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Abstract— During the last two decades, software development
has evolved continuously into an engineering discipline with
systematic use of methods and tools to model and implement
software. For example, object-oriented analysis and design is
structuring software models according to real-life objects of
the problem domain and their relations. However, the industrial
robotics domain is still dominated by old-style, imperative robot
programming languages, making software development difficult
and expensive. For this reason, we introduce the object-oriented
Robotics Application Programming Interface (Robotics API)
for developing software for industrial robotic applications. The
Robotics API offers an abstract, extensible domain model and
provides common functionality, which can be easily used by
application developers. The advantages of the Robotics API
are illustrated with an application example.

I. INTRODUCTION

Today, industrial robots are still programmed with textual,
proprietary robot programming languages. These languages
are provided by robot manufacturers for their products and
are bound to their robot controllers. They are derived from
early imperative languages like ALGOL or Pascal and have
in common that they offer robotics-specific data types, allow
the specification of motions, and process 1/O operations
for the communication with external systems (e.g. tools,
sensors, or PLCs). Examples are the KUKA Robot Language
or RAPID from ABB. Due to these low-level languages,
programming an industrial robot is a difficult task requiring
considerable technical expertise and time. Hence, industrial
robots are usually equipped and programmed to perform only
one particular task for a considerable time. This might be
acceptable for mass production as in automotive industries,
but for small and medium enterprises with rapidly changing
products in small batches, the introduction of industrial
robots is an expensive and risky decision.

Furthermore, robot programming languages are strongly
limited compared to general-purpose languages. For exam-
ple, there is no built-in support for graphical user inter-
faces, and external connectivity is limited, which makes e.g.
connecting to databases or accessing web services difficult.
Hence, developing software for configuring and supervising
industrial robotic cells is a very complex and error-prone
task. The examples from [1] and [2] illustrate the efforts nec-
essary for developing custom applications for commercially
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available robot controllers. Considering the future challenges
of industrial robotics [3] like flexible manufacturing systems,
human-friendly task description or cooperating robots, exist-
ing approaches for developing applications for robotics are
reaching their limits.

To overcome these limitations, there have been several
academic approaches providing robot-specific libraries for
general-purpose languages. Examples are RIPE [4], MR-
ROC+ [5] and the Robotic Platform [6] Today, there’s a trend
in robotics towards component-based software engineer-
ing [7], as the robotics domain, especially for experimental
robotics, is considered as too diverse and too inhomogeneous
to develop one stable reference domain model [8]. Examples
for component-based robotics frameworks are Player [9] and
OROCOS [10]. However, these libraries and frameworks use
a low level of abstraction i.e. developers still need profound
knowledge in robotics and often in real-time programming.

From our point of view, the industrial robotics domain
can greatly profit from a rich object-oriented framework.
Such a framework should provide the common concepts
of this domain in form of class structures. Existing ap-
proaches like SIMOO-RT [11] and the above-mentioned
Robotic Platform [6] do not model concepts beyond different
manipulators and rather simple movements. Therefore, we
developed the Robotics Application Programming Interface
(Robotics API) as the main element of a three-tiered software
architecture [12] and present it in this paper. Its main
contribution is the introduction of a comprehensive model
of the industrial robotics domain that comprises modeling
devices, action descriptions as well as interesting parts of
the physical world.

The paper is structured as follows: Sect. II describes
why and how object-orientation can be applied to industrial
robotics and motivates the chosen architecture. In Sect. III,
the structure of the Robotics API including its domain model
is presented in detail. Subsequently, the advantages of this
object-oriented framework are illustrated with an industrial
application example in Sect. IV. The low-level execution of
Robotics API commands with regard to real-time constraints
is described in Sect. V. Finally, conclusions are drawn in
Sect. V1.

II. OBJECT-ORIENTATION IN INDUSTRIAL ROBOTICS

Nowadays, business software systems are usually con-
structed using techniques such as object-oriented analy-
sis, design and programming. Elaborate software design
processes like the Unified Process [13] exist, as well as



methods and guidelines for constructing object-oriented soft-
ware architectures and solving recurring design problems
by appropriate patterns [14]. In object-oriented design, real
world items are often modeled directly as software objects,
which dramatically helps understanding complex software
architectures. The object-orientation paradigm has a variety
of features to support reuse of existing code. By using
concepts like inheritance, it is possible to create large but
still generic libraries, that can simplify the development of
new applications for a certain domain. In that way, cost and
effort of software development can be greatly reduced.

There exists a number of object-oriented frameworks for
the robotics domain (e.g. [4], [5], [6], [11]). Some of these
mainly focus on communication aspects between distributed
system parts, whereas others also provide a basic class model
covering important robotics concepts. However, an elaborate
class model cannot be found in any of those frameworks.
Brugali and Scandurra [7] even argue that it is difficult
to define an object-oriented framework that remains stable
during its evolution, with regard to its class structure. For this
reason, they propose the approach of constructing robotics
software systems out of functional components with defined
interfaces (defined as Component Based Software Engineer-
ing), which they argue to be suited for robotics. While this
may fit for the extensive domain of experimental robotics, we
believe that an elaborate object-oriented framework can be a
valuable basis for application development in the compara-
tively narrow domain of industrial robotics. Applications in
this domain are usually built upon common, stable functions
like high-level motion instructions that are provided by the
basic robot control system. Thus, the required abstraction
level is higher than the level a coarse-grained component ar-
chitecture provides. An adequate object-oriented framework
architecture can provide a high abstraction level for re-using
functionality that is common for today’s industrial robot use
cases and, furthermore, even cover future trends by reusing,
extending and composing existing classes. Aside of that,
a large number of existing, object-oriented class libraries
exist for modern languages like C# or Java. They provide
advanced functionality like image processing or complex
user interface elements, which can be directly used with an
object-oriented robotics framework.

A fact that complicates the design of an object-oriented
programming framework for robotics — and robot program-
ming in general — is the need for real-time hardware control.
Especially in the domain of industrial robotics, determin-
istic execution of developed and once tested programs is
of utmost importance. This special design requirement to
today’s industrial robot controls, in particular for meeting
safety criteria and quality standards, resulted in the de-
velopment of proprietary programming languages that are
interpretable with certain timing guarantees. However, an
analysis of a wide range of industrial tasks for which robots
are employed provides an interesting result: Those actions
that require hard real-time guarantees comprise a closed set
of basic primitives, whereas most of the workflow inside
the respective applications is not hard real-time critical. This

led to the conclusion that most of the workflow of such
applications can be programmed in a standard environment
without regarding real-time aspects, whereas only real-time
critical control flows have to be executed in a specially
designed runtime environment.

We developed a novel architectural approach that allows
a tight integration of high-level robot programs and real-
time critical execution of low-level control flows, which is
presented in detail in [12]. Following this approach, real-time
critical commands can be specified using the object-oriented
Robotics API and are then dynamically translated into com-
mands for the Realtime Primitives Interface (RPI) [15]. A
RPI-compatible Robot Control Core (RCC) executes those
commands, which consist of a combination of certain, pre-
defined (yet extendable) calculation modules, and a speci-
fication of the data flow among them. Implementing only
the RCC with real-time aspects in mind is sufficient to
allow the atomic execution of Robotics API commands under
real-time conditions. Existing frameworks for real-time robot
control can be used to implement the RCC. In [15], we used
OROCOS as a basis for our prototypical RCC. In this paper,
we focus mainly on the design of the Robotics API and
how this programming framework supports the development
of applications for robotics, but also outline the process
of dynamic RPI command generation on the basis of an
application example.

III. STRUCTURE OF THE ROBOTICS API

Robotic applications usually model some part of the
physical world. In the simplest case, they just define points
in space that are necessary for robot movements in the
application. Depending on the concrete application or appli-
cation class, more information about the robot’s environment
is represented. For example, in assembly applications, the
notion of different workpieces that have to be assembled
can be helpful. However, such complex models of the reality
are predominantly supported by offline programming tools,
whereas standard robot controls usually only support the
definition of points.

The scope of the Robotics API comprises both use cases,
as it supports both basic robot programs as well as complex,
domain specific applications. Therefore, the definition of
points in space as well as arbitrary physical objects is
possible. Fig. 1 shows an overview of the basic class structure
inside the Robotics API, which consists of a total of about
70 classes. The lower left part of this diagram contains those
classes that support modeling geometric relations:

e A Frame is a spatial point with a unique name. Each
Frame can have an arbitrary number of relations direct-
ing to it or originating from it.

o A Relation connects a pair of Frames and defines a geo-
metric relation between them, expressed mathematically
by a homogeneous TransformationMatrix.

o A SpatialObject aggregates a number of Frames that
logically belong together. A SpatialObject can be seen
as the ’scope’ of a Frame, as each Frame is assigned to
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Fig. 1. Robotics API: basic class structure

exactly one SpatialObject. The World is a special Spa-
tialObject defining the notion of a globally unique world
concept. It knows a distinguished Frame WorldOrigin,
which is a globally unique world frame.

e A PhysicalObject is a concrete object in the world and
is a specialization of SpatialObject. Attributes like mass,
size etc. can be defined for it.

When it comes to the type and number of devices that
shall be controlled, classical robot controls can handle two
kinds: (1) A single robot that can be controlled natively and
(2) external (from the view of the robot control) periphery
like tools, sensors and complete systems that the robot
shall interact with. Periphery is usually connected to the
robot control via field buses which can be directly read
and written in most robot control languages. Languages like
KRL provide additional commands for the control of certain
periphery that abstract from the 1O level by introducing
control commands on a logical level.

The Robotics API provides basic classes to support all
kinds of devices and to control them. The relevant part of
the class structure is shown in the lower right part of Fig. 1:

e Device is the basic class for all kinds of mechanical
devices that can be controlled, such as robots, grippers
or any other kinematic structures. Any such Device must
be controllable by the Robot Control Core (see Sec. II).
Each Device can have a PhysicalObject attached that
describes its physical properties. ComposedDevice is
intended to be the base class for devices that are
compositions of other devices, like e.g. a robot on a
mobile platform. It is possible to control each single
device of this composed device separately, or treat the
composition as a whole, depending on the use case.

o A Joint represents a mechanical joint, which is the most
basic element of any robot. The Robotics API supports
PrismaticJoints and RevoluteJoints

o A Manipulator is an example of a common concrete de-
vice. It consists of several Joints, which are themselves

Devices that can be controlled separately. This makes
a Manipulator the simplest kind of ComposedDevice.
One example for a concrete Manipulator is a Robot.

In object-oriented design and programming, objects usu-
ally carry their state with them as attributes, as well as
methods operating on that state and representing the func-
tionality of the respective object. Thus, one would expect that
Robotics API devices contain several methods for performing
usual actions (e.g. Robot.MoveLinear(), Gripper.Close()).
However, the Robotics API models commands that shall be
executed by devices as separate objects, which corresponds
to the ’Command pattern’ defined in [16]. This kind of
modeling allows the flexible combination of multiple com-
mands into a bigger, complex command. This realizes the
core idea of encapsulating real-time critical action sequences.
Sec. V explains this mechanism more in detail. Of course,
convenience methods can be implemented that serve as
shortcuts for commonly used functionality and rely on the
Command pattern structure in their implementations, like
the aforementioned movement methods in the class Robot.
Below, the classes forming the Robotics APIs command
model are explained:

o An Action represents some sort of operation that can
be executed by certain devices (e.g. a Motion by a
Manipulator).

o A Command specifies a Device and an Action the
Device should execute.

o Actions contain a set of Events. An Event can occur
when an Action is executed and describes that a certain
state has been reached. Events are specific for each
Action: E.g., a Motion has a MotionStartEvent and a
MotionEndEvent.

e A Trigger can be attached to any Event. A Trigger
starts a new Command when the respective Event has
occurred, with a specified temporal delay. An arbitrary
number of Triggers can be defined for each Event.

The Robotics API is an open, extendable framework for



high-level programming of industrial robot applications. By
providing basic concepts for world modeling, devices and
action specifications, it promotes reuse of logic common to
such applications. Compared to the manipulator-level robot
programming languages used in today’s robot controls, the
Robotics API also facilitates the notion of real-world objects
like workpieces that are to be manipulated.

IV. APPLICATION EXAMPLE

For evaluating the usefulness of the Robotics API as a
basic framework for industrial applications, we created a
draft implementation of a welding application as a proof of
concept, based on the manual of the KUKA ArcTech Digital
add-on technology package [17]. Welding is a typical use
case for industrial robots and comprises many challenging
aspects of programming robots:

« Configuring and controlling a robot and a welding tool

« Specifying points and welding lines that are, in general,
specific to a type of workpiece

o Defining the welding work flow, including movements
and synchronized tool actions

During implementation, we extended the Robotics API by
classes that are common for welding tasks. In Fig. 2, those
classes are shown in dark color, together with those classes
of the Robotics API (in light color) that they relate to. The
diagram is structured similar to Fig. 1.

For the welding application, the device model of the
Robotics API had to be extended. Two new Device sub-
classes were introduced: WeldingTorch and WeldingRobot.
WeldingTorch represents the tool that is used for welding
and is modeled as ComposedDevice, consisting of multiple
instances of /ODevice. An IODevice is a generic representa-
tion of an input or output port of the robot control that can be
read or written. In that way, the WeldingTorch class provides
a high-level interface for configuring and controlling the
device, while the information about the IO configuration
stored in the IODevices can be used for mapping the high-
level actions to input and output signals on the robot control.
The class WeldingRobot is a ComposedDevice, too, which
aggregates the used Robot and the WeldingTorch mounted
at its flange. The WeldingRobot has the ability of moving
the robot arm (with the correct center of motion, i.e. the tip
of the WeldingTorch) and for executing a complex Weld()
operation. This operation takes a WeldingLine as a parameter
as well as specific WeldingParameters. Those parameters
specify characteristic details of the welding operation like the
timeout for the ignition of the welding arc. The WeldingLine
consists of a sequence of motion definitions, which specify
the welding seam that the WeldingRobot shall follow. The
class WeldedWorkpiece is a subclass of Workpiece and knows
a set of WeldingLines, so that large parts of a welding
program can be reused when the WeldedWorkpiece is ex-
changed.

The most interesting part of our application is the im-
plementation of the WeldingRobot.Weld() method. This op-
eration performs a complete welding operation of a given
WeldingLine. This operation consists of the following parts:

(1) Perform the ignition movement to the start point of the
welding seam and turn on the shielding gas flow. (2) After
the defined gas preflow time, initiate the arc ignition. (3) As
soon as the arc has been established, start the first motion
along the seam. (4) Perform all necessary motions along the
seam in a continuous manner. (5) As soon as the end of the
last motion segment has been reached, turn off the arc. (6)
Wait for the defined crater time and the defined gas postflow
time and after that, turn off the shielding gas flow. (7) Finally,
perform the final movement away from the workpiece.
Most parts of this operation have to be executed within
defined timing windows. In particular, all movements have
to be executed without any delay as soon as the arc has
been established, otherwise the workpiece will be damaged.
Though some other steps (e.g. waiting for the gas postflow)
perhaps do not require hard real-time guarantees, we chose to
implement all steps as one complex Robotics API Command.
Listing 1 shows the first lines of code of the Weld() method.

// start the ignition movement
Command ignitionMovementCmd =
new Command (Robot, line.IgnitionMovement) ;

// start gas depending on status of ignition movement
Command startGasCmd =
new Command (WeldingTorch, new GasOn());

Trigger startGasTrigger = new Trigger (
line.IgnitionMovement.OnMotionEnded,
startGasCmd) ;

ignitionMovementCmd.AddTrigger (startGasTrigger) ;

// initialize the welding arc after the gas preflow time

Command startIgnition =
new Command (WeldingTorch, new ArcOn());

Trigger startIgnitionTrigger = new Trigger (
line.IgnitionMovement.OnMotionEnded,
startIgnition,
parameters.GasPreflowTime.Milliseconds) ;

ignitionMovementCmd.AddTrigger (startIgnitionTrigger);

. // code for steps 4-7 is omitted

ignitionMovementCmd.Execute () ;

Listing 1. Excerpt of the WeldingRobot.Weld() method.

The statements that are shown create a command for
letting the Robot do the ignition movement, and attach
triggers to the command, which start the gas preflow and
initiate the ignition. The last line of the listing shows the
end of the Weld() method, where the ignition movement
is actually executed. This leads to the execution of all
commands that are connected to the ignition movement
command via events and triggers. The execution of all those
commands is performed as one atomic step and with real-
time guarantees considering the timing specifications.

Having defined those basic classes, every weld application
can just be implemented as a series of calls of the Weld()
method (corresponding to the WeldingLines defined on the
WeldedWorkpiece) with adequate transfer movements in
between that move the robot from one welding line to the
next. Programmers of welding applications do not have to
deal with any real-time aspects of their applications, as those
are encapsulated inside the WeldingRobot’s implementation.
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The implementation of all the classes specific for welding
functionality (shown in dark color in Fig. 2) took only about
100 lines of code, while all other parts (Robot, Command,
Trigger etc.) could be re-used directly from the Robotics API.

V. EXECUTION OF RoOBOTICS API COMMANDS

Using the Robotics API, complex and domain specific
commands can be specified. However, to run these com-
mands on real robots, they are converted into an executable
form. Our approach uses dataflow specifications, which are
expressed with RPI and describe the communication among
various basic modules representing hardware, calculation and
control algorithms.

These RPI commands can be sent to a compatible robot
controller, where they are executed respecting hard real-
time constraints. The controller also has to return status
information about its executed commands and devices to
the Robotics API layer. This way, the running application
can be synchronized to the execution on the controller, and
can always work on up-to-date state information about the
existing devices.

The transformation of Robotics API commands into RPI
commands is specific to the particular Actions, Devices and
Events used, but follows a general pattern:

e Devices are turned into consumer modules featuring
dataflow inputs specific to the type of actions the
devices support. For example, a robot object in the
Robotics API can be mapped into a module accepting
Cartesian position values as an input. This module’s
implementation controls the physical robot, following
the trajectory received on the input port.

o Actions are represented by modules producing data that
will be processed by the devices. Motion actions thus
become trajectory generator modules which calculate
the desired position of the robot end effector at each
interpolation cycle. Motion overlays or other action
modifiers cause additional modules to be added which
accept data produced by the primary action and calcu-
late the corresponding overlay or modification.

Structure of a welding application on top of the Robotics API

o To enable control flow and conditional execution, the
modules representing actions and devices have an input
port active controlling whether the module shall be
evaluated. These ports are connected to a module called
trigger which can be controlled over its on and off
inputs. This way, a trigger activating an action for a
device can be transformed into a module evaluating the
event condition and switching on the trigger for the
action and device. Of course, this evaluation module
has to be able to access status information about other
running actions, provided as additional output ports by
action modules.

Fig. 3 gives an example for a Robotics API command
structure. It consists of the initial movement in a welding
application (action ignitionMovement) executed by a certain
device (robot), and enables the gas flow (action gasOn) of
the attached weldingTorch (device) once the initial motion
is completed (startGasTrigger triggered by a motionEnded
event).
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Fig. 3. Robotics API Command

The generated RPI command is given in Fig. 4. The top
part shows the representation of the ignitionMovementCmd
command, consisting of a trajectory generator as an imple-
mentation of the motion, and a robot module representing
the controlled robot. The lower part implements the start-
GasCmd command by sending a binary value to the digital
output the torch is attached to. The check and trigger modules
in the lower left part check the progress of the trajectory
generator and enable control of the digital output once the
motion is completed.
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VI. CONCLUSION & FUTURE WORK

In this paper, we have proposed the Robotics Application
Programming Interface for developing software for industrial
robots. It offers an object-oriented model for the (industrial)
robotics domain and provides common functionality which
can be easily used by developers. Main concepts are objects
for robots, tools, frames or actions (e.g. motions or tool
actions). The Robotics API is embedded into a software
architecture and relies on a real-time capable robot control
core. Actions which need precise timings (e.g. motions
or switching actions) are encapsulated inside a command
structure and will be executed atomically by the robot
control. Developers can extend the Robotics API in order
to create application-specific functionality or to add support
for new devices. The welding example from Sect. IV is
such an extension and introduces e.g. the composed device
WeldingRobot with its (configuration) properties and actions.

Due to the high-level programming model and the tight,
but hidden integration of low-level command execution,
application developers are able to focus on solving the
application-specific problems and, as far as possible, do not
need profound knowledge in robot control and real-time
programming. Extensions facilitate the reuse of application-
specific functionality and promote a separation of con-
cerns: Domain experts model and implement extensions
while application developers use them. Furthermore, the
Robotics API allows robotic applications to be developed
using standard technologies and non real-time environments.
The current implementation of our prototypical Robotics
API is created as a class library based on Microsoft’s
C#, which is an object-oriented language on top of the
.NET framework. With its built-in memory management, the
.NET framework runtime and its languages are very robust
against many common programming errors. Furthermore, the
development environment Visual Studio provides extensive
support for developing, modifying and testing applications.
For the realization of the welding example (see IV), we also
used C# and Visual Studio. This allowed a fast and clean
implementation of this application. From our point of view,
our proposed approach will improve productivity as well as
quality in the development of robotics software [18] and can
leverage the use of industrial robots in small and medium
enterprises.

The approach has been successfully applied to program
and control two KUKA lightweight robots, showing its

advantages in software development for robotics. In order to
prove its universal validity and the improvements in software
quality, we are applying our approach to a set of more
complex examples. Concerning the Robotics API, next steps
include the introduction of sensors, extensions of the world
model (e.g. including moving frames) as well as sophisti-
cated error handling concepts. Moreover, we are currently
extending our approach to program real-time cooperation
tasks like load-sharing motions or rendezvous operations.
The Robotics API was designed to support such advanced
tasks as well, and we plan to verify that using the lightweight
robots.
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