circle) that fits inside the vehicle. Figure 5(b,c)
illustrates. For this heuristic, the connectivity is simply
that of an 8-connected grid. It is easy to see that any
path that can be followed by a vehicle of arbitrary shape
with arbitrary kinematics can also be followed by a ball
that fits entirely inside the vehicle and can move in any
direction. Therefore, a heuristic based on this projected graph
is admissible. This “ball” heuristic is commonly used by
path planning solvers for navigating through unstructured
environments with obstacles[5], [3]. To construct the table,
we first compute a distance transform on the occupancy grid
of obstacles in the environment. This yields a table dO(x, y)
with the distance from each grid cell to the closest obstacle.
An algorithm such as [4] can compute dO in about 10 ms on
a typical PC for an occupancy grid of size 400× 400. From
this table, a graph Gh is constructed, with one vertex per
cell in the table. Cells are 8-connected and an edge between
cells(vertices) is traversable if each of the cells (x, y) satisfies
dO(x, y) >= r1. Edges into cells where dO(x, y) < r1 are
given infinite cost. r1 is the radius of the largest ball that
fits entirely inside the vehicle. In this example, traversable
horizontal and vertical edges have a cost of 1, and diagonal
edges cost

√
2. Other works in path planning allow higher

costs to be used in order to reflect that some terrain takes
longer to traverse.

Finally, a single-source shortest path(SSSP) algorithm
such as Dijkstra’s[2] is run on Gh to get a table that gives the
cost of the shortest path for a ball to travel from any node n
to the goal qG. We approximated edge lengths with integers,
using 5 for horizontal and vertical edges and 7 for diagonal
edges. This allowed us to use an O(n) implementation
of Dijkstra’s algorithm. The heuristic table formed is still
admissible.

Figure 5(b,c) show how the ball heuristic can allow edges
into the heuristic graph where no edge is in the full search
graph. In (b), the ball of radius r1 does not collide with any
obstacles, even though the vehicle cannot be placed in any
orientation at that spot without collisions. In (c) the heuristic
graph subsequently marks the lower-right circle as reachable.

Figure 6(a) shows the discretized kinematics of our sample
vehicle in the full search space. The vehicle may move

FAHR(node s, node t, graph G = (V,E)) : node
1: ∀n, f(n)←∞; f(s)←0; OPEN = {s}
2: while |OPEN| > 0
3: v ← argmin

v∈OPENf(v)
4: if v = t then return A* ←v
5: OPEN ← OPEN\ {v}
6: CLOSED ← CLOSED ∪ {v′}
7: for (v, v′) ∈ E
8: g′ ← g(v) + c(v, v′), f ′ ← g′ + h(v′)
9: if f ′ < f(v′) then
10: f(v′) ← f ′, g(v′) ← g′

11: parent(v′) ← v FAHR

12: OPEN ← OPEN ∪ {v′}
13: if f(v) ≪ f(v′) then FAHR

14: checkBowl(v, v′, g) FAHR

15: if v′ ∈ bowlV then FAHR

16: incBowl(v) FAHR

end for
end while

checkBowl(edge (v, w), graph G=(V,E)) : void
// All edges that project to the same edge as
// (v, w) in the heuristic graph

17: E′ = {(v′, w′) ∈ E : p(v′) = p(v), p(w′) = p(w)}
18: E′′ = {(v′, w′) ∈ E′ : c(v′, w′) ≫ h(w′)− h(v′)}
19: if E′ = E′′ then // h(·) misleading in all cases
20: blockedE = blockedE ∪ E′

21: incBowl(v)
22: if |bowlV| > bowlCutoff
23: recomputeHeuristic()

incBowl(node v): void
24: if v /∈ bowlV
25: bowlV = bowlV ∪ {v}
26: incBowl(parent(v))

recomputeHeuristic(): void
// Computation of Ĥ(blockedE) is problem-dependent.
// blockedE is used to identify areas of
// the heuristic graph for more analysis.

27: h() ← Ĥ(blockedE)
28: ∀v ∈ OPEN, f(v)←g(v) + h(v)

Fig. 4. A* search augmented with bowl detection

(a) (b) (c)
Fig. 5. (a): An eight-connected grid for vehicle motion planning. (b): A
ball heuristic on the grid for vehicle motion planning. (c): Connectivity of
the ball heuristic in the presence of obstacles.

(a) (b)
Fig. 6. (a) Simple kinematics of the simulated vehicle, and (b) a non-
navigable set of edges in the full search space that has a valid corresponding
edge in the heuristic graph.

forward in the direction it is currently facing and optionally
rotate in either direction by 45 degrees.

A. Eliminating the Bowl

The recomputeHeuristic() function of the FAHR algo-
rithm(Figure 4) requires that the heuristic be recomputed.
We do this by analyzing in more detail the edges of Gh.
Figure 6(b) shows an edge that would be marked traversable
in Gh even though the vehicle cannot make this move
according to the kinematics of the simulation specified in
Figure 6(a). That is, c(uh, vh) = 1 ≤ mini c(ui, vi) =∞ as
per Figure 2, where (uh, vh) ∈ V (Gh) and (ui, vi) ∈ V (G).
The fact that c(uh, vh) ≪ mini c(ui, vi) is what induces the
bowl. To fix this discrepancy, we analyze all edges (ui, vi)
in G such that (p(ui), p(vi)) = (p(uh), p(vh)). Using these
edges we compute ĉ(uh, vh) = mini c(ui, vi), and reset the
edge cost of (uh, vh) = ĉ(uh, vh) in Gh to obtain a new Gĥ.
The SSSP algorithm is re-run on Gĥ and the f -values of the
open list are reset using the new h(·). We look for edges
(uh, vh) in a small radius around the edges of blockedE,
since often there are more nearby than just the ones that
have been directly encountered.

In the next section we present experiments that character-
ize the performance of FAHR on the vehicle path planning
problem.

V. EXPERIMENTAL RESULTS

We consider the factors that affect the performance of the
search before moving on to experimental results. As with
all heuristics and variations on optimal search algorithms,
the benefit to be gained from using the technique varies
depending on the conditions in which it is used. Following
are some of the factors influencing the performance of
FAHR.
• The size of the typical bowl encountered affects the time

savings gained by recomputing the heuristic.
• The cost of computing the upgraded heuristic in the

entire space before the search begins. This depends
on the size of the entire search space and the cost of
computing the upgraded heuristic in a unit area.

• Fixed costs of the heuristic recomputation, such as the
SSSP algorithm, affect the ratio of the size of area of
the heuristic grid to be upgraded to the size of the whole
heuristic grid.

Assuming relatively small pattern databases, overall mem-
ory usage will tend to be lower whenever improved heuristics
are used due to the decreased growth of the A* open list. In

Fig. 7. Aerial view of map used for path-planning experiments. The
grid is 2236x2236 cells. The grayscale values were thresholded to a binary
obstacle map representation. An example of an optimal path and the areas
recomputed by FAHR are also shown.

path planning for mobile robots, we are mainly concerned
with overall CPU time used for the search, rather than
memory usage. For other applications, we could expect that
the potential for gain from using heuristic recomputation
should increase with the running time of the search.

A. Description of Experiments

We obtained cost map data from an aerial image of land
approximately 2 km2 in size from the DARPA UPI Program,
sampled at a resolution of 60 cm. The final cost map used
in these experiments was a grid of size 2236 × 2236 cells.
The terrain has a variety of roads which connect to open
areas that tend to be scattered with small obstacles. Figure 7
gives a sketch of the landscape. White areas are traversable,
and black areas are obstacles. We thresholded the grayscale
image into a binary cost map. We used a vehicle model of
13 cells wide by 44 cells long. We randomly sampled 229
(start,goal) location pairs out of all occupiable cells on the
map and executed three search algorithms in turn:
• PLAIN - Normal A* search with the basic ball heuristic.

This serves as a baseline to compare the other ap-
proaches.

• FAHR - FAHR with bowlCutoff = 3000. A bowlCutoff
value that is too small will result in frequent invocations
of recomputeHeuristic() to remedy small bowls, and
one that is too large will allow A* to expand too
many of the nodes in the bowl before intervening,
with a corresponding reduction in the potential savings.
The area of the heuristic table upgraded in the call to
recomputeHeuristic() was a square of size 350 × 350.
The side length of the area recomputed at each call was
increased by a factor of 1.1. These values were arrived at
by brief experimentation. We shall explore these values

TABLE I
MEANS AND STANDARD DEVIATIONS OF TIMES TAKEN AND NODES

EXPANDED OVER ALL 229 TEST CASES BY THE THREE ALGORITHMS.

Algorithm µ time (s) σ time (s) µ nodes σ nodes
PLAIN 10.0 12.4 1.4× 106 1.9× 106

FAHR 7.1 5.7 1× 105 1.4× 105

PRECOMPUTE 16.2 0.7 5× 104 8× 104

in a future work. Since binary obstacles were used
where the cost of an obstacle collision is infinite, the
“≪” relation on Line 13 of the algorithm (Figure 4)
holds iff f(v′) = ∞. Future work will address tuning
the “≪” relation in the case of non-binary costs.

• PRECOMPUTE - Normal A* search, with the upgraded
heuristic used by the FAHR search algorithm simply
precomputed over the entire space.

Table I summarizes the mean and standard deviations of
times taken by the these three algorithms. PRECOMPUTE is
consistently slow since computing the upgraded heuristic is
slow, but searching with it is fast. PLAIN is faster on average
than PRECOMPUTE but has widely variable times. FAHR is
fastest on average and the variability is significantly lower
than PLAIN.

Figure 7 shows the optimal path found in a sample case.
The grey boxes show regions of the heuristic that were
recomputed by FAHR. The heuristic is initially recomputed
in regions at the top left, as the unenhanced ball heuristic
leads the search directly to the right of the start position.
This creates a bowl in the search space since the gap
through the wall is not traversable. Once FAHR recomputes
the heuristic in the area, the search proceeds downwards and
occasionally recomputes the heuristic in areas of scattered
obstacles and additional non-navigable gaps. In this example,
FAHR recomputed the heuristic 9 times and took 13 seconds
versus 16 for plain A*.

The approximate time taken by each step of the search
process on the sample grid shown in Figure 7 is as follows

1) Distance transform - 0.5s. This time is not counted in
the results.

2) Kinematic analysis for upgraded heuristic - 16s for the
entire grid. Varies by obstacle density. This analysis
is performed by FAHR on sections of the grid near
blocked edges during the recompute step.

3) SSSP - 0.7s. This is performed by fahr at each recom-
putation.

4) A* search - highly variable.
Figure 8 shows a scatter plot of the times taken by FAHR

versus PLAIN on the test cases. Points below the diagonal
line are cases where FAHR was faster, and points above
the line are slower. On very easy cases, FAHR costs little
to nothing extra since recomputation is not invoked, but on
hard cases, FAHR shows significant benefit. FAHR rarely takes
significantly longer than PRECOMPUTE.

Figure 9 shows the number of times recomputation was
performed by FAHR, against the total time taken. The rela-
tionship is approximately linear, possibly because the work

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60

C
P

U
 ti

m
e

(s
) t

ak
en

 b
y

FA
H

R

CPU time (s) taken by PLAIN

Time comparison of search methods

Fig. 8. Scatter plot of time taken by FAHR compared to PLAIN on 229
test cases.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

To
ta

l C
P

U
 ti

m
e

(s
) t

ak
en

Number of recomputations

Time taken vs. number of FAHR recomputations

Fig. 9. Scatter plot of time taken by FAHR, versus number of recompu-
tations performed by FAHR.

performed by each recomputation is roughly constant. The
SSSP always takes the same amount of time. The area of
the heuristic that is recomputed is grown by a factor of
1.1 on each call to recomputeHeuristic(), which may explain
the slight super-linear trend. The upgraded heuristic is very
effective so most of the time taken by the A* search loop to
expand nodes is consumed by filling up bowls.

VI. DISCUSSION AND FUTURE WORK

In this paper we contributed the Focused A* Heuris-
tic Recomputation (FAHR) algorithm for identifying local
minima, or “bowls” in the search space induced by highly
misleading heuristics. We also contributed an observation
of the relationship between the lattice search space used in
vehicle path planning, and the simplified lattice used as a
heuristic.

Future work in this area leads in several directions. We
can
• Identify additional problem domains that can benefit

from dynamic heuristic recomputation. This can include
not only higher-dimensional domains in vehicle motion
planning, but any A* search problem that can use a pat-
tern database as a heuristic, such as multiple sequence
alignment[11]. As the dimensionality of a planning

problem increases, the benefit of identifying and closing
non-navigable gaps in the heuristic should increase.
However, the number of edges in G that project to the
same edge in Gh will also increase exponentially.

• Apply the heuristic structure to replanning problems
such as path planning with D*[13]. Replanning involves
multiple searches performed sequentially in similar ob-
stacle fields. Implementations typically recompute h(·)
each time new data is obtained. Regions of the heuris-
tic identified in earlier searches for closer kinematic
analysis can be analyzed immediately, preserving the
reduction of effort across replanning runs.

• We shall investigate the effect of bowlCutoff values on
planning efficiency, as well as the size of the region
of interest that should be formed around the edges in
blockedE.

• Experiment with parallel implementations - recompute-
Heuristic() can run in parallel with the main search, and
the new heuristic used when it is ready.

VII. ACKNOWLEDGMENTS

This work was made possible by a grant from General
Motors Corp. We thank David Silver and the DARPA UPI
Program for providing obstacle map data for our experi-
ments. We also thank the anonyomous reviewers for their
thoughtful comments.

REFERENCES

[1] J. Culberson and J. Schaeffer. Searching with pattern databases.
In CSCSI ’96 (Canadian AI Conference), Advances in Artificial
Intelligence, pages 402–416. Springer-Verlag, 1996.

[2] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, December 1959.

[3] D. Dolgov, S. Thrun, , M. Montemerlo, and J. Diebel. Practical search
techniques in path planning for autonomous driving. In Proceedings of
the First International Symposium on Search Techniques in Artificial
Intelligence and Robotics (STAIR-08). AAAI, June 2008.

[4] P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sam-
pled functions. Technical Report TR2004-1963, Cornell Computing
and Information Science, 2004.

[5] D. Ferguson, T. Howard, and M. Likhachev. Motion planning in urban
environments: Part ii. In Proceedings of the IEEE/RSJ 2008 Interna-
tional Conference on Intelligent Robots and Systems, September 2008.

[6] R. C. Holte, J. Grajkowski, and B. Tanner. Abstraction, Reformulation
and Approximation, volume 3607 of Lecture Notes in Computer
Science, chapter Hierarchical Heuristic Search Revisited, pages 121–
133. Springer, 2005.

[7] R.C. Holte, M.B. Perez, R.M. Zimmer, and A.J. MacDonald. Hierar-
chical a*: Searching abstraction hierarchies efficiently. In AAAI, pages
530–535, 1996.

[8] A. Junghanns and J. Schaeffer. Sokoban: Enhancing general single-
agent search methods using domain knowledge. Artificial Intelligence,
129(1-2):219 – 251, 2001.

[9] S. Koenig and M. Likhachev. D* lite. In Proceedings of the AAAI
Conference of Artifical Intelligence (AAAI), pages 476–483, 2002.

[10] R. E. Korf. Finding optimal solutions to rubik’s cube using pattern
databases. In AAAI-97, pages 700–705, 1997.

[11] M. McNaughton, P. Lu, J. Schaeffer, and D. Szafron. Memory-efficient
a* heuristics for multiple sequence alignment. In Proc. Eighteenth
National Conference on Artificial Intelligence (AAAI), July 2002.

[12] N. J. Nilsson. Principles of Artificial Intelligence. 1980.
[13] A. Stentz. Optimal and efficient path planning for partially-known

environments. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), May 1994.

[14] R. Zhou and E. Hansen. Space-efficient memory-based heuristics. In
19th National Conference on Artificial Intelligence (AAAI-04), 2004.

