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Markerless, Vision-Assisted Flight Control of a Quadrocopter
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Abstract—In this paper, we present a system for controlling
a quadrocopter using both optical and inertial measurements.
We show how to use external stereo camera measurements for
visual servoing, by onboard fusion at high rates, only natural
features provided by the vehicle and without any active marker.
In our experiments, we show the accuracy and robustness of our
system during indoor flights, as well as robustness to external
flight disturbances.

I. INTRODUCTION

Unmanned aerial vehicles (UAV) and in particular multi-
rotor systems [1][2] have gained much interest within the last
years, because of the wide range of potential applications.
Due to the small size, indoor applications are considered
particularly interesting for these devices. Unfortunately, for
indoor position control one cannot rely on GPS information,
and the on-board inertial measurement units (IMU) are
subject to drift over time. Instead, visual cues can provide
rich and precise information for navigation purposes.

In this paper, we present an external visual stereo system
for tracking a quadrocopter, providing an absolute position
measurement for the controller of the vehicle. Moreover,
we provide a marker-less approach, only using the CAD
model of the vehicle, automatically sampling visual contour
features. The benefit of our approach is an accurate and cheap
system, more robust to occlusions with respect to traditional
marker-based systems.

A lot of research is being done in the direction of visual
control of UAVs. Most systems have the camera attached
directly to the vehicle, providing on-board measurements of
natural features detected in the environment (e.g. [3], [4], [5],
[6]). Our system instead uses an off-board tracking approach,
which on one hand shall serve as an evaluation platform
for future developments of on-board applications, and on
the other hand can be used for formation flight of multiple
UAVs. One popular related work is the RAVEN system [7][8],
that makes use of VICON [9] to track multiple quadrocopter.
RAVEN is used for development of novel swarm intelligence,
cooperation algorithms, and related applications. Altug et.
al. [10] use a hybrid camera setup, where one camera is
set on the ground and a second one is attached to the
vehicle, facing forwards in order to compute its 3D pose
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for control. They are solely relying on visual measurements
for both position and orientation estimation, which results in
inaccuracies due to the relatively slow update rate (20Hz),
especially for the attitude estimate. Furthermore, in the paper
is stated that the vision system is not reliable when the
scene lighting changes. In [11] a single down-facing onboard
camera is used, to track artificial features on the ground. The
system uses direct image-based visual servoing to control
the UAV instead of pose-based visual servoing. In [12]
a trinocular ground camera system, consisting of Firewire
cameras, is used for estimating the 3D position of the vehicle,
by tracking four colored markers attached to it. Probably the
work most related to our system is described in [13]. Here the
authors also use a cheap, transportable stereo-system based
on standard webcams and active LED markers attached to
the vehicle, externally tracking the quadrocopter at 15Hz.
Their system has a very similar hardware setup to ours, but
it differs in the algorithmic design, especially of the visual
tracking part.

The present paper is organized as follows: In Section
Il we give an overview of the whole setup, and describe
the hardware and software resources, as well as the overall
algorithmic structure. Afterwards, in Section III we explain
the details of the control system, while in Section IV
we investigate the visual tracking part. Section V shows
experimental results and evaluation. Finally, in Section VI
we summarize our work and provide an outlook of future
developments and utilization of the current system.

II. SYSTEM OVERVIEW

In this Section, we describe the hardware setup and give
an abstract overview of the developed system parts, which
will be investigated more in detail in the respective Sections.

A. Hardware

For providing a safe demonstration and testing setup, we
built a box of sizes 2 x 2 x 3m, with the cameras mounted on
the upper-left and upper-right corners of one of the longer
sides. Visual input is given by standard webcams (Logitech
Quickcam Vision Pro), capable of delivering frames at 25Hz
with a resolution of 800x600 pixels, covering a field of view
of approximately 60°.

The quadrocopter device is a Hummingbird Autopilot from
Ascending Technologies [14], which is based on the one de-
scribed in [2], [13]. The on-board inertial measurement unit
(IMU) consists of three gyroscopes and three acceleration
sensors, and its flight control system operates on two ARM-7
microprocessors. A low-level controller performs data fusion
(attitude angles) and can also perform attitude control. The
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high-level controller is dedicated to user-specific tasks, and
can interact with the low-level processor in different ways.
In our case, position and attitude control is performed by
the high-level processor, and the sampling rate of both
controllers is 1KHz (see [2]). Communication to a ground
station PC, operating Matlab-Simulink, is done via XBeePro
modules [15]. For security reasons, and for a more clear
appearance of the object silhouette during flight, we employ
an additional rotor guard and casing for the vehicle, provided
by Ascending Technologies, which is also shown on the
lower left of Figure 1, together with the used CAD model.
This ensures safety for the operators and the audience, during
public tests of the system.

B. Software
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Fig. 1.

Subsystems of the application

The main parts of the software setup can be seen in Fig. 1.
Visual tracking operates on the predicted pose of the vehicle
from the last time step, using a known CAD model of the
vehicle and the current camera images. Communication of
the measurements to Simulink is done via S-Functions.

The Simulink model is responsible for generating trajec-
tory commands (predefined, or given by joystick), using the
current visual data together with the past information re-
ceived from the onboard sensors. These positional commands
are sent to the vehicle, where they are integrated into the on-
board control loop.

The tracking system has been developed using the OpenTL
C++ library [16], and runs on the same ground station PC
as the Simulink model. As already stated, our control loops,
are running on the high-level processor, but we also have a
redundant safety control system (for the attitude only) on the
low-level processor, which can be activated and controlled by
the remote control.

The processing hardware consists of a Core i7 Quad-Core
with 6GB memory and a Geforce 250GTS graphics proces-
sor. The current operating system is Microsoft Windows XP,
64-bit Edition.

III. CONTROL LOOP AND ONBOARD DATA
FUSION

The on-board flight control system has a position con-
troller, receiving commands from the ground PC with
Matlab-Simulink. The position command is either generated

by predefined trajectories, or through a joystick, which
allows to fly freely within a fixed range.

A. Data Fusion

In order to achieve a high bandwidth for the system
dynamics, fast data fusion is an essential requirement. For
the attitude angles and angular rates (excluding the heading),
we use the fused 1kHz IMU data calculated on the low-
level controller, provided by Ascending Technologies [14].
For position control, we also need a fast data fusion of
all kinematic measurements, that consist of accelerations
updated at 1kHz rate, as well as position and heading,
computed by the two cameras at 25Hz rate. Therefore,
an adequate on-board kinematic filter has been developed,
taking into account the computational power of the ARM-7
processor, where a full state filter for position and attitude
would not be feasible. In particular, the position filter is a
modified Luenberger observer [17]
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where x is the state vector (position and velocity), X the
estimated state vector from the observer, @ the acceleration
vector, y the measured state and I, are (n x n) identity
matrices. The L-matrix is calculated as the optimal Kalman

gain of the system, given the process and measurement noise

covariances.

In order to ensure stability of the observer dynamics, a
complimentary filter generates velocity measurements, by
combining the high frequency acceleration with the low
frequency position feedbacks
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with V' denoting the velocity and Xvige, the positional
measurements from the visual tracking system.

Furthermore, % is the cross-over frequency of the filter,
typically chosen to trade off between the two measurements.
It is designed based on physical consideration and verified by
experiments, considering the noise of the combined position
measurements.

The latency, due to image processing (= 40ms) and to
the communication between Simulink and the quadrocopter
(=~ 40ms), was taken into account by adjusting the position
measurement with a velocity compensation. In particular,
the fused velocity is multiplied by the time delay, to give
a prediction for the position change in the last delay cycle.

The new position measurement, which is the filter input,
is the sum of the position change during the delay time, and
the position measurement from the vision algorithm. The
implementation is done in Simulink, using only fixed-point
data types. Furthermore, it has been optimized by removing
many unnecessary matrix computations.

The most important advantage of the modified observer
running onboard, is the update rate of 1 kHz. Therefore,

* XVision
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disturbances detected by the acceleration sensors can be com-
pensated within milliseconds, before it is possible to observe
a position error by the vision system. On the other hand, this
structure uses the vision signal in order to compensate for
the acceleration sensors drift. In fact, using only a comple-
mentary filter gives a trade-off between direct reaction and
noise, whereas our filter structure combines the advantages
of low and high time constants of the complementary filter,
and shows very fast reaction and little noise.

For the heading, a simple complimentary filter using the
estimated angle from the vision system, and the IMU gyro-
scope (angular rate) measurements, has been implemented.

B. Position Controller

The position controller onboard has two cascaded loops,
namely the position control loop with a relative degree of
two, and an attitude control loop, also with degree two.
Since the quadrocopter is a highly nonlinear, multi-variable
and strongly coupled system, as also described in [18], a
nonlinear controller based on feedback linearization has been
developed.

Feedback linearization as a baseline control strategy can
exploit the physical capability of the plant, and therefore
accomplish complex, highly curved three-dimensional trajec-
tories. With an adequate knowledge of the plant dynamics,
the control approach can transform the nonlinear system
into an equivalent linear system without any simplification,
through exact state transformation and suitable control inputs
[19]. The overall structure of the control system, including
the respective approximate processing rates, is shown in Fig.
2.

Based on this transformation, linear controllers like a PID
can be used for error control.
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Fig. 2. Structure of the controller including the different processing rates.
In the figure, z, ¥ and z denote the position, ¢, © and ¥ denote the bank,
pitch and yaw angles. p, ¢ and r are the respective angular rates in the same
order. n1,n2,n3 and ny are the four rotations per minute (RPM) of the
rotors, and ag,ay, and a. are the accelerations obtained from the IMU

The attitude loop was previously designed at the Institute
of Flight System Dynamics [20] and therefore is not the main
focus of this paper. Input commands are desired Euler angles
and thrust, and output signals are the commanded rotational

speeds of the four motors. The attitude loop is transformed in
an equivalent linear system as described above, by inverting
the attitude and momentum dynamics. The required angular
accelerations, as inputs for the inversions blocks of this rel-
ative degree-2 system, have to be computed in the reference

model.

In the position loop, the input command is the desired
position in world coordinates, while control signals are given
as input for the attitude loop. In both cascades, 2"-order
reference models are used for generating reference signals,
governed by the differential equation

iir 4+ 2Cwo - Ur + Wo - YR = WG - Ye @

with reference signal yp, relative damping ¢, natural fre-
quency wg, and input command y..

The attitude loop is able to handle reference signals with a
natural frequency of 20 Hz, and a relative damping ratio of 1.
To ensure a stable and robust tracking performance, the outer
loop reference dynamics are set with a natural frequency of
4 Hz, and relative damping 1.

The feedback error is used with proportional and integral
gains. Since the error dynamics should follow the reference
dynamics, the gains can be calculated accordingly. Because
of the nonlinear dynamic inversion of the system and the
high update rate, the linear error controller is sufficient to
achieve good tracking results.

Since the output signals of the position loop controller and
reference models are desired accelerations, the translation
dynamics has to be inverted. For this purpose, a dynamic
inversion block maps acceleration commands to Euler angle
commands. In this application, it is sufficient to use the world
frame (denoted by W), neglecting earth rotation and angular
rate due to translation, as inertial frame, in order to apply
Newton’s second law.

The complete reference model and error control is then
expressed in the W frame. To simplify the inversion, the O
frame has been introduced: it is a leveled frame with the
same azimuth rotation as the local body frame B. In the
dynamic inversion, the angular rate between the W frame
and the O frame is rather small, because for position control
the quadrocopter does not need to yaw, and can be neglected

compared to the sensor noise in the state vectors.

In a first step, the desired accelerations are transformed to
the O frame, by a simple rotation through ¥. By applying
Newton’s second law, we get:

- e e e =G e
me (V) = (7), + (F) = Mow (79) , + (F2),
with £ denoting the forces, m the mass of the vehicle and
Mg p the transformation matrix between O and B frames.
Solving for the pitch angle ©, bank angle ¢ and thrust 7,
we get the inversion equations:

T o
E—Jufﬂ%(w 9) 3

© = arctan

mu
P = arcsin —
— arcsi T
where u, and v are the velocities in z- and y-direction.
Using the above equations, the error controller, the described
reference model and the position loop can all be implemented
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in Simulink, using only fixed-point data types, to ensure high
computational efficiency on the microprocessor hardware.

IV. VISUAL TRACKING SYSTEM

In this section we describe the visual tracking system. As
already mentioned, the visual tracker relies, to some extent,
on the results of the fused measurements from the onboard
controller.

We use two standard webcams mounted at the upper
corners of the box. The cameras have been calibrated to get
their intrinsic parameters, as well as their relative positions
and orientation, by using OpenCV [21] and a calibration
pattern. Furthermore, the global world frame is set approxi-
mately to the center of the box, with the Z-direction pointing
downwards for convenience during control (approximating a
North-East-Down frame).

A. Tracking loop

(@za= Image Edge
CE > Input update Image images
o — processing

tracking

Visibility
checking

to controller not

{SImulink) tracking
I ® St

visible
contour points

(Re-)Init
T

Trackloss St Compute

detection [ pose |

Fig. 3.

matched
features Feature

matching

Flow of the visual tracking system

The visual tracking system is based on well-known edge
matching algorithms [22], [23], [24] for pose estimation,
that are given to a Kalman Filter, in a Bayesian prediction-
correction scheme [25].

The processing flow of the visual tracker is shown in Fig.
3. At each time step, the fused state results s from the
onboard controller of the previous time step are used as prior
state estimate.

Image pre-processing is done by Canny edge detection
[26], subsequently used for model matching and pose estima-
tion. Edge detection is the computationally most expensive
part of the system; therefore, for each camera a separate
processing thread 1is responsible for this operation. Each
thread is triggered immediately after a new image is acquired,
while model matching is performed only after all threads
have finished.

B. Detection

In the very first frame, or to recover from a track loss,
a system initialization, or detection, is required. For this
purpose, we exploit the color of the vehicle.

In fact, the center of the vehicle is covered by a blue
marker, while the heading direction is marked with green.
This information, together with the constraints given by the
area in which the vehicle can operate, due to the limited field
of view of the cameras, is used to triangulate the 3D vehicle

position and heading. The association between segmented
colors in HS-space on the two views, is done by using the
epipolar lines. Triangulated positions are also restricted to
the possible operation volume, in order to sort out wrong
matches.

Finally, we take the combination of central position and
heading information which is consistent with the model, in
terms of an approximate distance from the green blob center
to the blue one. The pitch and bank angles are taken from the
previous result s%!, Detection of the heading is essential,
especially in the very beginning, and therefore we cannot
rely on the initial value estimated by the IMU.

The system stays in detection mode, until an initial pose
can be computed, which is then taken as the current prior
s; for tracking.

C. Tracking

In tracking mode, we predict the prior state s, by applying
a constant velocity dynamics to the previous estimate s,
after fusion.

Afterwards, we sample visible points from the model
contours at the predicted state s, in both camera views, by
applying the GPU-based algorithm described in [27]. The
result of this algorithm is a set of contour points, together
with the corresponding screen normals and Jacobians, needed
for feature matching and pose update. In particular, matching
is done by performing a nearest neighbor search along the
normals to each contour points, for the closest edge in the
Canny image, as described in [24].

Furthermore, we also use RANSAC [28] in order to
remove outliers, by enforcing collinearity of points belonging
to a straight model line. The result is a set of predicted model
features h,; and associated image features z;, with residuals
E; and Jacobians J; given by

E;, = nZT(hZ — z;) J; = nZT 88};

where n; are the respective screen normals. In the pose
update step, matched measurements are stacked together into
matrices for each camera, in order to compute a joint non-
linear least-squares optimization on both views ¢

3 <ETR’1E>

where R denotes the block-diagonal measurement covari-
ance, which is fully diagonal under the assumption of in-
dependent measurements per point. Pose update is done by
means of Gauss-Newton

Ap=H'g  with 6)
H=Y" <JTR’1J> g=>" <JTR’1E>
The resulting incremental pose Ap is used to update the

homogeneous transformation matrix 7, using the exponential
map

C)

®)

T* = argmin
T

c

c

Tey1 = Thexp (Ap:Gy) ™

with G; the generators of the Lie algebra [23] for the
Euclidean transformation group. The state estimate is finally
updated using standard Kalman filtering [25].
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The last step in the loop consists of detecting tracking
failures (loss detection). For this purpose, we restrict the
output of the visual system to lie within a certain range.
Especially the position of the vehicle is limited by the
controller, but also the attitude is restricted, such that extreme
angles (> 60°) indicate a problem in tracking since they are
never commanded by design. Furthermore, the estimate of
the pose covariance matrix gives a hint for the quality of the
estimate. By choosing an empirical maximum threshold for
the determinant of the posterior covariance, we can detect a
track loss.

Fig. 4. Tracking steps for one camera. Left: input image. Middle: Canny
edge map, overlayed with visible contour points for the predicted state,
search normals at each point (red), and associated edges along the normals
(green). Right: input image superimposed with CAD model drawn at the
output pose

Finally the resulting state estimate s;, and some flags
signalling the state of the tracking system, are sent to the
Simulink controller. A snapshot of the tracking procedure is
shown in Fig. 4.

V. EXPERIMENTAL RESULTS

In order to show the performance of our system, we tested
different trajectories while recording on-line data. We only
show here two pre-defined trajectories, namely a circle and a
planar, co-shaped trajectory. For other trajectories, and flight
under joystick input, we kindly refer to the accompanying
video of the paper.

Since we do not have access to real ground-truth data,
which could be obtained e.g. using a VICON tracker, we
can only assess correctness of the visual measurements by
sight. However, we also estimated the measurement noise, by
putting the quadrocopter at fixed positions within the box,
and let the tracking system run for a while. We found the
jitter to lie in the range of ~ 4mm for the positions.

In each figure, we are showing the commanded reference
signal (green) against the visual measurements (red). Fig.
5(a) shows the result of a commanded circle in X and Y
direction, with a radius of 0,4m. Fig. 5(b) shows the result
with an oo-trajectory in the Y-Z plane.

To show the accuracy of our system, we calculated the
errors between the commanded and measured trajectories,
given in Table V. It can be seen, that the RMS-errors are
below 4cm for each trajectory, and the mean 3D distance
from the nominal trajectory is approximately Scm.

The endurance of our system has been tested during the
Embedded World Exhibition, where it has been the main
demonstration setup at the Mathworks trade-show booth,
flying approximately 6h/day over three days.

3D

. RMS in RMS RMS 3D std.
Trajectory X inY in 7 mean dev
error :
Circle 0.033m 0.037m  0.006m  0.045m  0.022m
Infinity sign  0.036m 0.030m 0.022m 0.049m 0.017m
TABLE I

RMS ERRORS, MEAN 3D ERROR AND STANDARD DEVIATION FOR
EXAMPLE TRAJECTORIES

The main weakness of our system consists in visual
tracking under very fast vehicle movements. Due to the
limited frame rate and the low image quality of the USB
cameras, image edges get too much blurred and cause a
tracking loss. Nevertheless, during control the velocity of the
vehicle is kept limited, such that tracking can run robustly.
During our test flights we only lost track in case of rough
disturbances by hand. Also severe lighting, as can be seen
in Fig. 4, may lead to a performance loss.

VI. CONCLUSIONS AND FUTURE WORKS

With the current tracking algorithm and position control
system, the vehicle is able to fly with good accuracy and a
certain degree of robustness.

The controller and data fusion algorithm are more baseline
systems. Based on the available structure, new control theory
and specific data fusion algorithm can be tested. Pseudo-
control hedging could be implemented based on the cur-
rent structure, and specific data fusion algorithms can be
developed. Extended Kalman filter estimation of the relative
position of two adjacent UAVs is being developed, for
application of autonomous formation flight. Adaptive control,
especially Kalman filter-based, is of particular interest to the
authors in the next research phase. For the visual part, we
are going to move the cameras and a significant amount of
processing onboard, for autonomous indoor flights, so that
will use our current system as an evaluation platform for the
onboard system.
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